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of Ba+, Yb+, and Ra+ ions
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We use correlation potential and many-body perturbation theory techniques to calculate spin-independent and
nuclear-spin-dependent parts of the parity nonconserving amplitudes of the transitions between the 6s1/2 ground
state and the 5d3/2 excited state of Ba+ and Yb+ and between the 7s1/2 ground state and the 6d3/2 excited state of
Ra+. The results are presented in a form convenient for the extracting of the constants of nuclear-spin-dependent
interaction (such as, e.g., anapole moment) from the measurements.
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I. INTRODUCTION

The study of the parity nonconservation (PNC) in atoms
is a low-energy relatively inexpensive alternative to the high-
energy search for new physics beyond the standard model
(see, e.g., Ref. [1]). The most significant recent achievement
on this path is the very precise measurements of the PNC
in cesium [2]. The cesium PNC experiment together with
its interpretation [3–5] in terms of nuclear weak charge
provides the best current atomic test of the standard model (see
also the review in Ref. [6]). It is also the only measurement
of the nuclear anapole moment which is produced by the PNC
nuclear forces [7]. The extraction of the weak nuclear charge
from the PNC measurements relies on atomic calculations.
The cesium atom has the simplest electron structure among
all heavy atoms which were used or considered for the PNC
measurements. Still it took the considerable efforts of several
groups of theorists to bring the accuracy of the calculations
in line with the accuracy of measurements and provide a
reliable interpretation of the measurements in terms of the
standard model and the possible new physics beyond it [3–5].
It is widely believed now that it would be hard to compete
with the cesium experiment in terms of the accuracy of the
interpretation of the PNC measurements. Therefore, the study
of PNC in atoms is mostly focused in two directions: (i) the
measurements of the PNC ratio for a chain of isotopes which
was first proposed in Ref. [8], and (ii) the measurements of the
nuclear-spin-dependent PNC, like the contribution from the
nuclear anapole moment (see, e.g., the reviews in Refs. [6,9]).
The study of the PNC for a chain of isotopes does not require
atomic calculations and can deliver useful information about
either neutron distribution or new physics beyond the standard
model (see, e.g., Refs. [10–12]). The measurements of the
anapole moment does require atomic calculations, but high
accuracy is not critical here.

The Ba+, Yb+, and Ra+ ions considered in the present
paper are good candidates for both types of the experimental
studies. Ba and Yb both have seven stable isotopes with the
large difference in neutron numbers �Nmax = 8. Radium has
several long-living isotopes. There are two stable isotopes for
each of the Ba and Yb atoms (135Ba, 139Ba, 171Yb, and 173Yb)
which have a nonzero nuclear spin. There are also isotopes of
Ra with a nonzero nuclear spin (223Ra, 225Ra, 229Ra). In all

cases nuclear spin is provided by the valence neutron. This
is especially interesting since it allows one to measure the
strength of the neutron-nucleus PNC potential [7] (the anapole
moment has been measured only for the 133Cs nucleus which
has a valence proton).

Finally, Ba+ and Ra+ ions have an electron structure similar
to those of the cesium atom. This means that the accuracy of
the interpretation of the PNC measurements can be on the
same level as for cesium. Moreover, it can be further improved
with the use of the experimental data [13].

The use of Ba+ in the PNC measurements was first
suggested by Fortson [14]. The work is in progress at Seattle
(see, e.g., Refs. [15,16]) but no PNC results have been
reported yet. A similar approach is now considered for the
measurements of PNC in the Ra+ ion at KVI (Kernfysisch
Versneller Instituut) [17,18]. It is important that in Ra+ the
PNC effects are about 20 times larger than in Ba+. There are
plans to measure PNC in Yb+ at Los Alamos [19]. Note that
the PNC measurements for neutral ytterbium are in progress
at Berkeley and first PNC results were recently reported [20].
The PNC measurements for the Yb+ ion would provide an
important consistency test for the measurements and their
interpretation.

Calculations of the spin-independent PNC amplitude for
Ba+ and Ra+ were performed in our early work [13] and
in Ref. [21]. Calculations for Ra+ were later performed in
Refs. [17] and [22]. The only calculation of the spin-dependent
PNC in Ra+ was recently reported by Sahoo et al. [23]. To the
best of our knowledge, no PNC calculations for Yb+ have been
published so far.

