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Highly excited �− states of molecular hydrogen
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We report calculations of H2 �− states using a variational R-matrix approach combined with multichannel
quantum defect theory. Several Rydberg series converging to the 2pπ state of the H +

2 ion core are established
and their mutual channel interactions characterized. The influence of the external electron on the chemical bond
is found to be particularly strong in these electronically and chemically weakly bound states.
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I. INTRODUCTION

Diatomic hydrogen is known to possess states that are
highly excited electronically, yet are quite long-lived or even
metastable. A familiar example is afforded by the 3pπ c 3�−

u

triplet levels of H2 which are situated 13 eV above the ground
state and are metastable with lifetimes ranging from 0.1 to
0.5 ms [1]. Still higher, 16 eV above the ground state—and
higher than the ionization energy of H2—singlet levels of
1�−

u symmetry have been found recently to have lifetimes
as long as ≈0.01 µs, allowing molecular fluorescence to occur
despite the fact that these levels are pre-dissociated as well as
autoionized [2]. In the present paper we discuss states of �−
electronic symmetry which are electronically stable and are
situated at yet far higher energies, as much as 26 eV above the
ground state.

Diatomic hydrogen is the simplest molecular system
possessing more than one electron, and thus, according to
the building-up principles for diatomic molecules [3], it is
the smallest molecule that can have �− electronic states.
However, to the best of our knowledge, these states have
eluded experimental observation so far. Their existence has
been confirmed and some of their characteristics have been
determined by theoretical calculations, initially by Martin [4]
and later by Komasa [5].

Komasa [5] carried out accurate quantum chemical cal-
culations of the lowest state for each �− symmetry (1�−

g ,
3�−

g ,1�−
u ,3�−

u ). He found that all these states have a minimum
and may support bound rotation-vibration levels. Martin used
the B-spline method [6] and calculated several higher states for
each of the �− manifold of symmetries [4]. His calculations
however were restricted to small values of the internuclear
distance R, and therefore Martin could not ascertain whether
these states would have a potential minimum or not.

In this work we present calculations based on the halfium
R-matrix code [7], which extend these earlier results (i) toward
larger R values than considered by Martin and (ii) to higher
energies as well. We show that a whole family of �− states
exists in the H2 molecule, which exhibit potential minima
and which form Rydberg series converging towards the H2

+
2pπ core state. These turn out to be non-autoionizing despite

*Also at: Department of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom.

their high energy. The H2
+ 2pπ state of the ion possesses a

potential minimum near 8 bohrs [8] and is known to support 11
vibrational levels [9]. Preliminary R-matrix results on doubly
excited states of H2 of 1�−

g symmetry have been presented in
a previous publication [10].

II. THEORY

A. General considerations

In recent years we have developed an ab initio R-matrix
approach [7] which enables bound states and core-excited
scattering states of H2 to be calculated for fixed nuclei.
Our work is based on the pioneering ideas of Greene and
Yoo [11,12], which it adapts such as to yield quantum defect
matrices that evolve smoothly throughout the bound and
continuous energy regions, and which also vary reasonably
mildly as functions of the molecular geometry (internuclear
distance R). Our “halfium model” combines the variational
eigenchannel R-matrix method [13] with the generalized mul-
tichannel quantum defect theory (GMQDT) [14] implemented
using prolate spheroidal electron coordinates. The approach
has been used to investigate singlet ungerade symmetries
(1�u,

1�u) [7,15] and gerade symmetries (1�g,
1�g,

1�g) [16],
both for the bound and the continuum (autoionization) regions.

It is interesting to note that even the most recent quantum
chemical calculations [17] on H2, while following individual
potential energy curves out to large internuclear distances,
are still limited to the lowest excited states since they do not
exceed n ≈ 5 (where n is the principal quantum number). The
R-matrix method in general is not particularly adapted a priori
to treat systems for very large internuclear distances, and up
to date most applications have dealt with small molecules at
or near their equilibrium geometries [18]. However, owing to
the use of spheroidal coordinates the halfium model appears
well adapted to be applied for moderately large R values.
Its implementation in terms of these coordinates allows the
partial wave expansion of the electron wave functions to be
kept to a minimum. One of the advantages of the “halfium
model” is also that it produces quantum defects which can
be used directly for the calculation of the nuclear-electronic
dynamics in the framework of multichannel quantum defect
theory (MQDT). The halfium scheme together with the MQDT
framework leads to a global analysis of the interactions as no
distinction is made between “open” and “closed” channels
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at the outset, but instead all channels are treated on the
same footing irrespective of their corresponding channel
thresholds. In this picture doubly excited states are included
explicitly as electron-ion collision channels in their own
right. It has further been shown how MQDT can describe
competing ionization and dissociation processes [19], and
include rovibrational dynamics via the frame transformation
technique [20]. Therefore MQDT possesses all the ingredients
to address the problem competing dissociation and ionization
processes affecting quasibound states (resonances), and, when
combined with the halfium model, it is capable to yield ab
initio predictions of such processes as well.

The previous implementations of the molecular variational
R-matrix method [7,11,12] made no distinction between
channels of �+ and �− symmetry. In other words, the
symmetry property of the electron wave function obtained
by a reflection of all electron coordinates at a plane containing
the two nuclei (symmetry operation σv) was not introduced
explicitly. We reformulate the halfium approach here such as
to include this symmetry property. We have shown previously
[10] how the convergence in the calculation of 1�+

g states is
improved by this extension.

