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Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment
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We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral
fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in
a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in
dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments.
We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external
magnetic field. The field strength necessary to ensure full spin polarization is derived.
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I. INTRODUCTION

Ultracold atomic gases provide highly controllable systems
for the study of condensed-matter phenomena [1]. With the
ongoing experimental efforts in ultracold gases of neutral
Fermi atoms [2] and the possibility of a genuinely two-
dimensional (2D) confinement [3–7], it is now possible to
acquire data about dilute 2D degenerate Fermi gases of
neutral atoms under adjustable laboratory conditions [8]. It
is hoped that this will advance our understanding of various
2D phenomena, such as high-Tc superconduction [9,10],
effective massless Dirac fermions [11,12], the Bose-Einstein
condensate (BEC)–Berezinsky-Kosterlitz-Thouless crossover
[13,14], and others.

While experiments of this kind will involve periodic
potentials of various geometries, all experiments with ultracold
atoms in a 2D configuration will make use of a confining
potential. Before investigating aspects of specific periodic
potentials, one can examine the behavior of the degenerate gas
in the 2D trapping potential. We study this situation with the
help of density functionals, and arrive at detailed predictions
for the case of an isotropic harmonic trapping potential.

Density functional theory (DFT), which has its historical
roots in the Thomas-Fermi model for atoms [15,16], was
first formulated for the inhomogeneous electron gas [17],
with immediate applications to atoms, molecules, and solids;
see Ref. [18], for example. DFT can equally well be used
for studying other physical systems, such as dilute gases of
neutral fermionic atoms under the influence of a confining
external potential. While the DFT formalism can be based
on both the spatial [17] and the momental density [19],
the spatial-density version gives a more natural description
in the case of a position-dependent interaction, such as the
magnetic-dipole interaction. We derive the density functionals
for spin-polarized fermions with magnetic-dipole interaction,
confined in a 2D harmonic potential, and investigate the
ground-state density and energy of the system.

The article is organized as follows. Section II summarizes
earlier investigations in three dimensions (3D). In Sec. III,
we discuss how to appropriately reduce the dimensionality.
Various 2D density functionals are derived in Sec. IV. A
discussion about the scaling behavior of these functionals
is then given in Sec. V. Section VI presents the analytic

results of the ground-state density and energy, and discusses
the weak-interaction limit. Section VII extends the formalism
to accommodate the spin dependence in an inhomogeneous
magnetic field. We conclude with a summary and a brief
outline of prospective work.

II. THE 3D CASE

It is expedient to recall some basic relations that were earlier
established in 3D, mainly collected from Refs. [20–23].

A. Single-particle density and density matrix

The spatial one-particle density matrix n(1)(r′; r′′) and the
associated one-particle Wigner function ν(r,p) are related by

n(1)(r′; r′′) =
∫

(dp)

(2πh̄)3
ν
( 1

2 (r′ + r′′),p
)
eip·(r′−r′′)/h̄, (1)

with (dp) ≡ dpx dpy dpz denoting the volume element in the
momentum space. The spatial and momental one-particle
densities are obtained by integrating ν(r,p) over the other
variable,

n(r) ≡ n(1)(r; r) =
∫

(dp)

(2πh̄)3
ν(r,p),

(2)

ρ(p) =
∫

(dr)

(2πh̄)3
ν(r,p).

Note that both densities are normalized to the total number of
particles N ,

N =
∫

(dr)n(r) =
∫

(dp)ρ(p). (3)

B. Density functionals for energy

For a system of spin-polarized fermions in an isotropic
harmonic trap, the potential energy is given by

Etrap[n] =
∫

(dr)
1

2
Mω2r2n(r), (4)
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where M and ω are the mass of an individual atom and the
trap frequency, respectively, r = |r| is the length of the position
vector r, and the kinetic energy is

Ekin =
∫

(dp)
p2

2M
ρ(p). (5)

Both Etrap and Ekin are sums over single-particle contributions.
The interaction energy, Edd, which is a sum over particle-

pair contributions, is evaluated using the diagonal part of the
two-particle density matrix n(2)(r′

1,r
′
2; r′′

1,r
′′
2),

Edd = 1

2

∫
(dr′)(dr′′)Vdd(r′ − r′′) n(2)(r′,r′′; r′,r′′) (6)

with the magnetic dipolar interaction potential

Vdd(r) = µ0

4π

[
µ2

r3
− 3

(µ · r)2

r5
− 8π

3
µ2δ(r)

]
, (7)

where µ and µ are the magnetic-dipole moment and its
magnitude of an individual atom. The contact term in Vdd(r)
is necessary to ensure that the magnetic field generated by the
point dipole is divergence free.

C. TFD approximation

In the spirit of the approach that was pioneered by
Thomas, Fermi, and Dirac (TFD), a twofold semiclassical
approximation is employed here. First, n(2) is replaced by
products of n(1) factors (due to Dirac [24]) according to

n(2)(r′
1,r

′
2; r′′

1,r
′′
2) = n(1)(r′

1; r′′
1) n(1)(r′

2; r′′
2)

− n(1)(r′
1; r′

2) n(1)(r′′
2; r′′

1). (8)

This splitting corresponds to the direct and exchange terms
when evaluating the interaction energy, Edd. Note that this
expression is only valid if the system is spin polarized.
Otherwise, a multiplicative constant preceding the second term
is needed to account for the spin multiplicity.