In the present paper we calculate both the spin-independent
and spin-dependent PNC amplitudes simultaneously using
the same procedure and the same wave functions. In this
approach the relative sign of the amplitudes is fixed. This
allows for the unambiguous determination of the sign of
the spin-dependent contribution. The constant of the spin-
dependent interaction can be expressed via the ratio of the
two amplitudes. This brings an extra advantage of the more
accurate interpretation of the measurements. The accuracy
of the calculations for the ratio of the PNC amplitudes is
usually higher than that for each of the amplitudes. This is
because the amplitudes are often very similar in structure
and most of the theoretical uncertainty cancels out in the
ratio.
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Since we focus on the calculation of the nuclear-spin-
dependent PNC amplitudes where a high accuracy of the
calculations is not needed, we do not include some small
corrections, like some classes of diagrams for higher-order
correlations, Breit and quantum electrodynamic (QED) cor-
rections, and so on. Instead, we make sure that all leading
contributions are included exactly the same way for both
spin-independent and spin-dependent PNC amplitudes, which
is important for the cancellation of the uncertainty in the ratio.

II. THEORY

The Hamiltonian describing the parity-nonconserving
electron-nuclear interaction can be written as a sum of
spin-independent (SI) and spin-dependent (SD) parts (we use
atomic units: h̄ = |e| = me = 1)

HPNC = HSI + HSD = GF√
2

(
−QW

2
γ5 + κ

I
α I

)
ρ(r), (1)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi constant of the
weak interaction, QW is the nuclear weak charge, α = ( 0 σ

σ 0 )
and γ5 are the Dirac matrices, I is the nuclear spin, and
ρ(r) is the nuclear density normalized to 1. The strength of
the SD PNC interaction is proportional to the dimensionless
constant κ which is to be found from the measurements.
There are three major contributions to κ arising from (i) the
electromagnetic interaction of the atomic electrons with the
nuclear anapole moment [24], (ii) the electron-nucleus SD
weak interaction, and (iii) the combined effect of the SI weak
interaction and magnetic hyperfine interaction [25] (see, also
the review in Ref. [6]). In this work we do not distinguish
between the different contributions to κ and present the
results in terms of total κ which is the sum of all possible
contributions.

Within the standard model the weak nuclear charge QW is
given by [26]

QW ≈ −0.9877N + 0.0716Z. (2)

Here N is the number of neutrons, Z is the number of protons.
The PNC amplitude of an electric dipole transition between

states of the same parity |i〉 and |f 〉 is equal to

E1PNC
f i =

∑
n

[ 〈f |d|n〉〈n|HPNC|i〉
Ei − En

+ 〈f |HPNC|n〉〈n|dq |i〉
Ef − En

]
,

(3)

where d = −e
∑

i r i is the electric dipole operator, |a〉 ≡
|JaFaMa〉, and F = I + J is the total angular momentum.

Applying the Wigner-Eckart theorem we can express the
amplitudes via reduced matrix elements

E1PNC
f i = (−1)Ff −Mf

(
Ff 1 Fi

−Mf q Mi

)
〈Jf Ff ||dPNC||JiFi〉.

(4)

Detailed expressions for the reduced matrix elements of the SI
and SD PNC amplitudes can be found in Refs. [27] and [28].

For the SI amplitude we have

〈Jf ,Ff ‖dSI‖Ji,Fi〉

= (−1)I+Fi+Jf +1
√

(2Ff + 1)(2Fi + 1)

{
Ji Jf 1
Ff Fi I

}

×
∑

n

[ 〈Jf ‖d‖n,Jn〉〈n,Jn‖HSI‖Ji〉
Ei − En

+ 〈Jf ‖HSI‖n,Jn〉〈n,Jn‖d‖Ji〉
Ef − En

]
. (5)

For the SD PNC amplitude we have

〈Jf ,Ff ‖dSD‖Ji,Fi〉
= GF√

2
κ

√
(I + 1)(2I + 1)(2Fi + 1)(2Ff + 1)/I

×
∑

n

[
(−1)Jf −Ji

{
Jn Ji 1
I I Fi

}{
Jn Jf 1
Ff Fi I

}

× 〈Jf ‖d‖n,Jn〉〈n,Jn‖αρ‖Ji〉
En − Ei

+ (−1)Ff −Fi

{
Jn Jf 1
I I Ff

}{
Jn Ji 1
Fi Ff I

}

×〈Jf ‖αρ‖n,Jn〉〈n,Jn‖d‖Ji〉
En − Ef

]
. (6)

For the case of the 5d–6s transitions considered in the present
paper (or 6d–7s in the case of Ra+) it is convenient to break
expression (6) into four parts

〈5d3/2,Ff ‖dSD‖6s,Fi〉 = S1 + S2 + S3 + S4, (7)

where

S1 = c1(Ff ,Fi)
∑

n

〈5d3/2‖d‖np1/2〉〈np1/2‖αρ‖6s〉
Enp1/2 − E6s

, (8)

