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On the emergence of molecular structure
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The structure of {a±,a±,b∓}-type Coulombic systems is characterized by the effective ground-state
density of the a-type particles, computed via nonrelativistic quantum mechanics without introduction of the
Born-Oppenheimer approximation. A structural transition is observed when varying the relative mass of the
a- and b-type particles, e.g., between atomic H− and molecular H2

+. The particle-density profile indicates a
molecular-type behavior for the positronium ion, Ps−.
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I. INTRODUCTION

Stability regions of few-particle systems in terms of the
physical parameters of nonrelativistic quantum mechanics
have been studied extensively [1–5] and provide useful
pieces of information for studying matter-antimatter [6–10]
interactions and exotic assemblies of particles [5]. Special
structural regions of stable assemblies of electrons and nuclei,
especially those corresponding to a molecular structure, are of
particular interest for molecular physics and chemistry.

Molecular structure is traditionally interpreted within the
Born-Oppenheimer (BO) approximation [11–14]. The BO or
clamped-nuclei approximation leads to introduction of the
potential energy surfaces (PESs), as well as to the concept
of equilibrium structures defined as local minima of the
PES for various molecular systems. Whether equilibrium or
vibrationally averaged effective structures [15] are used to
characterize the structure of molecules [16], the description
relies on the BO approximation.

Thus the BO approximation provides mathematical basis
for several important notions central to the present-day
thinking about molecular systems. Nevertheless, it is not
without conceptual problems. As Primas explains [17]: “We
describe the six degrees of freedom of the ground state of the
helium atom (considered as 3-particle problem with the center-
of-mass motion separated) as a problem of two interacting
particles in an external Coulomb potential. However, in the
case of the molecule H2

+ we discuss the very same type of
differential equation in an entirely different way, and split the 6
degrees of freedom into 1 vibrational mode, 2 rotational modes,
and 3 electronic type degrees of freedom. This qualitatively
different description does by no means follow from a purely
mathematical discussion.”

This reasoning indicates that the introduction of the BO
approximation, by itself, makes an a priori assumption about
the existence of a particular structure for atoms and another
one for molecules.

Then, the following question arises: Is it possible to observe
the emergence of molecular structure as an inherent feature
of nonrelativistic quantum theory for certain ranges of its
parameters without making empirical assumptions? Once
stability regions of few-particle systems were discovered [2,5],
one makes a step forward onto the next level of organization of
matter and wants to discover the special structural regions in

terms of the physical parameters of the theory. To address this
question, the simplest possible family of systems comprising
both atomic- and molecular-type objects is studied in this
work: three-particle systems with two identical particles of
unit charges and a third one with opposite charge [18–23].

This system was studied by one of the present authors in
the analytically solvable so-called 1/r2 harmonium or Hooke-
Calogero model [24] of a three-particle system {a,a,b}, where
the attraction between a and b is harmonic and the repulsion
between the two a particles is given by an inverse square
potential. The emergence of new structure was observed in
the ground-state density ρa(R), R ∈ R3 of the a particles. It
turned out that for large mass of b and small mass of a, ρa

is a Gaussian-type function, centered at the origin, whereas
for large mass of a ρa is a positive spherical function with
a minimum at the origin, corresponding to an isotropically
rotating quantum mechanical dumbbell. At a critical value
of the a mass, a topological transition of ρa was observed
between the two domains, corresponding to the emergence of
a molecular structure arising from an initially atom-like shape.
Emergence through this kind of topological transition is clearly
different from the more familiar variants where singular limits
and symmetry breaking appear as the key formal ingredients
[25].

Does this type of analysis apply to “real-life” Coulomb
interactions?

The nonrelativistic quantum Hamiltonian of {a±,a±,b∓}-
type three-particle systems in Hartree atomic units is

Ĥ (ma,mb,x) = − 1

2ma

�x1 − 1

2ma

�x2 − 1

2mb

�x3

+ 1

|x1 − x2| − 1

|x1 − x3| − 1

|x2 − x3| , (1)

where ma and mb are the masses assigned to the particles. As
proven in Refs. [2] and [4], these systems are stable over the
whole mass range.

A special property of the Coulomb Hamiltonian is its mass-
scale similarity [2]:

Ĥ (ηma,ηmb,x) = ηĤ (ma,mb,ηx), (2)

∀η ∈ R \ {0}. This means that scaling the masses by a factor η

is equivalent to scaling the energy and shrinking the length by a
factor η. The important consequence of the “mass-scaling rule”
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for this work is that it is sufficient to consider the ratio of the
masses, ma/mb. Additionally, the charge inversion invariance,
indicated in the notation {a±,a±,b∓}, is self-explanatory by
inspecting the structure of the Coulomb Hamiltonian.

It is worth noting that the mass-scale similarity is special
to the Coulomb Hamiltonian and does not apply to the 1/r2

harmonium model, as discussed in Ref. [24].

II. COMPUTATIONAL METHODS

In order to compute the ground-state wave function of
the Hamiltonian for various ma and mb values, a computer
program based on a variational procedure was developed.