Second, the Wigner function is a uniform sphere of a finite
size (due to Thomas [15] and Fermi [16])

ν(r,p) = η(h̄[6π2n(r)]1/3 − p), (9)

where η( ) is the Heaviside unit step function. This applies
when functionals of the spatial density n(r) are considered.
For functionals of the momental density ρ(p), one has to use
ν(r,p) = η(t(p) − V (r)), where V (r) is the external potential
and t(p) is determined by ρ(p) through Eq. (2). In the case of
an isotropic harmonic potential, V (r) ∝ r2, this is

ν(r,p) = η(h̄[6π2ρ(p)]1/3 − r), (10)

visibly the analog of Eq. (9).
This yields the familiar density functional of the kinetic

energy,

Ekin[n] =
∫

(dr)
h̄2

M

1

20π2
[6π2n(r)]5/3. (11)

Since the contributions of the contact term to the direct
and to the exchange energy cancel each other in the fully
spin-polarized situation under consideration, and the remain-
ing exchange energy vanishes under the average over the

solid angle associated with the relative distance, the density
functional of the interaction energy,

Edd[n] = 1

2

∫
(dr)(dr′)n(r)V dd(r − r′)n(r′), (12)

is characterized by an effective potential V dd,

V dd(r) = µ0

4π

[
µ2

r3
− 3

(µ · r)2

r5

]
. (13)

D. Ground-state energy and density

Thus, the functional for the total energy of the ground state
in the TFD approximation is given by the sum of the three
terms in Eqs. (4), (11), and (12),

ETFD[n] =
∫

(dr)
h̄2

M

1

20π2
[6π2n(r)]5/3

+
∫

(dr)
1

2
Mω2r2n(r)

+ 1

2

∫
(dr)(dr′)n(r)V dd(r − r′)n(r′). (14)

Upon applying the variational principle, we find that the
density that minimizes ETFD must obey the integral equation

h̄2

2M
[6π2n(r)]2/3 + 1

2
Mω2r2 +

∫
(dr′)V dd(r − r′)n(r′)

= 1

2
Mω2R2, (15)

where 1
2Mω2R2 is a convenient way of parametrizing the

Lagrange multiplier for the normalization constraint of Eq. (3).

III. FROM 3D TO 2D

The form of the density functional in Eq. (14) gives no
explicit indication of its dependence on the spatial dimension.
It is thus necessary to rederive the density functionals in 2D,
with some suitable assumptions about the Wigner function.

A. A possible Wigner function

When the trapping potential in the z direction is harmonic
and sufficiently stiff, as is the typical situation in an actual
experiment, the system will remain in the ground state in
this direction, and this gives rise to a factorizable Gaussian
dependence in z and pz in the Wigner function,

ν(r,p) = ν⊥(r⊥,p⊥)2 exp

(
−z2

l2
z

− p2
z l

2
z

h̄2

)
, (16)

where lz = √
h̄/(Mωz) is the harmonic oscillator length scale

in the z direction, and the subscript ⊥ indicates that these
various quantities live in the transverse xy plane. Here, ωz

is a finite but large frequency and, in order to achieve a
2D geometry, we require that h̄ωz � kBT for the situation
of ultracold atoms that we have in mind, although we take
the limit ωz → ∞ for mathematical convenience whenever
possible.

052517-2



DENSITY FUNCTIONAL OF A TWO-DIMENSIONAL GAS . . . PHYSICAL REVIEW A 83, 052517 (2011)

B. Densities in 2D

In analogy with the densities defined in 3D, Eqs. (1) and (2),
the densities in 2D are given by

n
(1)
⊥ (r′

⊥; r′′
⊥) =

∫
(dp⊥)

(2πh̄)2
ν⊥

(
r′
⊥ + r′′

⊥
2

,p⊥

)
eip⊥·(r′

⊥−r′′
⊥)/h̄,

n⊥(r⊥) =
∫

(dp⊥)

(2πh̄)2
ν⊥(r⊥,p⊥), (17)

ρ⊥(p⊥) =
∫

(dr⊥)

(2πh̄)2
ν⊥(r⊥,p⊥).

With the decomposition of the Wigner function in Eq. (16),
we find that the densities in 2D and those in 3D are related in
the following manner:

n(1)(r′; r′′) = n
(1)
⊥ (r′

⊥; r′′
⊥)

1

lz
√

π
exp

(
−4z2

+ + z2
−

4l2
z

)
,

n(r) = n⊥(r⊥)
1

lz
√

π
exp

(
−z2

l2
z

)
, (18)

ρ(p) = ρ⊥(p⊥)
lz

h̄
√

π
exp

(
−p2

z l
2
z

h̄2

)
,

where z+ = 1
2 (z′ + z′′), and z− = z′ − z′′, such that the 2D

densities are now normalized to the number of particles,

N =
∫

(dr⊥)n⊥(r⊥) =
∫

(dp⊥)ρ⊥(p⊥). (19)

C. Various energy terms

By integrating over z and pz, we immediately find the trap
energy and the kinetic energy in terms of the 2D densities,

Etrap =
∫

(dr⊥)n⊥(r⊥)
1

2
Mω2

⊥r2
⊥ + N

4
h̄ωz,

(20)

Ekin =
∫

(dp⊥)ρ⊥(p⊥)
p2

⊥
2M

+ N

4
h̄ωz,

where ω⊥ is the radial trap frequency in the xy plane, assuming
isotropy. Note that both expressions contain parts analogous
to the corresponding expressions in 3D and additive constants,
which are the sum of single-particle energies in the ground state
of the harmonic trap of the z confinement. Since these constants
play no role in the dynamics of the system, we renormalize the
expressions, such that

Etrap =
∫

(dr⊥)n⊥(r⊥)
1

2
Mω2

⊥r2
⊥,

(21)

Ekin =
∫

(dp⊥)ρ⊥(p⊥)
p2

⊥
2M

,

which are now independent of ωz and unaffected when the
limit ωz → ∞ is taken.