S2 = c2(Ff ,Fi)
∑

n

〈5d3/2‖d‖np3/2〉〈np3/2‖αρ‖6s〉
Enp3/2 − E6s

, (9)

S3 = c3(Ff ,Fi)
∑

n

〈5d3/2‖αρ‖np1/2〉〈np1/2‖d‖6s〉
Enp1/2 − E5d3/2

, (10)

S4 = c4(Ff ,Fi)
∑

n

〈5d3/2‖αρ‖np3/2〉〈np3/2‖d‖6s〉
Enp3/2 − E5d3/2

. (11)

Here cm(Ff ,Fi) (m = 1,2,3,4) are coefficients which can be
reconstructed using Eq. (6). The terms S1,S2,S3,S4 differ by
the order of the operators d and αρ and by the states in the
summation which are either np1/2 or np3/2 states. To know the
relative values of these terms is important for the analysis of
the accuracy of the calculations.

III. CALCULATIONS

To perform the calculations we follow an ab initio approach
which uses the correlation potential method [29] and the
technique to include higher-order correlations developed in
Refs. [30–32].
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Calculations start from the relativistic Hartree-Fock (RHF)
method in the V N−1 approximation. This means that the initial
RHF procedure is done for a closed-shell atomic core with
the valence electron removed. After that, the states of the
external electron are calculated in the field of the frozen
core. Correlations are included by means of the correlation
potential method [29]. For Ba+ and Ra+ we use the all-order
correlation potential �̂(∞) which includes two classes of the
higher-order terms: screening of the Coulomb interaction and
hole-particle interaction (see, e.g., Ref. [30] for details). For
Yb+ we use the second-order correlation potential �̂(2). The
reason for the use of a different approach for Yb+ is its
different electron structure. The all-order technique developed
in Refs. [30–32] works very well for alkali-metal atoms and
similar ions in which the valence electron is far from the
atomic core and higher-order correlations are dominated by
the screening of the core-valence residual Coulomb interaction
by the core electrons. For atoms and ions similar to Yb+, in
which an external electron is close to the core and strongly
interacts with its electrons, a different higher-order effect
described by the ladder diagrams [33] becomes important.
The applicability of the technique of Ref. [33] to Yb+ needs
further investigation. Meanwhile, the use of the second-order
�̂(2) leads to sufficiently good results. Note that an external
electron in Ba+ and Ra+ ions is also closer to the atomic core
than in neutral alkali-metal atoms Cs and Fr. This means that
the inclusion of ladder diagrams might be a way to improve
the accuracy of calculations for the ions as well. This question
also needs further investigation.

To calculate �̂ [�̂(∞) or �̂(2)] we need a complete set of
the single-electron orbitals. We use the B-spline technique
[34] to construct the basis. The orbitals are built as linear
combinations of 50 B-splines of order 9 in a cavity of radius
40aB . The coefficients are chosen from the condition that the
orbitals are the eigenstates of the RHF Hamiltonian Ĥ0 of the
closed-shell core. The second-order operator �̂(2) is calculated
via direct summation over B-spline basis states. The all-order
�̂(∞) is calculated with the technique which combines solving
equations for the Green functions (for the direct diagram)
with the summation over a complete set of states (exchange
diagram) [30].

The correlation potential �̂ is then used to build a new
set of single-electron states, the so-called Brueckner orbitals.
This set is to be used in the summation in Eqs. (5) and (6).
Here again we use the B-spline technique to build the basis.
The procedure is very similar to the constructing of the RHF
B-spline basis. The only difference is that new orbitals are now
the eigenstates of the Ĥ0 + �̂ Hamiltonian.

Brueckner orbitals which correspond to the lowest valence
states are good approximations to the real physical states.
Their quality can be tested by comparing the experimental
and theoretical energies. The energies of the lowest states of
Ba+, Yb+, and Ra+ in RHF and Brueckner approximations
are presented in Table I. One can see that the inclusion of
the correlations leads to the significant improvement of the
accuracy in all cases. The deviation of the theory from the
experiment is just a fraction of a percent in the case of Ba+
and Ra+ where an all-order �̂(∞) is used and does not exceed
1.3% for Yb+ where the second-order �̂(2) is used.

TABLE I. Ionization energies of lowest s,p, and d states of Ba+,
Yb+, and Ra+ in different approximations (cm−1).