In the original formulation of the halfium model [7,12]
each calculation was performed separately for each molecular
symmetry defined by the standard quantum numbers �

(projection of the angular momentum on the internuclear
axis, taken positive), electron spin (S = 0,1), and gerade
or ungerade [(−1)p with p = 0 or 1]. From elementary
molecular theory [21] we know that in a diatomic molecule
the symmetry operation σv corresponding to a reflection
of all electron coordinates at any plane containing the two
nuclei also commutes with the electronic Hamiltonian so that
an additional quantum number arises: the electronic wave
function has negative symmetry (q = 1) or positive symmetry
(q = 0) depending on whether it changes sign or not upon
reflection. � symmetry (� = 0) is the only symmetry for
which the q quantum number is relevant at the electronic
stage of calculation [22,23]. As far as molecular hydrogen
is concerned, the σv symmetry may in practice be disregarded
even for � states as long as energies below 2pσ ion threshold
are considered. The reason is that only �+ states arise in this
range. Indeed, the lowest �− state occurs associated with the
(2pπ )εpπ configuration and is expected to lie at around 27 eV
above the ground state. The �− states are thus well separated
from �+ states, and for many practical purposes they need not
be taken into consideration.

B. Symmetrized R-matrix code for � = 0 states

In what follows we describe the main modifications
required in the halfium model in order to take account of the σv

symmetry for � = 0 states. The code may be used to calculate
� �= 0 states as previously [7]. In the halfium model, the
two-electron configuration space is divided into two regions:
(i) a reaction volume where the variational R-matrix method
is employed, and (ii) the remaining space, called asymptotic
zone, where GMQDT is used. The connection of the inner
zone and outer zone wave functions yields the desired reaction
matrix or the equivalent quantum defect matrix.

Each two-electron basis function defined in the reaction
zone is expressed in spheroidal coordinates (ξ,η,ϕ) and
corresponds to a configuration i,j (cf. [7,12]) with a specified
set of quantum numbers {S,�,p,q}:

yij (−→r1 ,−→r2 ) = Nij [y+−
ij (−→r1 ,−→r2 ) + (−1)qy−+

ij (−→r1 ,−→r2 )]. (1)

−→r1 and −→r2 are the position vectors of each electron defining the
corresponding spheroidal coordinates (ξ,η,ϕ). The functions
y+−

ij and y−+
ij are products of one-electron orbitals character-

ized by signed orbital angular momentum components:

y+−
ij (−→r1 ,−→r2 ) = Nij [φ+

i (−→r1 )φ−
j (−→r2 ) + (−1)Sφ−

j (−→r1 )φ+
i (−→r2 )],

(2)

y−+
ij (−→r1 ,−→r2 ) = Nij [φ−

i (−→r1 )φ+
j (−→r2 ) + (−1)Sφ+

j (−→r1 )φ−
i (−→r2 )].

Here

φ±
i (−→r ) = χi(ξ )√

ξ 2 − 1

ζi(η)√
1 − η2

1√
2π

exp(±iλiϕ)

≡ χi(ξ )√
ξ 2 − 1

Y�i,±λi
(η,ϕ) (3)

is the ith one-electron wave function of H2
+. We shall

below designate each one-electron function defined by Eq. (3)
by the short-hand ket notation |i±〉 = |ni�iλ

±
i 〉, where it is

understood that in the ket notation λ+
i = |λi | and λ−

i = −|λi |.
The total symmetry � of a two-electron function according
to Eq. (2) thus corresponds to |λ+

i + λ−
j | = 0. It is further

implied here and later in this section that �i is the generalized
orbital angular momentum quantum number arising when
spheroidal coordinates are used [7]. The factors Y�λ(η,ϕ) on
the second line of Eq. (3) thus are normalized spheroidal
harmonics, analogous to the familiar spherical harmonics. The
one-electron functions |i±〉 are therefore gerade when � is
even, and they are ungerade when � odd. The desired symmetry
g/u of the two-electron functions is thus (−1)p = (−1)�i+�j ,
and is obtained by appropriately combining even and/or odd
� orbitals. For this reason the quantum number p does not
appear explicitly in Eqs. (1) and (2). The normalization
factors Nij and Nij are given in the Appendix. The basis of
two-electron functions yij used in the variational R-matrix
approach consists both of “closed” functions whose radial
component χ (c)(ξ0) vanishes on the reaction surface ξ0, and of
“open” functions whose radial component χ (o)(ξ0) is nonzero
but has a vanishing radial derivative on the reaction surface
ξ0 [7,11].

The two-electron basis functions are used to solve
the Schrödinger equation inside the reaction volume in
the framework of the variational R-matrix method. The pro-
cedure outlined in Ref. [7] remains the same, but, because of
the symmetrization, each matrix element taken in the basis of
the two-electron wave functions yij now becomes a sum over
four terms. This is detailed in the Appendix. The eigensolu-
tions are denoted �β(−→r1 ,−→r2 ), where β is a solution index, and
are characterized by stationary logarithmic derivatives bβ on
the reaction surface max(ξ1,ξ2) = ξ0. They are obtained inside
the reaction volume as an expansion over the two-electron
configurations,

�β =
∑
ij

c
β

ij yij , (4)
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which is the σv-symmetrized version of Eq. (10) of Ref. [7].
Each solution �β may be continued in the external zone,

i.e., for radii of the outer electron larger than ξ0, as a linear
combination of regular and irregular two-center Coulomb
radial functions,

�β(E,ω,ξ � ξ0) =
∑

k

�k(E,ω)
1√

ξ 2 − 1

× [fk(εc,ξ )Ikβ(E) − gk(εc,ξ )Jkβ(E)].

(5)

Here E is the total energy, εc = E − Ec is the energy of the
outer electron (with Ec the energy of the residual core), and
ω stands for all coordinates except the radial coordinate of the
outermost electron. The summation index k runs over those
channels k ≡ i ′j ′ which are taken into account explicitly in
the asymptotic zone. The matching of the outer and inner
eigensolutions defines the coefficient matrix elements Ikβ and
Jkβ that appear on the right-hand side of Eq. (5). This equation
also shows how the matching involves expanding each inner-
zone variational solution �β on the reaction surface in terms
of so-called “surface harmonics” �k(ω), for each asymptotic
channel k (see [7]) and for each solution β. The form of
these surface harmonics as well as their symmetrization and
normalization is detailed in the Appendix.