To investigate the interaction energy, we employ the
(2 + 1)D version of Eq. (8),

n(2)(r′,r′′; r′,r′′) = n(r′) n(r′′) − n(1)(r′; r′′) n(1)(r′′; r′)

= e−(4z2
++z2

−)/(2l2
z )

l2
zπ

[
n⊥(r′

⊥) n⊥(r′′
⊥)

− n
(1)
⊥ (r′

⊥; r′′
⊥) n

(1)
⊥ (r′′

⊥; r′
⊥)

]
, (22)

which corresponds to the splitting of the direct and exchange
energies. It is clear from Eq. (22) that the contact term
in the interaction potential, Eq. (7), enforces r′ = r′′ and
thus equal and opposite contributions from the direct and
exchange energies, the familiar situation when the system is
spin polarized. It is then permissible to drop the contact term,
which amounts to replacing the original interaction potential
by the effective potential of Eq. (13), i.e.,

Edd = 1

2

∫
(dr′)(dr′′)V dd(r′ − r′′)

× [n(r′) n(r′′) − n(1)(r′; r′′) n(1)(r′′; r′)]. (23)

Since V dd(r′ − r′′) depends only on the difference in the
positions, we isolate the z direction by identifying ρ =
(r′ − r′′)⊥,

V dd(r′ − r′′) = µ0µ
2

4π

[
1

(ρ2 + z2−)3/2
− 3z2

−
(ρ2 + z2−)5/2

]
, (24)

where we assume that the magnetic-dipole moments of all
fermions are polarized in the z direction, i.e., µ = µêz.

It should be noted that the replacement of Vdd(r) by V dd(r)
only takes place after the approximation in Eq. (22) is made. It
may not be correct for a different approximation scheme, that
is, when going beyond Dirac’s approximation in Eq. (8).

In the limit of ωz → ∞, the Gaussians of z± become Dirac
delta functions, yielding

Edd = 1

2

∫
(dr′

⊥)(dr′′
⊥)

µ0µ
2

4π

1

|r′
⊥ − r′′

⊥|3
× [

n⊥(r′
⊥) n⊥(r′′

⊥) − n
(1)
⊥ (r′

⊥; r′′
⊥) n

(1)
⊥ (r′′

⊥; r′
⊥)

]
. (25)

In hindsight, we recognize the result above as an immediate
consequence of having µ ⊥ r, which forces their scalar
product in Eq. (13) to vanish, while the contact term does
not contribute for the reason discussed earlier.

IV. 2D FUNCTIONALS

From this section onward, for notational convenience, we
leave out all the subscripts ⊥. It is understood that all the
densities refer to the 2D definition specified in Eqs. (17), and
all the vectors reside in the xy plane.

A. TFD: A brutally simple Wigner function

In order to derive the density functionals in 2D, one
first needs to complete the TFD approximation started in
the previous section and assume a “brutally simple Wigner
function” [23] analogous to Eq. (9), i.e.,

ν(r,p) = η(h̄[4πn(r)]1/2 − p), (26)

where the power and prefactor of the density are determined
by normalization.

B. Density functionals

Not surprisingly, the potential energy reads

Etrap[n] =
∫

(dr)
1

2
Mω2r2n(r), (27)

052517-3



BESS FANG AND BERTHOLD-GEORG ENGLERT PHYSICAL REVIEW A 83, 052517 (2011)

where we emphasize that ω is the radial trap frequency in
the xy plane, assuming isotropy. Upon using Eqs. (17), (21),
and (26), we find that

Ekin[n] =
∫

(dr)
h̄2

M
πn(r)2. (28)

The n(r)2 dependence of this 2D functional can also be
obtained from dimensional analysis; similarly, dimensional
analysis confirms the n(r)5/3 dependence of the 3D functional
in Eq. (11), and the 1D functional for the kinetic energy has
the cube of the density; see Table I below.

The interaction energy, in particular, turns out to consist
of two pieces with different dependence on the one-particle
density, namely,

Edd = E
(1)
dd + E

(2)
dd ,

E
(1)
dd [n] = µ0µ

2

4π

∫
(dr)

256

45

√
πn(r)5/2, (29)

E
(2)
dd [n] = −µ0µ

2

4π
π

∫
(dr)n(r)

√
−∇2n(r),

where
√−∇2 is an integral operator that is given by

√
−∇2n(r) =

∫
(dr′)
(2π )2

(dk)ke−ik·(r−r′)n(r′). (30)

We report the details of deriving Eqs. (29) in the Appendix.
Note that the splitting of the interaction energy in Eqs. (29)

does not correspond to the direct and exchange energies as in
the 3D case, where, as we recall, the exchange energy exactly
compensates for the contribution of the contact term to the
direct energy. In 2D, both the direct and exchange energies are
infinite individually, and they can only be considered together
so that the total interaction energy is finite. Both contributions
in Eqs. (29) stem from the sum of the direct and the exchange
energy.

C. Ground-state energy and density

The total energy of the system in the TFD approximation
is now given by the sum of the various energy terms derived
above,

E
(2D)
TFD[n] =

∫
(dr)

h̄2

M
πn(r)2 +

∫
(dr)

1

2
Mω2r2n(r)

+ µ0µ
2

4π

∫
(dr)

[
256

45

√
πn(r)5/2

−πn(r)
√

−∇2n(r)

]
. (31)

The density that minimizes the energy, constrained by the
normalization condition (19), must then obey

2h̄2

M
πn(r) + 1

2
Mω2r2

+ µ0µ
2

4π

[
128

9

√
πn(r)3/2 − 2π

√
−∇2n(r)

]
= 1

2
Mω2R2,

(32)

where, as in Eq. (15), 1
2Mω2R2 is the chemical potential.