Ion State RHF Brueckner Experiment [35]

Ba+ 6s1/2 75340 80815 80687
6p1/2 57266 60571 60425
6p3/2 55873 58848 58735
5d3/2 68139 76318 75813

Yb+ 6s1/2 90789 99477 98207
6p1/2 66087 70728 71145
6p3/2 63276 67101 67815
5d3/2 66517 75551 75246

Ra+ 7s1/2 75898 82032 81842
7p1/2 56878 60715 60491
7p3/2 52906 55753 55633
6d3/2 62356 70091 69758

The quality of the Brueckner orbitals can be further
improved by rescaling the correlation potential �̂ to fit the
experimental energies exactly. We do this by replacing the
Ĥ0 + �̂ with the Ĥ0 + λ�̂ Hamiltonian in which the rescaling
parameter λ is chosen for each partial wave to fit the energy
of the first valence state. The values of λ are presented in
Table II. Note that these values are very close to unity. This
means that even without rescaling the accuracy is good and
only a small adjustment of the value of �̂ is needed. Note also
that since the rescaling procedure affects not only energies
but also the wave functions, it usually leads to improved
values of the matrix elements of external fields. In fact, this
is a semi-empirical method to include omitted higher-order
correlation corrections.

Matrix elements of the HSI, HSD, and electric dipole
operators are found by means of the time-dependent Hartree-
Fock (TDHF) method [29,36] extended to Brueckner orbitals.
This method incorporates to the well-known random-phase
approximation (RPA) diagrams including exchange. In the
TDHF method, the single-electron wave functions are pre-
sented in the form ψ = ψ0 + δψ , where ψ0 is the unperturbed
wave function. It is an eigenstate of the RHF Hamiltonian Ĥ0:
(Ĥ0 − ε0)ψ0 = 0. δψ is the correction due to the external field.
It can be found by solving the TDHF equation

(Ĥ0 − ε0)δψ = −δεψ0 − F̂ψ0 − δV̂ N−1ψ0, (12)

where δε is the correction to the energy due to the external
field (δε ≡ 0 for all the above-mentioned operators but it is
not zero for the hyperfine interaction which we will need for
the analysis of accuracy), F̂ is the operator of the external field,
and δV̂ N−1 is the correction to the self-consistent potential of
the core due to external field.

TABLE II. Rescaling factors for the correlation potential �̂.

Ion s1/2 p1/2 p3/2 d3/2

Ba+ 0.978 0.960 0.964 0.941
Yb+ 0.862 1.081 1.170 0.968
Ra+ 0.970 0.946 0.960 0.959
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The TDHF equations are solved self-consistently for all
states in the core. Then the matrix elements between any (core
or valence) states n and m are given by

〈ψn|F̂ + δV̂ N−1|ψm〉. (13)

The best results are achieved when ψn and ψm are the
Brueckner orbitals computed with the rescaled correlation
potential �̂.

We use Eq. (13) for all weak and electric dipole matrix
elements in evaluating the SI and SD PNC amplitudes (5)
and (6).

IV. ACCURACY OF CALCULATIONS

The accuracy of the results obtained via direct summation
over physical states with the use of expressions like Eq. (3) is
determined by the accuracy for the energies, electric dipole,
and weak matrix elements. We start from the notion that for the
PNC amplitudes considered in the present work the summation
over intermediate p states is strongly dominated by the 6p1/2

and 6p3/2 states for Ba+ and Yb+ and by 7p1/2 and 7p3/2

states for Ra+. Corresponding contributions constitute 70 to
90% of the total PNC amplitude. Therefore, it is sufficient to
compare with the experiment energies and matrix elements
involving these p states. The energies and electric dipole
matrix elements can be directly compared with the experiment
while the standard practice of comparing the experimental and
theoretical hyperfine structures can be used to test the accuracy
of the weak matrix elements.

To improve the accuracy for the amplitudes the energies of
the 6s, 6p1/2, 6p3/2, and 5d3/2 states (7s, 7p1/2, 7p3/2, and
6d3/2 for Ra+) are fitted exactly in our calculations using the
rescaling of the correlation potential �̂ as it has been described
in the previous section.

The calculated and experimental E1-transition amplitudes
are presented in Table III. Note that we need a comparison
with the experiment only for the estimation of the accuracy
of our calculations. Therefore, a comprehensive review of the
experimental and theoretical data available for the ions goes
beyond the scope of the present work. We only compare our
results with the most accurate experimental data or with the
most complete other calculations where the experimental data
are not available. Good reviews of the electric dipole transition
data in Ba+ and Yb+ can be found in Refs. [16] and [39].

The data in Table III show good agreement between the
theory and experiment for most of the amplitudes, although
the accuracy for the amplitudes involving the p3/2 states is
lower than that for the p1/2 states.