By projecting each R-matrix eigensolution �β(−→r1 ,−→r2 ) onto
a surface harmonic �k(ω) at ξ = ξ0, one obtains surface
expansion coefficients ukβ(ξ0) of the form

ukβ(ξ0) = 〈〈�k(ω)|�β(ω,ξ0)〉〉 = fk(ξ0)Ikβ − gk(ξ0)Jkβ (6)

(where the energy dependences have been omitted for clarity).
The detailed expression of the projection integral 〈〈. . .〉〉
(integration over ω) is given in the Appendix. In order to
ensure the continuity of the wave function as well as of its
derivative across the reaction surface, the projection integrals
ukβ must also satisfy the following equation:

bβukβ(ξ0) = f ′
k(ξ0)Ikβ − g′

k(ξ0)Jkβ, (7)

where bβ is the logarithmic derivative for each variational
solution β obtained in constructing the expansion Eq. (4), and
the primes refer to the radial derivative.

By combining the matching conditions, Eqs. (6) and (7),
we determine the matrices I and J and hence the short-range
reaction matrix K = JI−1 and equivalent quantum defect
matrix.

C. Bound states

The spheroidal quantum defect matrix may be produced in
two equivalent forms, both defined in terms of the K matrix
[20]:

µ = 1

π
arctan

[
K

]
,

(8)

µ = U
{

1

π
arctan[UTKU]

}
UT,

where U is the eigenvector matrix of K. Although both forms
have strictly the same physical content, it has been found
in previous applications that the matrices µ often exhibit a

smoother dependence as function of the energy, and therefore
we have used them in the present work as well. The spheroidal
(two-center) quantum defect matrices may finally be converted
into equivalent spherical (single-center) matrices µ using the
techniques described in Refs. [16] and [24]. We have used both
the spheroidal and the spherical forms of the quantum defect
matrices.

Bound electronic states are obtained by standard MQDT
procedures as previously [7] through application of the
appropriate MQDT bound state boundary condition

det| tan β(E) + K(E,R)| = 0. (9)

In order to solve Eq. (9), we need the reaction matrix K for
arbitrary E. We evaluate it for each R by inverting the second
Eq. (8), using the interpolated matrices µ(E). βi(E) is the
accumulated radial phase in each channel i at the energy
E. If the spherical formulation is used, βi(E) = πνi where
νi is equal to the usual effective principal quantum number
n∗ for n∗ � � + 1, but differs from it for lower n∗ values
[24]. If spheroidal quantum defects are used, Eq. (9) remains
formally unchanged, but the accumulated phase parameter
βi(E) must now be evaluated numerically for every energy
E, by solving the Schrödinger equation for radial motion of
the Rydberg electron in spheroidal coordinates, and hence
extracting the phase by using the techniques of generalized
quantum defect theory [14]. We have ascertained that both
methods yield identical effective principal quantum numbers
to within < 0.002.

III. RESULTS

A. Numerical details

The reaction boundary is preferably chosen as small as
possible, but must be large enough so that the 2pπ core
orbital is enclosed within the reaction zone. The present
calculations have been carried out by using reaction boundaries
corresponding to ξ0 = 20/R + 1 (where R is in a.u.), chosen
such that the energy of the confined core orbital deviates from
the exact value of the free ion by less than about 10−4 a.u. The
internuclear separation R has been taken to vary from 1 to 10
or 12 bohrs. The CI expansion Eq. (4) in the reaction zone
included typically 200 configurations yij of the type ππ ′ and
δδ′ with �,�′ ranging from 1–4, and with two open functions
per �λ value of the more highly excited electron. The following
channels k were included in the asymptotic expansion Eq. (5)
of the wave function:

1�−
g ,3�−

g : (2pπ )εpπ , (2pπ )εf π,

1�−
u ,3�−

u : (2pπ )εdπ , (2pπ )εgπ.

The reaction matrix K and the equivalent quantum defect
matrix µ were evaluated, typically, for about 100 energies
on a grid chosen relative to the H2

+ 2pπ threshold which
ranged from about −0.13 a.u. up to +0.10 a.u. The calculation
of bound state energies was then carried out by suitably
interpolating K for arbitrary energies E. We have verified that
our own code reproduces the H2

+ ion 2pπ energies given by
Madsen and Peek [25] to within 10−6 a.u.
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FIG. 1. (Color online) Quantum defect matrix elements µ�,�′ for core excited �− states of H2 plotted as functions of the internuclear
distance R. The orbital angular momentum quantum numbers ��′ are indicated in each panel as dd , pp, etc. Different curves in each panel
correspond to different electron energies ε: Dashed lines (red online): bound region. Dashed-dotted lines (black): near threshold energy. Solid
line (blue online) continuum region. The energies (in Rydbergs) are: Bound 1�−

u −0.16, 3�−
u −0.15,1�−

g −0.18, 3�−
g −0.24. Threshold 1�−

u

−0.02, 3�−
u −0.03,1�−

g −0.07, 3�−
g −0.08. Continuum 1�−

u +0.02, 3�−
u +0.02,1�−

g +0.04, 3�−
g +0.06.

B. Quantum defects

Figure 1 displays the matrix elements of the 2 × 2 �−
quantum defect matrices obtained in the present work. Each
matrix element is plotted individually as a function of the
internuclear distance R, with different curves representing
the values obtained for different energies as indicated. The
energies are in Rydbergs and are taken relative to the
2pπ core state, so that negative values refer to the bound
state region whereas positive values refer to the ionization
continuum. As stated in Sec. III A, the singlet and triplet
ungerade �− states correspond to channels (2pπ )εdπ and
(2pπ )εgπ , respectively, whereas the singlet and triplet gerade
�− states correspond to channels (2pπ )εpπ and (2pπ )εf π ,
respectively. With the exception of pπ , all the outer electrons
are characterized by relatively high-� orbital momenta, so that
at least for small R they are nonpenetrating and are anticipated
to have rather small quantum defect values. The data plotted
in Fig. 1 indeed verify this expectation: for small R only
the pp matrix elements differ appreciably from zero (modulo
1), and it may also be seen that the nondiagonal �-mixing
matrix elements are all small as well. These off-diagonal
elements all increase substantially as R increases, reflecting
the increasing departure of the molecule from spherical
symmetry.