A comparison between Eqs. (32) and (15) shows that the
reduction of dimension does not yet provide any operational
simplification when it comes to solving for the spacial density,
because of the occurrence of the integral operator

√−∇2. But
one should not fail to notice that the interaction is now made up
of two contributions with different dependence on the density.
As we will see in the next section, the integral term is rather
unimportant in certain parameter regimes of interest and can
then be neglected.

V. VIRIAL THEOREM AND SCALING

A. Scaling transformation

Let us consider scaling transformations that change both
the length scale and the number of particles,

n(r) → λ2+αn(λr), N → λαN. (33)

They are consistent with the normalization constraint, Eq. (19),
and affect the various terms of E

(2D)
TFD in the following manner:

Ekin → λ2+2αEkin,

Etrap → λ−2+αEtrap,
(34)

E
(1)
dd → λ3+5α/2E

(1)
dd ,

E
(2)
dd → λ3+2αE

(2)
dd ,

so that the total energy E ≡ E
(2D)
TFD transforms in accordance

with

E = Ekin + Etrap + E
(1)
dd + E

(2)
dd

→ λ2+2αEkin + λ−2+αEtrap

+ λ3+5α/2E
(1)
dd + λ3+2αE

(2)
dd . (35)

B. Virial theorem

Since the minimum of E is achieved by the true ground-state
density, all first-order changes of E in the vicinity of λ = 1
must be generated by the explicit change in N , δN = δλαN ,
so that

αN
∂E

∂N
= (2 + 2α)Ekin + (−2 + α)Etrap

+
(

3 + 5

2
α

)
E

(1)
dd + (3 + 2α)E(2)

dd (36)

is true for all values of α. Choosing two values of α for
independent statements, we have

2Ekin − 2Etrap + 3
(
E

(1)
dd + E

(2)
dd

) = 0 (37)

for α = 0, and

2Ekin + 10Etrap + (
E

(1)
dd − E

(2)
dd

) = 4N
∂E

∂N
(38)

for α = − 4
3 , which are supplemented by the first line of

Eq. (35). Further, we note the parametric dependence on µ, ω,
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and M ,

µ
∂

∂µ
E = 2Edd = 2

(
E

(1)
dd + E

(2)
dd

)
,

ω
∂

∂ω
E = 2Etrap, (39)

M
∂

∂M
E = Etrap − Ekin.

Now, owing to the scaling argument, which will be
presented next, we find that E

(1)
dd /E

(2)
dd ∼ √

N , which allows
us to neglect E

(2)
dd for large N . Applying E

(1)
dd ± E

(2)
dd ≈ E

(1)
dd to

the first line of Eqs. (35) and (37)–(39) then yields

E(µ,ω,M,N ) ≈ h̄ωN3/2E(εN1/4), (40)

where

ε = µ0µ
2

4πl3
0

/
(h̄ω) (41)

is a dimensionless interaction strength that can be understood
as the ratio between the interaction energy of two magnetic
dipoles separated by l0 = √

h̄/(Mω) and the transverse har-
monic oscillator energy scale, and E( ) is a dimensionless
function of εN1/4. We remark that the N3/2 dependence in
the prefactor results from the degeneracy of the harmonic
confinement in 2D.

C. Dimensionless variables

We define the natural length scale of the system, a, the
dimensionless position, x, and the dimensionless density, g(x),
in accordance with

a = l0N
1/4, x = r

a
, g(x) = a2

N
n(r), (42)

so that the scaled density is normalized to unity. Choosing
h̄ωN3/2 as the energy unit, we have

E
(2D)
TFD[g]

h̄ωN3/2
= π

∫
(dx)g(x)2 + 1

2

∫
(dx)x2g(x)

+ εN1/4

[
256

45

√
π

∫
(dx)g(x)5/2

−N−1/2π

∫
(dx)g(x)

√
−∇2g(x)

]
, (43)

where −∇2 now differentiates with respect to position x, and
the scaled density that minimizes E

(2D)
TFD must obey

2πg(x) + 1
2x2

+ εN1/4
[

128
9

√
πg(x)3/2 − N−1/22π

√
−∇2g(x)

] = 1
2X2,

(44)

where 1
2X2 is the scaled chemical potential. The term preceded

by N−1/2 originates in E
(2)
dd , which was neglected for large N

on the way to Eq. (40).

VI. DENSITY AND ENERGY OF THE GROUND STATE

For N ∼ 104, which is a modest value for typical experi-
ments with ultracold atoms, the N−1/2 term is a correction in
the 1% regime. Given that the TFD approximation is generally
introducing errors of the order of a few percent, this term is
of a negligible size. Therefore, we shall consistently discard it
and all other N−1/2 terms. Equation (44) then reduces to

εN1/4 128
9

√
π

√
g(x)

3 + 2π
√

g(x)
2 = 1

2 (X2 − x2), (45)

which does not single out any spatial direction and thus
implies an isotropic ground-state density, g(x) = g(x). We also
recognize that Eq. (45) is a cubic equation for

√
g(x) and can

be solved analytically.
In Fig. 1, we plot the dimensionless density g(x) for

different values of εN1/4. We observe that the stronger the
dipole repulsion (larger ε), the lower the central density and
the larger the radius of the cloud. This feature is reminiscent
of the condensate wave function of bosonic atoms when
a repulsive contact interaction is taken into account in the
mean-field formalism [25]. In contrast to that exhibited by a 3D
spin-polarized BEC [26], the simple symmetry of the isotropic
harmonic confinement is preserved in the ground-state density
in 2D. We remark that this is partially a consequence of
choosing the direction of spin polarization along the z axis.
The situation is markedly different, and more interesting, when
the polarization direction breaks the axial symmetry. This will
be discussed in Sec. VII.