In spite of the common practice in molecular physics and
spectroscopy of introducing rotational and internal coordinates
[26–31], for simplicity the Hamiltonian was expressed here in
terms of translationally invariant Cartesian coordinates and the
translation of the center of mass was separated [32,33]. The
matrix representation of the translationally invariant Hamil-
tonian was constructed using explicitly correlated Gaussian
functions with zero orbital angular momentum and natural
parity [34]. The nonlinear parameters of the basis functions
were optimized using the stochastic variational method [32],
based on earlier works [35,36], during the course of the
computation.

The eigenfunctions obtained are space-inversion invariant,
have zero orbital angular momentum, and are invariant under
the permutation of the identical particles a. The resulting
wave function meets the Pauli principle, for instance, for two
spin-1/2 fermionic a-type particles with antiparallel spins.

III. PARTICLE DENSITY

As all particles are treated without introducing any ap-
proximate separation, in principle, the nonrelativistic limit can
be approached numerically [37–42]. At the same time, the
structural analysis of the results might not be as straightforward
[13,43,44] as in the case of the BO treatment.

In order to characterize the structure within all-particle,
non–Born-Oppenheimer computations, particle-density-like
quantities, such as the “pseudoparticle density” [45] and
the “mass density” [24,46] or correlation functions were
evaluated [9].

In this work the distribution of the particles in the ground
state �0 is characterized by an effective particle density
introduced in the spirit of the mass density in Ref. [24]. It
is measured from the center of mass (CM) and is defined for
the a particles as

ρa(R) = 〈�0(r)|ρ̂a(r,R)|�0(r)〉, R ∈ R3, (3)

where

ρ̂a(r,R) =
2∑

i=1

δ(di(r) − R), (4)

and the displacement vectors d1 = x1 − xCM and d2 = x2 −
xCM were written in terms of the translationally invariant
Cartesian coordinates, r .

IV. RESULTS AND DISCUSSION

Due to the spherical symmetry of the ground state, with zero
orbital angular momentum ρa is also spherically symmetric.
Figures 1–3 present cuts of ρa for various ma and mb values.

According to the mass-scale similarity of the Coulomb
Hamiltonian, systems with different ma and mb values but
an identical ma/mb ratio are similar in the sense of Eq. (2).
Additionally, the charge inversion invariance also holds. Thus,
in what follows numerical results are presented for assemblies
of a± and b∓ particles with opposite but in absolute value unit
charges and for various ma/mb ratios.

In Figs. 1 and 2, cuts of the three-dimensional, spherically
symmetric particle density are shown to present the variation
of ρa in terms of ma/mb.

In Fig. 1 density plots of ρa(R) along the Z = 0 plane are
given, i.e., for R = (X,Y,0) within the interval X,Y ∈ [−2,2]
bohr.

In Fig. 2 the qualitative change of the profile of ρa(R)
along a ray, e.g., for the cut R = (X,0,0) and X ∈ [−10,10]
bohr, is shown in the neighborhood of the transition
point.

For a small ma/mb mass ratio ρa has a maximum at
the origin, which means that the distribution of the a-type
particles is centered at the center of mass of the system. As
ma/mb increases the distribution becomes more and more
diffuse until a local minimum shows up at the center of mass.
This point can be interpreted as a transition point where
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FIG. 1. Transition from an atomic- to a molecular-type distribution of the a particles in {a±,a±,b∓}-type Coulombic systems. In each
graph the normalized density plot of ρa(R) is shown for R = (X,Y,0) in terms of X,Y ∈ [−2,2] bohr. The assembled particles are specified as
{m±

a ,m±
a ,m∓

b }, where ma and mb are the masses and mp = 1836.15 267 247 [47] in units of the mass of an electron. The center of mass is the
center of each plot.
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FIG. 2. Emergence of molecular structure in {a±,a±,b∓}-type
Coulombic systems. ρa(R) is shown along the ray R = (X,0,0) and
X ∈ [−10,10] bohr for ratios ma/mb ∈ [0.4,2.0]. For ma/mb � 1:
ma = 1 and for ma/mb > 1: mb = 1 were fixed, measured in units of
the mass of an electron. Note the mass-scale similarity of Coulombic
systems.

the “atomic” and “molecular” structures coalesce and the
atomic-type, center-of-mass centered distribution transforms
to a molecular-type distribution with maxima off-centered
from the center of mass. According to our computations this
transition takes place within the interval 0.4 < ma/mb < 0.8.

Then, by further increasing ma/mb, localization of the
a-type particles displaced from the center of mass becomes
more and more pronounced, and the picture of a molecular
system becomes evident.

Although both the atomic and the molecular systems are
spherelike due to the ascribed symmetry, in the molecular case
the a-type particles are most likely found in a shell at a given
distance from the center of mass. This shell-like distribution
reminds us of a rotating dumbbell in its quantum mechanical
ground state, with zero rotational angular momentum. Further-
more, the finite width of the shell corresponds to the zero-point
vibration of the nuclei in the BO picture.

In line with this picture an efficient variational description
of energy levels and properties of molecular systems without
introducing the BO approximation requires the usage of basis
functions mimicking this hollowed distribution of the heavy
particles [23,32,33].