The evolution with R of the diagonal quantum de-
fect matrix elements reflects their bonding or antibond-
ing characteristics. The one-channel R-dependent Rydberg
equation

Un(R) = U+(R) − 1

[n − µ(R)]2
(10)

(written here in Rydberg units) represents the molecular
Rydberg potential energy curve as a sum of the ion core

potential U+(R) (H2
+ 2pπ in the present case) and a term due

to the Rydberg electron. As recognized by Mulliken [26], the
R-dependent Rydberg equation shows how a quantum defect
curve that has a positive slope as function of R will weaken
the molecular bond because the effective principal quantum
number n∗ = n − µ decreases with R. Conversely, a quantum
defect that has a negative slope will tend to strengthen the bond.
Inspection of Fig. 1 indicates that the pπ Rydberg electron is
bonding, whereas the dπ and f π electrons are antibonding,
and the high-� gπ electron is essentially nonbonding. This
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FIG. 2. (Color online) Rydberg binding energies for core excited
�− states of H2 plotted as functions of the internuclear distance
R. The states corresponding for small R to lower orbital angular
momentum are represented by full (black) lines. Those corresponding
to higher orbital angular momentum are represented by dashed (red
online) lines.
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TABLE I. Clamped-nuclei effective principal quantum numbers n∗ for �− Rydberg series in H2. R is the internuclear distance in a.u., �n∗

are differences with respect to the values obtained by Martin [4].

R = 1 2 3 4 5 6 7 8 9 10

n∗ �n∗ n∗ �n∗ n∗ �n∗ n∗ �n∗ n∗ �n∗ n∗ n∗ n∗ n∗ n∗

3�−
g 2pπ 1.576 −0.007 1.640 −0.007 1.714 −0.006 1.787 −0.005 1.853 −0.005 1.912 1.958 1.996 2.029 2.039

3pπ 2.759 −0.004 2.823 −0.000 2.894 0.004 2.968 0.011 3.032 0.015 3.085 3.100 3.004 2.879 2.799
4pπ 3.776 −0.004 3.838 −0.006 3.906 0.017 3.897 0.067 3.819 0.088 3.659 3.419 3.367 3.347 3.381
4f π 3.976 0.029 3.961 0.040 3.937 0.030 3.975 0.002 4.036 0.002 4.083 4.067 4.009 3.921 3.862
5pπ 4.781 −0.020 4.842 −0.034 4.885 −0.011 4.864 0.039 4.754 0.052 4.497 4.277 4.294 4.296 4.333
5f π 4.967 4.948 4.938 4.977 5.037 5.081 5.035 4.961 4.871 4.816
6pπ 5.784 5.844 5.856 5.849 5.715 5.377 5.207 5.262 5.264 5.294
6f π 5.963 5.943 5.961 5.978 6.038 6.080 6.007 5.931 5.847 5.796
7pπ 6.785 6.846 6.868 6.841 6.688 6.292 6.179 6.247 6.244 6.275
7f π 6.961 6.941 6.950 6.978 7.038 7.080 6.987 6.914 6.835 6.787

mean value −0.001 −0.001 0.007 0.023 0.031

1�−
g 3pπ 2.536 0.002 2.602 0.005 2.676 0.006 2.750 0.010 2.820 0.012 2.888 2.952 3.011 3.064 3.117

4pπ 3.580 0.008 3.647 0.007 3.720 0.006 3.789 0.003 3.824 0.045 3.766 3.679 3.569 3.468 3.365
4f π 3.976 0.029 3.959 0.038 3.936 0.047 3.903 0.061 3.880 0.024 3.934 3.992 4.045 4.092 4.129
5pπ 4.594 0.000 4.661 0.002 4.735 −0.004 4.804 −0.009 4.811 0.024 4.749 4.680 4.613 4.564 4.524
5f π 4.966 0.014 4.946 0.011 4.917 0.021 4.878 0.031 4.883 −0.018 4.945 5.004 5.048 5.104 5.141
6pπ 5.600 5.668 5.742 5.812 5.806 5.747 5.685 5.589 5.581 5.549
6f π 5.962 5.941 5.910 5.870 5.888 5.951 6.011 6.066 6.110 6.147
7pπ 6.604 6.672 6.746 6.816 6.805 6.746 6.687 6.641 6.589 6.558
7f π 6.960 6.938 6.906 6.866 6.891 6.955 7.014 7.067 7.114 7.150
8pπ 7.606 7.764 7.746 7.822 7.804 7.746 7.689 7.633 7.593 7.563

mean value 0.011 0.013 0.015 0.019 0.017

3�−
u 3dπ 2.900 0.001 2.867 0.000 2.822 −0.005 2.784 −0.003 2.747 −0.003 2.720 2.705 2.698 2.703 2.704

4dπ 3.912 0.001 3.886 0.007 3.834 −0.003 3.816 0.024 3.781 0.045 3.753 3.729 3.701 3.687 3.589
5dπ 4.915 −0.013 4.888 −0.011 4.835 −0.015 4.813 0.011 4.770 0.037 4.733 4.700 4.658 4.633 4.480
5gπ 4.999 0.023 4.998 0.027 4.990 0.034 4.993 0.052 4.989 0.065 4.983 4.979 4.959 4.939 4.905
6dπ 5.916 −0.336 5.889 −0.330 5.834 −0.377 5.808 −0.375 5.762 −0.342 5.720 5.683 5.633 5.605 5.431
6gπ 5.998 5.996 5.987 5.989 5.981 5.972 5.963 5.932 5.895 5.794
7dπ 6.917 6.890 6.833 6.805 6.756 6.711 6.672 6.619 6.589 6.405
7gπ 6.997 6.995 6.985 6.986 6.976 6.964 6.953 6.914 6.867 6.701
8dπ 7.916 7.887 7.846 7.794 7.744 7.705 7.665 7.607 7.577 7.390
8gπ 7.996 7.994 7.984 7.984 7.973 7.959 7.945 7.903 7.847 7.636

mean value −0.065 −0.062 −0.073 −0.058 −0.040

1�−
u 3dπ 2.766 −0.001 2.662 −0.002 2.530 −0.004 2.406 −0.001 2.306 0.000 2.233 2.179 2.137 2.108 2.076