On the other hand, the dipole interaction for alkali metals
are typically small. In the limit of ε → 0+, we recover the well-
known Thomas-Fermi (TF) profile of noninteracting fermions
in a 2D harmonic trap,

n(r) = 1

4π
l−4
0

(
R2

TF − r2
)

for 0 � r � RTF, (46)

where RTF = √
2(2N )1/4l0 is the Thomas-Fermi radius in 2D.

To evaluate the ground-state energy, we recognize that
Eq. (45) provides a natural way of changing the integration

0 1 281/4

x

0

0.1

0.2

g
(x

)

1/4 = 10

1

0.1
0.01

FIG. 1. (Color online) The dimensionless spatial density g(x) at
various values of εN1/4 = 0.01,0.1,1,10 (thin lines). The TF profile
(thick dashed line) is included as a reference. Note that there is an
insignificant difference from the TF profile for εN1/4 < 10−2.
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variable,

−x dx = (κg1/2 + 2π )dg with κ ≡ εN1/4 64
3

√
π, (47)

where the position dependence of g is left implicit, such that
all terms except E

(2)
dd can be analytically expressed in terms of

κ and the central density G ≡ g(x = 0),

Ekin

h̄ωN3/2
= 4π2

21
(3κG7/2 + 7πG3),

Etrap

h̄ωN3/2
= 1

2
X2 − π

21
(7κ2G4 + 40πκG7/2 + 56π2G3),

E
(1)
dd

h̄ωN3/2
= 2π

105
(7κ2G4 + 16πκG7/2). (48)

The values of G and X are in turn determined by

κG3/2 + 3πG = 3

4
X2,

(49)

2κG5/2 + 5πG2 = 5

2π
,

of which the top equation is Eq. (45) for x = 0, and the bottom
equation states the normalization of g(x) to the unit integral.
The analytic solutions for Ekin, Etrap, and E

(1)
dd as functions of

εN1/4 = 3κ/(64
√

π ) are plotted in Fig. 2. On the far left-hand
side in the figure, we observe the equipartition of kinetic and
trap energies at vanishing interaction, as one expects in the
case of a harmonic trapping potential.

For weakly interacting atoms, i.e., εN1/4 � 1, we obtain
the various contributions to the energy up to the first order in
εN1/4,

Ekin

h̄ωN3/2
=

√
2

3
− 128

105π
21/4εN1/4,

Etrap

h̄ωN3/2
=

√
2

3
+ 128

105π
21/4εN1/4, (50)

E
(1)
dd

h̄ωN3/2
= 512

315π
21/4εN1/4 ≈ 0.615εN1/4.

ln( 1/4)
−6 −4 −2 0 2 4

E
ωN3/2

0

1

2

3

(a)

(b)

(c)

FIG. 2. (Color online) The energy contributions (a) Ekin, (b) Etrap,
and (c) E

(1)
dd (in units of h̄ωN 3/2) as functions of εN1/4 (in logarithmic

scale). The solid lines show the full solutions of Eqs. (48) and (49), and
exhibit the correct weak interaction of Eqs. (50) on the far left-hand
side. The short-dashed lines indicate the asymptotic forms of Eqs. (51)
for large values of εN 1/4.

Note that the sum of Ekin and Etrap has no first-order
correction.

The asymptotic values in the limit of large εN1/4—shown
as dashed lines in Fig. 2—are given by

Ekin

h̄ωN3/2
∼ (εN1/4)−2/5,

Etrap

h̄ωN3/2
,

E
(1)
dd

h̄ωN3/2
∼ (εN1/4)2/5, (51)

E
(2)
dd

h̄ωN3/2
∼ (εN1/4)−1.58,

where the final power law is obtained by a numerical fit. Note
that Etrap and E

(1)
dd have the same large-εN1/4 behavior.

VII. SPIN-DENSITY MATRIX

While the above treatment yields the TFD-approximated
ground-state density profile and energy for a 2D cloud of spin-
1/2 fermions that are polarized along the axial direction and are
hence repelling each other, the lack of spherical symmetry of
the magnetic-dipole interaction, which is the source of some
interesting predictions [26], is not well reflected due to the
peculiarity of both the configuration and the low dimension.

In order to take the spin-dependent nature of the magnetic-
dipole interaction into consideration, we extend the treatment
by (i) introducing an external magnetic field strong enough
to define a local quantization axis, and (ii) constructing spin-
dependent Wigner functions and hence the corresponding one-
body and two-body spin-density matrices.

For an arbitrary time-independent external magnetic field,

B(r) = B(r) e(r), (52)

the magnetic energy of a single dipole is given by

−B(r) · µ = −B(r) µe(r) · σ ≡ −v(r) e(r) · σ . (53)

The TF-approximated Wigner function is then

ν(r,p) = η

(
− ζ − p2

2M
− V (r) + v(r) e(r) · σ

)

= 1 + e(r) · σ

2
η(P+(r) − p)

+1 − e(r) · σ

2
η(P−(r) − p), (54)

with

P±(r) = {
2M[−ζ − V (r) ± v(r)]

}1/2
, (55)

and −ζ is the chemical potential. The underscore is a reminder
that this Wigner function is 2 × 2-matrix valued. As a result,
the single-particle density also has a corresponding spin
dependence,

n(r) = 1 + e(r) · σ

2
π

[
P+(r)

2πh̄

]2

+1 − e(r) · σ

2
π

[
P−(r)

2πh̄

]2

≡ 1

2
[n(r) + s(r) e(r) · σ ]. (56)
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We observe that now there are two functions present here, the
total density, n(r), and the spin-imbalance density, s(r), which
are constrained by

|s(r)| � n(r), (57)

but are otherwise independent of each other. Therefore, the
minimization to achieve the ground-state energy has to be done
over both functions under the constraints of normalization and
positivity, Eqs. (19) and (57), respectively.