Table IV shows the theoretical and experimental data on
the hyperfine structure constants of the low states of Ba+,
Yb+, and Ra+. Here again we only compare our calculations
with the most accurate experimental data. A review of the
available experimental and theoretical data for Ba+ can be
found in Ref. [51]. The data in Table IV show several trends:
(i) the accuracy is good for s1/2 and p1/2 states, especially
in the cases of Ba+ and Ra+, (ii) the accuracy for Yb+
is lower than that for Ba+ and Ra+, and (iii) the accuracy
for p3/2 and d3/2 states is lower than that for the s1/2 and
p1/2 states. The largest discrepancy is for the hyperfine
structure (hfs) of the 6p3/2 state of Yb+ where the theory

TABLE III. Electric dipole matrix elements. Comparison of the
present calculations with the experiment or most complete other
calculations.

Ion Transition This work Other

Ba+ 6s1/2–6p1/2 3.32 3.36(4)a

6s1/2–6p3/2 4.69 4.55(10)a

5d3/2–6p1/2 3.06 3.14(8)b

5d3/2–6p3/2 1.34 1.54(19)a

Yb+ 6s1/2–6p1/2 2.72 2.471(3)c

6s1/2–6p3/2 3.84 3.36(2)d

5d3/2–6p1/2 3.09 2.97(4)c

5d3/2–6p3/2 1.36 1.31e

Ra+ 7s1/2–7p1/2 3.24 3.254f

7s1/2–7p3/2 4.49 4.511f

6d3/2–7p1/2 3.56 3.566f

6d3/2–7p3/2 1.51 1.512f

aExperiment, Ref. [37].
bExperiment, Ref. [16].
cExperiment, Refs. [38,39].
dExperiment, Ref. [40].
eTheory, Ref. [41].
fTheory, Ref. [22].

and experiment differ almost three times. Note that the most
complete calculations of Ref. [41] give the result which is
close to our theoretical value rather than to the experiment. In
principle, the discrepancy can be explained by configuration
mixing involving configurations with excitations from the 4f

subshell. Neither our present calculations nor those of Ref. [41]
include this mixing explicitly. The configuration interaction
calculations based on the technique developed in Refs. [52,53],
which treats Yb+ as a system with 15 valence electrons, show

TABLE IV. Magnetic dipole hyperfine constants A (MHz). A
comparison of present calculations with the experiment.

Ion State This work Experiment

135Ba+ 6s1/2 3671 3593.3(2.2)a

6p1/2 668 664.6(0.3)b

6p3/2 131 113.0(0.1)b

5d3/2 161 169.5892(9)c

171Yb+ 6s1/2 13217 12645(2)d

6p1/2 2533 2104.9(1.3)d

6p3/2 388 877(20)e

5d3/2 291 430(43)f

223Ra+ 7s1/2 3537 3404(2)g

7p1/2 679 667(2)g

7p3/2 69.8 56.5(8)g

6d3/2 57.8 77.6(8)h

aRef. [42].
bRef. [43].
cRef. [44].
dRef. [45].
eRef. [46].
fRef. [47].
gRefs. [48,49].
hRescaled from 213Ra [18] using magnetic moments from Ref. [50].
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TABLE V. Contributions to the reduced matrix elements
〈5d3/2,F1‖Ĥ eff

SDPNC‖6s1/2,F2〉 of the SD parity-nonconserving s–d

transitions. See the text for an explanation of the notations. Units:
10−11

κiea0.

Ion F1 F2 S1 S2 S3 S4 Sum

135Ba+ 0 1 0.134 0.002 0.000 −0.027 0.108
1 1 −0.211 −0.001 0.013 0.032 −0.168
1 2 −0.057 0.003 0.029 −0.014 −0.040
2 1 0.211 −0.002 −0.038 −0.009 0.162
2 2 0.127 −0.003 −0.038 0.009 0.094
3 2 −0.212 −0.002 0.000 0.043 −0.171

171Yb+ 1 0 0.780 0.000 −0.306 −0.164 0.310
1 1 0.184 −0.008 −0.432 0.116 −0.140
2 1 −0.411 −0.004 0.000 0.156 −0.259

229Ra+ 1 2 2.021 0.031 0.000 −0.119 1.933
2 2 −2.301 −0.005 0.265 0.084 −1.957
2 3 −0.878 0.044 0.496 −0.045 −0.384
3 2 2.058 −0.037 −0.593 −0.006 1.423
3 3 1.643 −0.036 −0.530 0.006 1.084
4 3 −2.500 −0.039 0.000 0.148 −2.391

that the hfs of the 6p3/2 state is indeed very sensitive to
the configuration mixing. One can find such mixing which
reproduces the experimental hfs exactly while the accuracy
for the energy and for the g factor of the 6p3/2 state is also
good. However, the results are inconclusive due to the strong
instability of the hfs of the 6p3/2 state. We can only say that
the configuration mixing can explain the current experimental
value of the hfs of 6p3/2 state, but we cannot prove that
this explanation is correct. Since the disagreement between
the theory and experiment for the hfs of the 6p3/2 state of
Yb+ is the main factor contributing to the uncertainty of the
calculations for Yb+, it would be useful to remeasure the hfs
of this state.