4dπ 3.782 0.007 3.709 0.014 3.634 0.024 3.580 0.035 3.545 0.045 3.529 3.523 3.519 3.522 3.521
5dπ 4.786 −0.004 4.717 0.006 4.649 0.013 4.602 0.017 4.573 0.020 4.562 4.561 4.561 4.566 4.565
5gπ 4.999 0.023 4.998 0.027 4.996 0.040 4.993 0.052 4.988 0.064 4.982 4.972 4.955 4.925 4.772
6dπ 5.787 −0.465 5.720 −0.359 5.655 −0.287 5.611 −0.245 5.586 −0.242 5.577 5.578 5.580 5.585 5.589
6gπ 5.998 5.996 5.993 5.988 5.980 5.970 5.954 5.923 5.850 6.052
7dπ 6.788 6.723 6.659 6.616 6.592 6.585 6.588 6.589 6.592 6.599
7gπ 6.997 6.995 6.991 6.985 6.975 6.962 6.942 6.901 6.763 6.999
8dπ 7.788 7.722 7.664 7.656 7.596 7.590 7.593 7.595 7.459 7.611
8gπ 7.996 7.994 7.989 7.983 7.972 7.957 7.932 7.885 7.760

mean value −0.088 −0.063 −0.043 −0.028 −0.022

behavior is in line with the general expectations of bonding
characteristics of molecular orbitals established in the early
times of quantum mechanics [3,27,28]. This point will be
discussed further in Secs. III C and III E below.

Figure 1 shows that superimposed on these general trends
the H2 �− symmetry quantum defects exhibit strong combined

energy and coordinate dependences in certain ranges. For
instance, the 1�−

g quantum defects (third column of panels
from the left) exhibit quite strong such dependences, which
peak near the 2pπ threshold for R ≈ 5. The �-mixing
matrix element pf is seen to exhibit a strong peak in
this range. However, this is not necessarily just � mixing
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due to the increasing nonsphericity of the molecule, but it
may well be related also to configuration mixing involving
doubly excited channels deriving from higher thresholds as
for instance from the 3dπ threshold. Such channels are
not included explicitly in the asymptotic zone expansion
Eq. (5) (summation over k) in our R-matrix treatment.
However, since the inner-zone expansion Eq. (4) includes such
configurations, interactions of this type may cause R-matrix
poles to occur which yield energy dependences in the quantum
defects.

C. Rydberg binding energies and effective principal quantum
numbers

Solution of Eq. (9) yields sets of Rydberg binding energies
εn(R) corresponding to the second term of Eq. (10). These
are displayed in Fig. 2. Each panel of Fig. 2 contains two
interacting R-dependent Rydberg series. The series which
corresponds to the lower � component for small R are
represented by full (black online) curves in each panel, whereas
the corresponding higher � components are drawn as dotted
(red online) lines. The bonding character of the pπ series
and the antibonding character of the dπ series are clearly
visible for the gerade 1,3�−

g and ungerade 1,3�−
u symmetries,

respectively (full curves with positive and negative slopes in
the various panels).

An interesting aspect of the 1,3�−
g are the avoided crossings,

due to �-mixing interaction (�,�′ off-diagonal quantum defect
matrix elements), that occur between the states corresponding
to the bonding npπ and the antibonding nf π Rydberg
electrons. These appear clearly for the 1�−

g symmetry near
R ≈ 5 a.u., and are even more pronounced near R ≈ 7 a.u.
for the 3�−

g symmetry. We shall discuss this aspect further in
Sec. III D below.

Table I lists for each symmetry the effective principal
quantum numbers n∗(R) = n − µ(R), evaluated with Eq. (10),
of the first ten electronic states obtained in this work. The
differences with respect to the results of Martin are also
included whenever the corresponding data are available in
Ref. [4]. The present effective quantum numbers are seen to
agree with the data derived from Ref. [4] to within about
0.01 for the lowest states and to within 0.03 for higher states.
Exceptions occur for each of the ungerade symmetries, where
the highest state calculated by Martin differs substantially from
ours, by as much as 0.2 to 0.4. As demonstrated by Table I and
Fig. 3, our calculations predict rather regular Rydberg series
throughout the ranges of energy and internuclear distance
considered here, and therefore we suspect that the highest
states calculated in Ref. [4] might be less accurate. On the
other hand, it is apparent from Table I that the present
calculations provide a more comprehensive picture of the way
the �− Rydberg series evolve with internuclear distance and
energy.

The effective principal quantum numbers for all four
symmetries are also represented graphically in Fig. 3 as
functions of R. Notice how for small R the lowest 3�−

g

state corresponds to n∗ ≈ 1.6 (penetrating 2pπ electron, π2

configuration) whereas the 1�−
g series starts out with n∗ ≈ 2.5

(3pπ electron, ππ ′ configuration)—in line of course with the
standard building up principles for diatomic molecules [3].

2
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3Σ
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5gπ
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FIG. 3. (Color online) Effective principal quantum numbers for
core excited �− states of H2 plotted as functions of the internuclear
distance R. The states corresponding for small R to lower orbital
angular momentum are represented by full (black) lines. Those
corresponding to higher orbital angular momentum ar represented
by dashed (red online) lines. The quantum numbers of the outer
electron are indicated for the lowest series member of each series.

The 1,3�−
u dπ series start out at the n∗ ≈ 2.8 level as expected

for weakly penetrating 3dπ electrons. The avoided crossings
which occur in the gerade manifolds are well borne out in this
plot.