We can then evaluate the trap, kinetic, and magnetic energy
accordingly,

Etrap = tr2×2

∫
(dr)

1

2
Mω2r2n(r)

=
∫

(dr)
1

2
Mω2r2n(r),

Ekin = tr2×2

∫
(dr)

(dp)

(2πh̄)2

p2

2M
ν(r,p) (58)

=
∫

(dr)
πh̄2

2M

[
n(r)2 + s(r)2

]
,

Emag = −tr2×2

∫
(dr)µ · B(r)n(r)

= −
∫

(dr)v(r)s(r).

To compute the dipole interaction energy, we construct
an approximation to the two-body spin-density matrix
n(2)(r′,r′′; r′,r′′) in the spirit of Eq. (8), starting with the
single-particle orbital,

φm(x) =
(

αm(x)

βm(x)

)
, (59)

where αm and βm are the spin-up and spin-down components,
x is the position variable, while x denotes the combination of
the position and spin variables, so that the ground-state wave
function of a N fermion system can be constructed as a Slater
determinant,

ψ(x1, . . . ,xN ) = 1√
N !

det
m,l

[φm(xl)]. (60)

When expressing the one-body and two-body spin-density
matrices in terms of single-particle orbitals, we get

n(x; y) = N

∫
dx2 · · · dxNψ(x,x2, . . . ,xN )ψ(y,x2, . . . ,xN )∗

=
∑
m

(
αm(x)αm(y)∗ αm(x)βm(y)∗
βm(x)αm(y)∗ βm(x)βm(y)∗

)
≡

(
n↑↑(x; y) n↑↓(x; y)
n↓↑(x; y) n↓↓(x; y)

)
,

n(2)(x,y; x′,y′) = N (N − 1)

2

∫
dx3 · · · dxNψ(x,y,x3, . . . ,xN )ψ(x ′,y ′,x3, . . . ,xN )∗ (61)

= 1

2

∑
l,m

(
αl(x)
βl(x)

)
⊗

(
αm(y)
βm(y)

) [(
αl(x′)
βl(x′)

)
⊗

(
αm(y′)
βm(y′)

)
−

(
αm(x′)
βm(x′)

)
⊗

(
αl(y′)
βl(y′)

)]†

= 1

2

(
n(x; x′) ⊗ n(y; y′) − [

n(x; y′) ⊗ n(y; x′)
]

T23

)
,

where T23 means interchanging the second and the third
columns. The double summation in n(2) includes the l = m

summands of the self-energy, which has equal contributions to
the direct and exchange terms and hence does not contribute
to the sum.

The contact term in the dipole interaction potential is
nonvanishing only in the singlet state,

Edd,s = tr4×4

∫
(dr′)(dr′′)

1

lz
√

2π
n(2)(r′,r′′; r′,r′′)

× µ0

4π
µ ·

[
−8π

3
δ(r′ − r′′)

]
µ

=
√

2π

lz

µ0µ
2

4π

∫
(dr)[n(r)2 − s(r)2], (62)

where the prefactor
√

2π/lz originates in the reduction of
dimensionality. We observe that, owing to the 1/lz scaling,
the relative strength of this term can be tuned by adjusting the
stiffness of the z-confining trap.

On the other hand, the triplet state interacts accord-
ing to the remaining terms in the dipole potential. Since
the state is symmetric under particle exchange, we use,
instead of the n(2) in Eq. (61), an alternative two-body
density,

ñ(2)(r′,r′′; r′,r′′) = 1
2

[
n(r′) ⊗ n(r′′) − n(r′; r′′) ⊗ n(r′′; r′)

]
,

(63)

which yields the same energy but greatly simplifies the
computation due to its tensor product structure.

The triplet interaction energy is then given by

Edd,t = tr4×4
µ0µ

2

4π

∫
(dr′)(dr′′)ñ(2)(r′,r′′; r′,r′′)

× ρ2σ · τ − 3σ · ρρ · τ

ρ5
, (64)

with ρ = r′ − r′′, and τ denotes the Pauli vector for the second
atom. To evaluate this expression, we apply the same procedure
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γ
10

f
(γ

)

15π/4

16

FIG. 3. (Color online) f (γ ) at relevant values of γ . It can be
shown that 15π/4 < f (γ ) < 16 for 0 < γ < 1.

as that used to obtain Eq. (29) and find

E
(1)
dd,t = 32

45

√
2π

µ0µ
2

4π

∫
(dr)

3ez(r)2 − 1

2

×
{

[n(r) + s(r)]5/2 + [n(r) − s(r)]5/2

− f (γ )

8
[n(r) + s(r)]3/2[n(r) − s(r)]

}
, (65)

E
(2)
dd,t = −1

2

µ0µ
2

4π

∫
(dr)(dr′)

× ∇sz(r) · ∇′sz(r′) − ∇ · s(r)∇′ · s(r′)
|r − r′| ,

where γ = [P−(r)/P+(r)]2 is essentially the ratio between the
Fermi energies of the minority and majority spin components,
and

f (γ ) = (γ −1 + 14 + γ )E(γ ) + (−γ −1 − 6 + 7γ )K(γ )

(66)

is a combination of elliptic integrals that is smooth and finite
for 0 < γ < 1. It is clear from Fig. 3 that f (γ ) can be replaced
by a linear function f̃ (γ ) = 15

4 π + (16 − 15
4 π )γ to simplify

computations.
In passing, we note that a magnetic field with a large

component in the xy plane, such that 3ez(r)2 − 1 < 0 in
Eq. (65) for some region, may lead to an energy that is not
bounded from below. The system is then instable and will
collapse and explode within miliseconds (this catastrophe was
observed in dipolar Bose gases [27,28]). When this happens,
so much energy is made available that the 2D confinement will
be lost.