The fact that the accuracy for the p1/2 and p3/2 states is
different complicates the analysis of the accuracy for the PNC
amplitudes. There is cancellation between terms containing
matrix elements with the p1/2 and p3/2 states. In the end of
Sec. II we introduced the notations S1,S2,S3, and S4 for these
terms [see Eqs. (8), (9), (10), and (11)]. The terms involving
the p1/2 states are S1 and S3, the terms with the p3/2 states are
S2 and S4. Table V shows the S1,S2,S3,S4 contributions to the
reduced matrix elements of the nuclear-spin-dependent PNC
interaction in some hfs components of the transitions in Ba+,
of Yb+ and of Ra+. One can see that the S2 term is usually
small while the S4 term is not small. For example, for Yb+ the
contribution of the S4 term is more than a half of the total sum.
It is clear that the accuracy of the calculations in this case will
be mostly determined by the accuracy of the S4 term.

To analyze the accuracy of the PNC calculations we
need a procedure which takes into account the deviation of
the experimental and theoretical data for the electric dipole
matrix elements and for the hfs as well as the effect of the
partial cancellation between different contributions to the PNC
amplitude. We do this by comparing the ab initio calculations
with the calculations in which the electric dipole and weak
matrix elements are rescaled to fit the experimental data. For
example, assuming that the weak matrix elements between two

states are proportional to the square root of the hfs constants
for these states we rescale them as in the following:

〈n|HPNC|m〉rescaled =
√

A
expt
n A

expt
m

Ath
n Ath

m

〈n|HPNC|m〉. (14)

Here A
expt
n and Ath

n are the experimental and theoretical values
of the hfs constants from Table IV. This means that we perform
accurate rescaling for matrix elements involving 6p1/2 and
6p3/2 states (7p1/2 and 7p3/2 for Ra+). As it was stated above,
this corresponds to 70 to 90% of the total PNC amplitude. We
use the same rescaling for all matrix elements involving higher
p states. Electric dipole matrix elements are also rescaled to fit
the experimental data for the transitions between lowest states.
The difference between PNC amplitudes obtained in the ab
initio calculations and calculations with rescaling serves as an
estimation of the uncertainty of the calculations.

Note that the accuracy for the relative contribution of the
nuclear-spin-dependent interaction can be higher than that for
each of the amplitudes (see also Ref. [54]). As we will see
in the next section, this is usually the case when the S2 and
S3 contributions are both small. This is because these terms
are exactly zero for the SI PNC amplitudes. Therefore, the SD
PNC amplitudes in which the S2 and S3 terms are small are
similar to the SI amplitudes. They both change under scaling
at the same rate which cancels out in the ratio.

V. RESULTS

The results of the calculations for the SI part of the PNC
amplitudes (z components) are

Ba+ :E1PNC(5d3/2 − 6s) = 0.29(2) × 10−12QWiea0, (15)

Yb+ :E1PNC(5d3/2 − 6s) = 0.62(20) × 10−12QWiea0, (16)

Ra+ :E1PNC(6d3/2 − 7s) = 3.4(1) × 10−12QWiea0. (17)

The uncertainties are estimated by comparing ab initio
calculations with the calculations in which matrix elements
were rescaled, as it was described in the previous section. The
expressions (15), (16), and (17) are valid for any isotopes.
All dependence on nuclear number A is via the weak nuclear
charge QW [see Eq. (2)] while the dependence on nuclear
radius is negligible. To be precise, the dependence of the PNC
amplitudes on the nuclear radius can be included with the help
of an additional factor

E1PNC(A2) =
(

A2

A1

)− Z2α2

3

E1PNC(A1). (18)

For cases considered in this work the maximum value of the
correction is 0.4% (between 223Ra and 229Ra). For other cases
the correction is even smaller. This is beyond the accuracy of
present calculations.

It is convenient to present the total PNC amplitude
(including the SD part) in a form

E1PNC = P (1 + Rκ), (19)

where P is the SI part (including weak nuclear charge QW )
and R is the ratio of the SDt to the SI amplitudes. This has
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two important advantages [54]: (i) the extraction of the value
of κ from the experimental data can lead to no confusion over
its sign, (ii) the uncertainty for the value of the ratio of the
SD and SI amplitudes R is usually lower than for each of
the amplitudes. This is because the two amplitudes are very
similar and the numerical uncertainty cancels out in the ratio
(see also Ref. [54]).