D. Potential energy curves

Potential energy curves are calculated from the Rydberg
binding energies according to Eq. (10) by addition of the H2

+
ion 2pπ potential energy curve U+(R). Tables II and III
contain the numerical values thus obtained for the lowest
�− state for each of the four symmetries. For the purpose
of comparison the corresponding values from Martin [4]
and Komasa [5] are also included in the tables. Assuming
that the potential energy curves obtained in Ref. [5] are
quasiexact, we see that our results are, in the average, about
150 cm−1 too high. In terms of quantum defects this means
that the effective principal quantum numbers produced by
our R-matrix and MQDT code are by about 0.01 too large.
Inspection of Tables II and III further shows that—with the
exception of the lowest 1�−

g state—our electronic energies
are systematically lower than those of Martin [4], which
indicates that they are somewhat better converged. Figure 4
is a graphical representation of the lowest �− potential energy
curves which highlights the reasonable agreement between the
present calculations and those of Komasa [5]. We expect that
the higher potential energy curves calculated with the R-matrix
method for each symmetry are progressively more accurate as
the energy increases. This has been demonstrated previously
in the case of the 1�+

g states of H2 [16].
Since the H2

+ 2pπ core has a rather shallow potential en-
ergy curve with a correspondingly large equilibrium distance,
7.93 a.u., the effect of the outer molecular electron on the bond
length is comparatively strong, making the �− Rydberg series
a textbook example for studying the bonding characteristics
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TABLE II. Electronic energies of the lowest 3�− states of H2. Internuclear distance R and energies E are in atomic units, energy differences
�E are in cm−1. EH present work. EM is from Martin [4]. EK is Komasa [5]. �EHM/K = 2R(EH − EM/K ), where R is the Rydberg constant.
Note that in order to obtain total energies one has to add the nuclear repulsion term 1/R to the energies E.

3�−
g

3�−
u

R EH EM EK �EHM �EHK EH EM EK �EHM �EHK

1.0 −0.675 53 −0.6737 −0.676 21 −401 151 −0.533 55 −0.5336 −0.534 04 12 110
1.5 −0.645 67 −0.6439 −0.646 10 −388 94 −0.511 79 −0.5118 −0.512 30 3 112
2.0 −0.614 67 −0.6130 −0.614 89 −365 50 −0.489 62 −0.4896 −0.490 12 −4 109
2.5 −0.584 59 −0.5832 −0.584 83 −305 52 −0.468 47 −0.4685 −0.469 04 7 125
3.0 −0.556 63 −0.5554 −0.556 79 −269 37 −0.449 25 −0.4490 −0.449 61 −54 81
3.5 −0.530 89 −0.5298 −0.531 07 −240 38 −0.431 65 −0.4313 −0.431 94 −77 65
4.0 −0.507 42 −0.5066 −0.507 63 −179 49 −0.415 32 −0.4152 −0.415 95 −25 139
5.0 −0.466 95 −0.4662 −0.467 12 −165 38 −0.387 65 −0.3875 −0.388 31 −33 146
6.0 −0.433 74 −0.433 95 46 −0.364 56 −0.365 36 176
7.0 −0.406 54 −0.406 91 80 −0.344 94 −0.345 97 226
8.0 −0.385 00 −0.385 05 12 −0.328 22 −0.329 31 240
9.0 −0.366 45 −0.367 63 260 −0.313 48 −0.314 81 293
10.0 −0.352 95 −0.353 91 210 −0.301 09 −0.302 07 216

mean value −289 86 −21 160

of molecular orbitals. This is illustrated by Fig. 5 which
displays the 3�−

g and 1�−
g potential energy curves of H2. The

bonding and antibonding effects are clearly visible and are
quite substantial for low n∗. The two interleaved series show
nicely the opposite effects of the bonding pπ and antibonding
f π orbitals: the former is seen to shorten the equilibrium
separation substantially, whereas the latter lengthens it, to the
extent that for instance the second 1�−

g potential curve is
purely repulsive beyond R = 10 bohrs. For higher n∗ the Re

values progressively approach the ion value. On the other hand,
for the ungerade symmetries the nonbonding character of the

dπ orbital alters the Re value only little with respect to that of
the ion core.

E. Dissociation behavior of the π 2 and ππ ′ �− Rydberg states

We complete this section by briefly considering the dis-
sociation behavior of the �− H2 Rydberg states. Martin [4]
has previously discussed this point, but as in our opinion his
conclusions are partly incorrect, we repeat the discussion here.
�− states can arise in a two-electron system only from π2,
δ2, . . .and ππ ′, δδ′, . . . configurations. The states calculated

TABLE III. Electronic energies of the lowest 1�− states of H2. Internuclear distance R and energies E are in atomic units, energy differences
�E are in cm−1. EH present work. EM is from Martin [4]. EK is Komasa [5]. �EHM/K = 2R(EH − EM/K ), where R is the Rydberg constant.
Note that in order to obtain total energies one has to add the nuclear repulsion term 1/R to the energies E.

1�−
g

1�−
u

R EH EM EK �EHM �EHK EH EM EK �EHM �EHK

1.0 −0.551 85 −0.5520 −0.552 29 32 97 −0.539 46 −0.5394 −0.539 92 −13 100
1.5 −0.527 60 −0.5278 −0.528 05 45 99 −0.519 35 −0.5193 −0.519 80 −11 99
2.0 −0.502 62 −0.5029 −0.503 10 61 104 −0.499 35 −0.4992 −0.499 82 −32 104
2.5 −0.478 60 −0.4789 −0.479 14 67 120 −0.480 92 −0.4808 −0.481 42 −25 112
3.0 −0.456 29 −0.4566 −0.456 83 68 119 −0.464 54 −0.4643 −0.465 03 −53 108
3.5 −0.435 72 −0.4361 −0.436 34 83 136 −0.450 01 −0.4499 −0.450 57 −23 123
4.0 −0.416 92 −0.4174 −0.417 62 105 155 −0.437 17 −0.4371 −0.437 77 −14 132
4.5 −0.399 89 −0.4004 −0.400 57 113 150 −0.425 78 −0.4257 −0.426 35 −18 126
5.0 −0.384 25 −0.3848 −0.385 02 121 169 −0.415 38 −0.4154 −0.416 07 5 152
5.5 −0.370 05 −0.370 84 175
6.0 −0.356 92 −0.357 89 213 −0.397 29 −0.398 14 188
7.0 −0.334 02 −0.335 21 261 −0.381 91 −0.382 94 225
8.0 −0.314 67 −0.316 17 330 −0.369 04 −0.369 87 183
9.0 −0.298 28 −0.300 20 421 −0.357 50 −0.358 60 242
10.0 −0.284 19 −0.286 86 585 −0.348 68 −0.348 88 44

mean value 77 209 −20 138
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FIG. 4. The four lowest �− potential energy curves of H2. Full
lines: present results. Squares: Komasa [5]. The energy, in eV, is taken
with respect to the ground level of H2. The potential energy curve of
the H2