For the simple case of a constant external magnetic field,
we have

B(r) = B0ez, v(r) = B0µ ≡ v0. (67)

In the dimensionless quantities, we reparametrize the spin-
imbalance density in accordance with

h(x) = a2

N
s(r) ≡ cos[ϑ(x)]g(x), (68)

so that Eq. (57) is automatically fulfilled. In the limit of weak
interaction, we obtain the total energy as a functional of both
g(x) and ϑ(x),

E
(2D)
TFD[g,ϑ]

h̄ωN3/2
= π

2

∫
(dx)g(x)2

{
1 + cos2[ϑ(x)]

}

+ 1

2

∫
(dx)x2g(x)

− 1√
N

v0

h̄ω

∫
(dx)g(x) cos[ϑ(x)], (69)

and the variation of g(x) and ϑ(x), with 1
2X2 as the Lagrange

multiplier, yields

πg(x) + cos[ϑ(x)]

{
πg(x) cos[ϑ(x)] − 1√

N

v0

h̄ω

}
= 1

2
(X2 − x2),

g(x) sin[ϑ(x)]

{
πg(x) cos[ϑ(x)] − 1√

N

v0

h̄ω

}
= 0. (70)

There are two nontrivial solutions, one for a spin-polarized
(SP) system and the other allowing a spin mixture (SM). The
SP solution yields the TF profile equivalent to Eq. (46). The
SM solution gives

g(x) =
⎧⎨
⎩

1
2π

(2
√

1 − A2 − x2) for 0 � x � x−,

1
2π

(
A + √

1 − A2 − x2

2

)
for x− � x � x+,

(71)

with

A = v0

h̄ω

1√
N

= B0µ

π
√

N
, (72)

together with a constant spin-imbalance density in the center,

g(x) cos[ϑ(x)] = A

π
, (73)

where x± are the radii of the SM (lower sign) and the entire
cloud (upper sign), respectively, given by

x2
± = 2(

√
1 − A2 ± A). (74)

These matters are illustrated in Fig. 4.
However, the existence of a SM requires an extremely weak

external magnetic field, such that

v0

h̄ω

1√
N

� 1√
2
. (75)

052517-8



DENSITY FUNCTIONAL OF A TWO-DIMENSIONAL GAS . . . PHYSICAL REVIEW A 83, 052517 (2011)

x
0 x− x+ xTF

g(x)

0

A/π

√
2 /π

√
1 −A2 /π

FIG. 4. (Color online) The dimensionless density profile of a
SM (thin solid line) with A = 0.25, in comparison with the TF
profile (i.e., SP solution, thick dashed line). The thin dashed line
indicates the density of the majority component in the spin mixture.
For greater values of A while keeping A � 1/

√
2, the density profile

approaches that of the SP solution with a lowering central density
and an increasing x±. In the opposite limit, we recover a mixture of
equal spin components when there is no external magnetic field, i.e.,
A = 0.

This condition arises from the positivity of the radii x±. In
usual experimental setups, this translates into B ∼ 10 mG for a
system of N = 106 atoms with a radial harmonic confinement
of ω = 2π × 20 Hz. In other words, a SP cloud is readily
attainable. This justifies the treatment of a SP system before
Sec. VII.

VIII. SUMMARY AND OUTLOOK

Table I summarizes the kinetic and the dipole-dipole inter-
action energies as functionals of the single-particle density for
a fully SP gas in 1D, 2D, and 3D. It is clear that the structure of
the density functionals depends crucially on the spatial dimen-
sion. The procedure used here to reduce dimensionality is by
no means unique, but fairly well justified by the strong confine-
ment of a stiff harmonic trap in a possible experimental setup.

In 2D, the total energy with TFD approximation depends on
both the dimensionless interaction strength ε, and the number
of particles N , as it does in 3D, but the N dependence is slightly
more complicated. Namely, as one piece of the interaction

energy is proportional to εN1/4, while the other piece is
proportional to εN−1/4, the latter is always a factor of

√
N

smaller, inviting a perturbative treatment.
For large εN1/4, the potential energy and the first piece

of the interaction energy dominate, and are of the order
of h̄ωN3/2 × (εN1/4)2/5, while the kinetic energy is of the
order of h̄ωN3/2 × (εN1/4)−2/5. Numerical results suggest that
the second piece of the interaction energy is of the order
h̄ωN3/2 × (εN1/4)−1.58, which makes it the most slowly
growing term in the total energy.

In the limiting case of ε → 0+, the kinetic and potential
energies are both h̄ωN3/2

√
2

3 , where the equality is well
predicted by the virial theorem applied to a simple harmonic
oscillator. The two pieces of the interaction energy are of
the order N7/4 and N5/4 respectively, even though both are
vanishing due to small ε.

In addition to the fully spin-polarized situation, we also
dealt with partially polarized gases, allowing for inhomoge-
neous polarization. By considering the spin-density matrix,
we found the energy as a functional of the total density and
the spin-imbalance density, and then determined the implied
ground-state density profile. For typical experimental param-
eters and a modest number of trapped atoms, a spin mixture
can only exist for an extremely weak external magnetic field.
In other words, a fully spin-polarized gas is readily attainable.