As to the limiting cases, one may reason as follows. As
ma/mb → 0, the particle density becomes more and more
pointed and at the limit it has a cusp at the center of mass, as
it is known from electronic structure theory of molecules with
clamped nuclei [11,48]. At the same time, as ma/mb → +∞,
the shell of the a-type particles becomes infinitely thin. In the
intermediate cases ρa , as defined in Eqs. (3) and (4), has no
cusps at the maxima; as in a qualitative picture, it is smeared
due to the motion of the third particle.

As in the variational computations, no a priori assumptions
were made about the distribution of the particles, the atomic to
molecular transition appears solely as a special feature of the
theory for certain ranges of its parameters. Although one might
note that there is a compositional asymmetry in the assembly of
two identical particles and a third, single, different one for the
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FIG. 3. a-particle density profile in {a±,a±,b∓}-type Coulombic
systems. ρa(R) is plotted along the ray R = (X,0,0) within the
interval X ∈ [−10,10] bohr. The origin coincides with the center
of mass, and mp/me = 1836.15 267 247 [47].

symmetric {a±,a±,b∓,b∓}-type systems, the ma/mb → +∞
and mb/ma → +∞ limits are identical due to the mass-scale
similarity and the charge-inversion symmetry of the Coulomb
Hamiltonian.

While in Fig. 2 the qualitative change of the particle density
is presented as a function of the ma/mb ratio, in Fig. 3 three
physically realizable sections of the surface are shown: the
atomic-like H− = {e−,e−,p+}, the Ps− = {e−,e−,e+}, and
the molecular-like H2

+ = {p+,p+,e−} (note the mass-scale
similarity and the charge-inversion invariance of the Coulomb
Hamiltonian). The transition from the atomic, H−, to the
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molecular, H2
+, particle density profile cannot be interpreted

within the BO approximation, as it introduces two completely
different descriptions, i.e., two different sets of differential
equations to be solved for the H− and the H2

+ three-particle
systems [17].

Furthermore, everyone would agree that H− is an atomic-
type, whereas H2

+ is a molecular-type object in the ground
state. Indeed, the particle density plots presented in Fig. 3 are
in good agreement with the properties of these well-known
regimes of few-particle systems. It is interesting to consider
if atomic- and molecular-type three-particle systems can be
categorized according to the qualitative profile of ρa . If so,
then according to this classification, which can be considered
as a new “definition” of a molecule for three-particle systems,
Ps− would also belong to the set of molecular-like systems,
even though one would not expect that it is tractable within
the BO approximation.

Interestingly, the resonance spectrum of Ps− could
be understood based on an adiabatic treatment of the
interelectronic distance, and it was possible to carry out a
systematic classification of its features using molecular-type
quantum numbers similar to H2

+ [6]. Furthermore, analysis of
the eigenspectrum of the nonrelativistic Hamiltonian in terms
of the particle charges and masses of three-particle systems
allowed to study quantum critical phenomena, and based on the
position of the “pseudocritical points,” Ps− was recognized as
a molecular-like system [49]. In the present work, the particle
distribution considered for ground states of three-particle
systems provided a direct indication of the molecular-like
structure of Ps−, in agreement with the earlier results [6,49].

These observations trigger the following question: Is it
possible to introduce the notion of molecules and molec-
ular structure without relying in some way on the Born-
Oppenheimer approximation?

V. CONCLUSIONS

For the a particles being electrons, connections between the
topology of ρa and various elements of molecular structure are
long since known. In particular, the formation and breaking
of chemical bonds have been studied in great detail [50].

In the present approach topological changes were considered
due to varying masses of the respective particles. For that
purpose Coulombic systems with two identical particles with
unit charges and a third, oppositely charged particle were
considered within nonrelativistic quantum mechanics and
without making a priori assumptions on the structure, i.e.,
without introducing the Born-Oppenheimer approximation.
The structure of these assemblies was analyzed by computing
the effective ground-state particle density for the identical
particles.

As a “mass-scale similarity” applies for the Coulomb
Hamiltonian, it was sufficient to compute the particle density
for various mass ratios. If the mass ratio of the identical
particles and the third particle is small, the density of the
identical particles is centered at the center of mass, whereas by
increasing the relative mass a qualitative change of the particle
density takes place and its maxima appear off-centered from
the center of mass. In topological terms this means a transition
from a single attractor (3,−3) at R = 0 to a cage point (3,3)
together with a critical (1,−1) sphere [51]. It corresponds
to a changeover from atomic- to molecular-type density
distribution, in line with the results in the Hooke-Calogero
model [24].

As charge-inversion invariance also applies for the
Coulomb Hamiltonian, one can invert the charges without
changing the energy, the wave function, or the particle density.
Making use of this property, a continuous transition was
presented from the atomic-like H− = {e−,e−,p+} ion to
the molecular-like H2

+ = {p+,p+,e−} ion by inspecting the
particle density in terms of the relative masses.

Hence the emergence of molecular structure is witnessed
as it results from the inherent nature of the physical theory
for various ranges of its parameters without making empirical
assumptions about the structure.
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