+ 2pπ core state is also shown (dashed lines).

here correspond to a 2pπ ion core which correlates with the H+
+ H(n = 2) dissociation limit of the ion. Therefore, starting
out from the H(n = 2)+H(n) molecular dissociation limits
we need to consider only π2 and ππ ′ configurations because
H(n = 2) does not support a dδ orbital. Figure 6 presents the
qualitative energy correlation diagram which we obtain. The
figure caption lists the detailed rules which have been applied.
Unlike Martin, we find that the correlation is different for each
of the four �− symmetries. Specifically, the lowest 1�−

u state
must correlate with the (n = 2) + (n = 2) SA limit and not
(n = 2) + (n = 3) as indicated in Ref. [4].

Mulliken [29], in a remarkably insightful paper which
has received comparatively limited attention, discussed the
dissociation behavior of Rydberg states in general. He showed
that in odd-electron molecules [like nitric oxide (NO) for in-
stance] the core and the Rydberg electron follow their route to
dissociation essentially independently, because configuration
mixing (CM) effects which would blur the correlation rules are
relatively minor (“minor CM”). By contrast in even-electron
molecules like H2 “major CM” occurs, because the SA states
are in fact “entangled,” that is, they are for symmetry reasons
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FIG. 6. Qualitative energy correlation diagram for core excited
�− states of H2 between united atom (UA) and separated atom (SA)
states. The states represented correspond to (2pπ )n�π configurations
with � � 4. The diagram has been drawn by considering the two-
electron states arising (i) in the UA and (ii) in the SA limits,
based on the familiar building-up principles for symmetric diatomic
molecules [3], and considering separated atom orbitals with � up to 4.
(iii) Further, where possible (full lines), the correlation has been made
by applying the correlation rules for the one-electron H2

+ orbitals
with λ = 1 to the outer electron (n → n for � = 1, n → n − 1 for
� = 2 and 3, n → n − 2 for � = 4 and 5). Dashed lines correspond
situations where this is not possible.

strong mixtures of different electronic configurations. The
dissociation behavior can therefore only formally be attributed
to the Rydberg electron alone. Nevertheless, Fig. 6 shows that,
neglecting � mixing, in three out of the four �− symmetries,
the correlation remains in line with that expected for the
one-electron two-center system (full lines in Fig. 6). In the
fourth symmetry, 3�−

u , even this formal correlation is violated
(dashed lines).

Referring now to Fig. 3 we see that the behavior of
the gerade molecular states corresponds quite nicely to that
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FIG. 5. (Color online) 3�−
g and 1�−

g

potential energy curves of H2 correspond-
ing to bonding npπ and antibonding nf π

Rydberg orbitals [full lines (black) and
broken lines (red online), respectively].
Filled squares indicate the positions of
the potential minima. Crosses (green on-
line) indicate the occurrence of p ∼ f

avoided crossings. Note that owing to
these avoided crossings the curves change
their character in these ranges. The poten-
tial energy curve of the H2

+ 2pπ core
state is also shown [dashed-dotted line
(blue online)].
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predicted by Fig. 6, with the additional feature that the
crossings of different � curves are avoided. The same can be
said about the 1�−

u symmetry despite the fact that the avoided
crossing do not appear clearly. However, in the 3�−

u case the
avoided crossings are now so strong that the pattern of Fig. 6
is not obvious.

IV. CONCLUSION

In this work we have extended previous theoretical work
[4,5] on �− states in H2, (i) by calculation of a number of
higher states and (ii) by carrying the calculations to larger
R values than had been done previously (except for the
lowest state of each manifold). Comparison with the earlier
computations, where possible, indicates that our R-matrix
approach, while not approaching the state-of-the-art quantum
chemical calculations of Ref. [5], is reasonably accurate and
reliable, and has the advantage that arbitrarily high n values
as well as continuum states can be evaluated. Further, as
mentioned above, the R-matrix method is expected to yield
higher potential energy curves with increasing accuracy.

We have established the existence of numerous Rydberg
series which converge to the 2pπ ion core threshold. Some
of these series have been found to interact via �-mixing
interaction—an interaction which no doubt in part is induced
also by configuration mixing involving yet higher ion core
states. These electronic couplings lead to series of avoided
crossings of the potential energy curves for some of the
symmetries (cf. Figs. 2 and 3). The states involved in the
crossings themselves have rather strongly varying shapes due
to the bonding or antibonding effect of the Rydberg electron,
respectively, which is unusually dominant here. We thus
predict that the H2

1�− electronic states form patterns that
do not conform to the traditional picture of Rydberg potential
curves which converge to the ion threshold neatly stacked and
nested.

Clearly these complications have to be taken into account
when the nuclear dynamics is calculated. Komasa [5] predicted
vibration-rotation levels for the lowest state in each of the
four symmetry manifolds based on the Born-Oppenheimer
approximation. We plan to calculate higher levels as well,
by using multichannel quantum defect theory (MQDT) which
should also account for nonadiabatic interactions such as they
likely arise as a consequence of the avoided crossings.