Having thus established the TFD functionals, we intend
to investigate the excitation energies of the system for small
deviation from the equilibrium. On the other hand, it is
well known that the TF approximation is problematic at the
boundary of the system. We will follow up on the gradient
corrections of von Weizsäcker type. It is perceivable that once
the corrections are included, E(2)

dd may no longer be negligible.
Lastly, we would like to explore other external trapping
potentials, such as anisotropic harmonic traps, possibly with
an optical lattice superimposed.
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TABLE I. Summary of the density functionals for the kinetic energy and the dipole-dipole interaction energy in 1D, 2D, and 3D. In 1D, the
spins are polarized normal to the z axis, along which the atoms align. erfc() denotes the complementary error function, and t = |z − z′|/(

√
2l⊥).

Note that further simplification of the 1D expression of Edd involves taking the limit of l⊥ → 0+ which should be done with extreme care. In
2D and 3D, the spins are polarized along the z direction, and θ in 3D refers to the azimuthal angle of the vector r − r′.

Ekin Edd

1D
∫

dz
π 2h̄2

6M
n(z)3 µ0µ

2

4π

∫
dz dz′[n(z)n(z′) − n(z; z′)n(z′; z)]

1√
2l3

⊥

[(
1

2
+ t2

)√
πet2

erfc(t) − t

]

2D
∫

(dr⊥)
πh̄2

2M
n(r⊥)2 µ0µ

2

4π

∫
(dr⊥)

[
256

45

√
πn(r⊥)5/2 − πn(r)

√
−∇2n(r⊥)

]

3D
∫

(dr)
h̄2

20π 2M
[6π 2n(r)]5/3 µ0µ

2

4π

∫
(dr)(dr′)

1

2
n(r)

1 − 3 cos2 θ

|r − r′|3 n(r′)
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APPENDIX A: CALCULATING THE INTERACTION
ENERGY

The splitting of the dipole-dipole interaction energy into
direct and exchange energy at the level of the one-particle

density and the one-particle density matrix turns out to be
inconvenient as it stands, since this yields two integrals, which
both diverge individually but together sum up to a finite value.
This prompts us to express everything in terms of the one-
particle Wigner function,

Edd = 1

2

µ0µ
2

4π

∫
(dr′)(dr′′)(dp1)(dp2)

(2πh̄)4

1

|r′ − r′′|3
[
ν(r′,p1)ν(r′′,p2) − ν

( r′+r′′
2 ,p1

)
ν
( r′+r′′

2 ,p2
)
ei(p1−p2)·(r′−r′′)/h̄

]

= 1

2

µ0µ
2

4π

∫
(dr)(dρ)(dp1)(dp2)

(2πh̄)4
(dk1)(dk2)

1

ρ3
ei(k1+k2)·rν(k1,p1)ν(k2,p2) (ei(k1−k2)·ρ/2 − ei(p1−p2)·ρ/h̄), (A1)

where we have used the substitution r = 1
2 (r′ + r′′), ρ = r′ − r′′, and the Fourier transform in 2D,

ν(r,p) =
∫

(dk)ν(k,p)eik·r,
(A2)

ν(k,p) =
∫

(dr)

(2π )2
ν(r,p)e−ik·r.

The integration over ρ can be evaluated with the outcome∫
(dρ)

1

ρ3

[
ei(k1−k2)·ρ/2 − ei(p1−p2)·ρ/h̄

] = 2π (|p1 − p2|/h̄ − |k1 − k2|/2). (A3)

We recognize that the interaction energy is split into two pieces,

Edd = E
(1)
dd + E

(2)
dd ,

E
(1)
dd ≡ 1

2

µ0µ
2

4π
2π

∫
(dr)

(dp1)

(2πh̄)2

(dp2)

(2πh̄)2
(dk1)(dk2) ei(k1+k2)·rν(k1,p1)ν(k2,p2)

|p1 − p2|
h̄

, (A4)

E
(2)
dd ≡ −1

2

µ0µ
2

4π
2π

∫
(dr)

(dp1)

(2πh̄)2

(dp2)

(2πh̄)2
(dk1)(dk2) ei(k1+k2)·rν(k1,p1)ν(k2,p2)

|k1 − k2|
2

,

but this is not the splitting into the direct and exchange terms, as the integration of a single exponential term in Eq. (A3) will not
converge.

A closer look at E
(1)
dd tells us that the

∫
(dk1) and

∫
(dk2) integrations recover the Wigner functions, which impose an upper

limit of P = h̄
√

4πn(r) on the length of p1 and p2, so that

E
(1)
dd ≡ 1

2

µ0µ
2

4π
2π

∫
(dr)

(dp1)

(2πh̄)2

(dp2)

(2πh̄)2
|p1 − p2|/h̄ = µ0µ

2

4π

∫
(dr)

256

45

√
πn(r)5/2. (A5)

On the other hand, E
(2)
dd needs to be treated differently. The

∫
(dp1) and

∫
(dp2) integrations yield the form factor

n(k) =
∫

(dp)

(2πh̄)2
ν(k,p) =

∫
(dr)

(2π )2
e−ik·rn(r), (A6)

while the
∫

(dr) integration gives rise to a 2D Dirac delta function,∫
(dr)ei(k1+k2)·r = (2π )2δ(k1 + k2).

This then takes care of one of the integrations over k1 or k2, and we arrive at

E
(2)
dd = −1

2

µ0µ
2

4π
(2π )3

∫
(dk)n(k)kn(−k) = −µ0µ

2

4π
π

∫
(dr)n(r)

√
−∇2n(r), (A7)

where the short-hand notation of
√−∇2 for the integral operator (30) is used in recognition that it is equivalent to the integral

operator −∇2 when applied twice. This completes the derivation of Eqs. (29).
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033606 (2001).
[24] P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376

(1930).
[25] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev.

Mod. Phys. 71, 463 (1999).
[26] K. Góral, K. Rzążewski, and T. Pfau, Phys. Rev. A 61, 051601(R)

(2000).
[27] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister,
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