The total PNC amplitudes for different hfs transitions in
Ba+, Yb+, and Ra+ are presented in Table VI. The table
includes all stable isotopes of Ba and Yb which have a nonzero
nuclear spin and the longest-living isotopes of Ra with nonzero
nuclear spin. The results for other isotopes can be obtained by
rescaling the appropriate PNC amplitude (with the required

TABLE VI. PNC amplitudes (z components) for the |5d3/2,F1〉 →
|6s1/2,F2〉 transitions in 135Ba+, 137Ba+, 171Yb+, and 173Yb+ and
|6d3/2,F1〉 → |7s1/2,F2〉 transitions in 223Ra+, 225Ra+, and 229Ra+.
Units: 10−10iea0. The uncertainties presented in parentheses reflect
the effect of fitting of the energies and matrix elements as explained
in the text.

Ion QW I F1 F2 PNC amplitude

135Ba+ −74.11 1.5 0 1 −0.152(9) × [1 + 0.0409(3)κ]
1 1 −0.169(11) × [1 + 0.0401(3)κ]
1 2 −0.059(4) × [1 − 0.021(2)κ]
2 1 0.132(9) × [1 + 0.039(2)κ]
2 2 −0.152(9) × [1 − 0.023(2)κ]
3 2 0.152(9) × [1 − 0.0245(3)κ]

137Ba+ −76.09 1.5 0 1 −0.156(10) × [1 + 0.0398(3)κ]
1 1 −0.175(11) × [1 + 0.0392(4)κ]
1 2 −0.061(4) × [1 − 0.021(2)κ]
2 1 0.135(8) × [1 + 0.038(1)κ]
2 2 −0.156(10) × [1 − 0.022(1)κ]
3 2 0.156(10) × [1 − 0.0239(2)κ]

171Yb+ −94.86 0.5 1 0 0.59(19) × [1 + 0.030(16)κ]
1 1 −0.29(9) × [1 + 0.018(3)κ]
2 1 0.51(16) × [1 − 0.016(6)κ]

173Yb+ −96.84 2.5 1 2 −0.41(13) × [1 + 0.022(9)κ]
2 2 −0.53(17) × [1 + 0.015(8)κ]
2 3 −0.17(6) × [1 + 0.009(3)κ]
3 2 0.28(9) × [1 + 0.003(5)κ]
3 3 −0.48(15) × [1 − 0.001(3)κ]
4 3 0.37(12) × [1 − 0.016(7)κ]

223Ra+ −127.2 1.5 0 1 −3.04(9) × [1 + 0.0252(2)κ]
1 1 −3.40(10) × [1 + 0.0233(3)κ]
1 2 −1.18(4) × [1 − 0.0055(6)κ]
2 1 2.64(8) × [1 + 0.0194(4)κ]
2 2 −3.04(9) × [1 − 0.0093(4)κ]
3 2 3.04(9) × [1 − 0.0151(2)κ]

225Ra+ −129.2 0.5 1 0 4.37(13) × [1 + 0.0390(4)κ]
1 1 −2.19(6) × [1 − 0.0034(8)κ]
2 1 3.79(11) × [1 − 0.0149(2)κ]

229Ra+ −133.1 2.5 1 2 −3.02(9) × [1 + 0.0202(2)κ]
2 2 −3.97(12) × [1 + 0.0180(2)κ]
2 3 −1.27(4) × [1 − 0.0068(4)κ]
3 2 2.12(6) × [1 + 0.0147(4)κ]
3 3 −3.56(10) × [1 − 0.0100(3)κ]
4 3 2.76(8) × [1 − 0.0145(2)κ]

values of F1,F2, and I ) using the corresponding weak nuclear
charges

E1PNC(A2)F1F2I = P (A1)F1F2I

QW (A2)

QW (A1)

×
[

1 + R(A1)F1F2I

QW (A1)

QW (A2)
κ

]
, (20)

where P (A1)F1F2I and R(A1)F1F2I are taken from Table VI
and QW (A1) and QW (A2) are calculated using Eq. (2). We
stress once more that the dependence of the amplitudes on
the nuclear radius is much smaller than the current theoretical
uncertainty.

Numerical uncertainties for P and R are presented in
parentheses in Table VI. These uncertainties are estimated
as a difference between pure ab initio results and the results
obtained with the fitting of the energies and rescaling of the
matrix elements of weak and electric dipole interactions as
explained in the previous section. Note that in some cases the
calculated uncertainty for the ratio R is very low. Given that it
might be an effect of some fortunate cancelations in the effects
of rescaling of the matrix elements or the energy, we cannot
exclude that the real error is larger. Comparing the data in
Tables VI and V reveals that low uncertainty in R corresponds
to the cases when the SD PNC amplitude is strongly dominated
by the sum S1 + S4 while the sum of two other terms (S2 and
S3) is small. This is because strong domination of S1 + S4

makes the SD PNC amplitude to be very similar to the SI one
where S2 ≡ 0 and S3 ≡ 0. In this case the rescaling changes
both amplitudes at the same rate and the change cancels out
in the ratio R. The hfs transitions with low uncertainty in R

are good candidates for the measurements when the aim is
extraction of κ.