As pointed out by the previous authors, the �− states of H2

are not affected by electronic autoionization, i.e., electronic
interactions with electronic continua associated with lower
H+

2 thresholds. This fact distinguishes them from all other
core excited Rydberg series, which typically are broad and
in addition are mostly repulsive. Rovibronic autoionization
however is possible, since for instance the �− levels may
be autoionized (and in fact also be pre-dissociated) through
rotational �-uncoupling interaction with �− and �− continua
associated with lower thresholds.

The N = 0 rotational levels associated with the �− states
are an exception here: they have negative total parity and
therefore cannot interact with any lower levels or continua
of the same N value since these have positive total parity
without any exception. They may be affected by hyperfine or
spin effects, but these are likely to be extremely weak. The only

efficient way for the �− N = 0 levels to relax energetically is
by an optical electric-dipole P (1) transition terminating on a
lower �− N = 1 level. These transitions originate from much
larger internuclear distances than the equilibrium geometries
of most of the lower states on which they may terminate. They
might therefore give rise to a structured emission continuum, a
so-called “diffraction band,” such as predicted by Condon [30]
and observed previously by Dalgarno, Herzberg, and Stephens
[31] in the B − X transition of H2. The theoretical study of all
of these dynamical aspects is underway.
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APPENDIX

Owing to Eq. (1), any symmetrized matrix element Aij,i ′j ′

(where A = O,L, 1
r12

,H,�, or �), takes the form

Aij,i ′j ′ = NijNi ′j ′[(Ai+j−,i ′+j ′− + Ai−j+,i ′−j ′+ )

+ (−1)q(Ai+j−,i ′−j ′+ + Ai−j+,i ′+j
′−)]. (A1)

[Note incidentally that the normalization factors of the present
Eqs. (1), (2), and (A1), introduced originally in Ref. [7],
are redefined here, with Nij (previous) = (2N2

ij )−1(present)].
In order to write the four terms in the above equation in a
compact way, we use p or m exponents to stand for either
(+) or (−) signs indifferently (p = ±,m = ∓). Consequently,
with Eq. (2),

Aipjm,i ′pj ′m

= NipjmNi ′pj ′m [(〈ipjm|A|i ′pj ′m〉 + 〈imjp|A|i ′mj ′p〉)
+ (−1)S(〈ipjm|A|i ′mj ′p〉 + 〈imjp|A|i ′pj ′m〉)].

(A2)

The normalization factors Nipjm and Nij thus become

Nipjm = {2[oipipojmjm + (−1)S |oipjm |2]}− 1
2

Nij = {2[Oipjm,ipjm + (−1)qOipjm,imjp ]}− 1
2 . (A3)

Here the one-electron overlap matrix element oipjm is given by
oipjm = δ(λp

i ,λm
j )ôij , with

ôij =
(

R

2

)3 [∫ ξ0

1
χi(ξ )χj (ξ )dξ

∫ +1

−1

ζi(η)ζj (η)

1 − η2
dη

+
∫ ξ0

1

χi(ξ )χj (ξ )

ξ 2 − 1
dξ

∫ +1

−1
ζi(η)ζj (η)dη

]
(A4)

[cf. Eq. (3) of Ref. [7]]. Note that δ(λp

i ,λm
j ) �= 0 if λ

p

i = λm
j = 0

(σ -type orbitals). The two-electron overlap matrix elements
Oipjm,i ′pj ′m are obtained from Eq. (A2) by setting A = 1.

Taking account of the reflection symmetry we write the
surface harmonics that appear in Eq. (5) as

�k(ω) = N�k
[�+−

k (ω) + (−1)q�−+
k (ω)] (A5)
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with

�+−
k (ω) = N�+−

k
φ+

i ′ (−→r <)Y�j ′λ−
j ′ (η>,ϕ>),

(A6)
�−+

k (ω) = N�−+
k

φ−
i ′ (−→r <)Y�j ′λ+

j ′ (η>,ϕ>).

The index k here stands for a particular two-electron basis
function which connects to an asymptotic channel k [Eq. (5)],
i.e., k = i ′j ′, with the primes used to distinguish the surface
harmonic two-electron functions from those, ij , used in the
expansion Eq. (4) of the solutions �β inside the reaction
zone. The symbols < and > designate the inner and outermost
electron, respectively; they originate from the indiscernibility
of the electrons. Y�λ(η,ϕ) are the normalized spheroidal
harmonics associated with each channel, as defined in Eq. (3).
The requirement 〈〈�k|�k〉〉 = 1 yields the normalization
factors N�k

and N�k
as follows:

N�+−
k

= N�−+
k

= N�k
= [ôi ′,i ′ ]

− 1
2 ,

(A7)
N�k

= {2[1 + (−1)qδ(λ−
j ′ ,λ

+
j ′ )]}− 1

2 .

If �k is associated with a � symmetry channel built on a σ

symmetry H2
+ ion core state, i.e., the channel corresponds

to (n�σ )ε�′σ , then λ−
j ′ = λ+

j ′ and N�k
= 1/2. Otherwise,

N�k
= 1/

√
2.

Finally, the surface expansion coefficient of Eq. (6)
becomes

ukβ = N�k

∑
ij

c
β

ijχ
o
j (ξ0)

∫ +1

−1

ζ
εc

�j ′ ,λj ′ (η)ζ�j ,λj
(η)

1 − η2
dη

× ôii ′ {[δ(λ+
i ′ ,λ

+
i )δ(λ−

j ′ ,λ
−
j ) + δ(λ−

i ′ ,λ
−
i )δ(λ+

j ′ ,λ
+
j )]

+ (−1)q[δ(λ−
i ′ ,λ

+
i )δ(λ+

j ′ ,λ
−
j ) + δ(λ+

i ′ ,λ
−
i )δ(λ−

j ′ ,λ
+
j )]}.
(A8)

Note that, as indicated in this expression, only the
“open” basis functions χ

(o)
j (ξ0) contribute to the sum in

Eq. (A8). Further, the expression in the last bracket [. . .]
of Eq. (A8) is seen to vanish unless channels (n�σ )ε�′σ are
involved.
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