A. Comparison with other calculations

Table VII summarizes the present and past calculations
of the SI PNC s–d amplitudes in Ba+ and Ra+. We present
the results in a form of the coefficients before the weak
nuclear charge QW . These coefficients are practically isotope
independent. This is because the isotope dependence of the
PNC amplitudes is strongly dominated by a weak nuclear
charge while the dependence of the PNC amplitudes on the
details of nuclear density is very weak and can be neglected
on the present level of accuracy.

The technique used in the present work is very similar to
the sum-over-states approach of our previous paper [13]. As
expected, the results are very close as well. There is also good

TABLE VII. SI part of the parity-nonconserving s–d amplitudes
in Ba+, Yb+, and Ra+. Units: 10−12QWiea0.

Ion Transition This work Other

Ba+ 5d3/2–6s1/2 0.29(2) 0.29a, 0.304b

Yb+ 5d3/2–6s1/2 0.62(20) –
Ra+ 6d3/2–7s1/2 3.4(1) 3.3a, 3.36c, 3.33d

aRef. [13].
bRef. [21].
cRef. [17].
dRef. [22].
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TABLE VIII. Reduced matrix of the SD parity-nonconserving
s–d amplitudes in Ba+ and Ra+. Units: 10−12

κiea0.

Ion Transition I F1 F2 This work Ref. [23]

135Ba+ 6s1/2–5d3/2 1.5 2 3 −1.70(10) −1.94
1 2 1.60(12) 1.79

139Ba+ 6s1/2–5d3/2 3.5 3 3 −1.85(13) −2.07
3 2 1.85(12) 2.11

225Ra+ 7s1/2–6d3/2 0.5 1 2 −17.8(5) −19.8
223Ra+ 7s1/2–6d3/2 1.5 2 3 −21.1(6) −23.5

1 2 16.1(5) 20.3
229Ra+ 7s1/2–6d3/2 2.5 2 3 −3.8(3) −6.5

2 2 −19.6(6) −22.9

agreement with Sahoo et al. for Ba+ [21] and with Wansbeek
et al. for Ra+ [17] and with the recent calculations by Pal
et al. [22] for Ra+.

Table VIII compares our calculated reduced matrix ele-
ments of the SD PNC amplitudes with the results of the recent
calculations by Sahoo et al. [23]. To make the comparison
easy we have multiplied all matrix elements from Ref. [23]
by 2 and have changed their signs. The former is to take into
account the different definition of κ, the latter is due to the fact
that we also have an opposite sign for the SI PNC amplitude
compared to what is presented in Refs. [17] and [23]. The
total sign of an amplitude is not fixed and can be changed
arbitrarily. Note, however, that the relative sign of the SI and
SD PNC amplitudes is not arbitrary and the sign can only be
changed for both parts of the amplitudes simultaneously.

The results of this work and those of Ref. [23] presented
in Table VIII are in a reasonable agreement with each other.
Comparison of the data in Tables VIII and V shows that the

difference between our results and those of Sahoo et al. is
larger for cases when there is strong cancellation between the
S1,S2,S3, and S4 contributions to the reduced matrix element.
For example, the largest difference is for the F1 = 2 to F2 = 3
transition in 229Ra+. The data in Table V show that the final
value of the reduced matrix element for this case is just about
40% of the S1 contribution. On the contrary, if the amplitude
is dominated by the S1 term the agreement between the results
of the two works is much better. This should be expected since
the S1 term is the most stable in the calculations.

VI. CONCLUSION

We present the simultaneous calculation of the SI and SD
PNC amplitudes of the s–d transitions in Ba+, Yb+, and Ra+.
The results are to be used for the accurate interpretation of
future measurements in terms of the parameter of the SD PNC
interaction κ. Both the sign and value of κ can be determined.
Theoretical uncertainty is at the level of 3 to 6% for Ba+ and
Ra+ and 30 to 50% for Yb+. Note that the uncertainty for the SI
PNC amplitude can be further reduced by including structure
radiation and ladder diagrams for a more accurate treatment
of the correlations and by including other small corrections
(Breit, QED, etc.). The uncertainty for the relative contribution
of the nuclear-spin-dependent part of the PNC amplitude is
already small being on the level of 1% in some cases. The
ratio of the SD to SI PNC amplitude is to be measured to
extract the calue of κ.
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