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Self-energy correction to the hyperfine splitting for excited states
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The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions
using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure
constant. We present analytic results for D, F , and G states, and for a number of highly excited Rydberg states, with
principal quantum numbers in the range 13 � n � 16, and orbital angular momenta � = n − 2 and � = n − 1. A
closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with
� � 2 and arbitrary n, �, and total angular momentum j . The low-energy contributions are written in the form of
generalized Bethe logarithms and evaluated for selected states.
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I. INTRODUCTION

The self-energy correction to the hyperfine splitting is the
dominant quantum electrodynamic (QED) correction to the
magnetic interaction of the bound electron with the field of
the nucleus. The hyperfine interaction energy of electron and
nucleus is proportional to gN α(Zα)3m2

e/mN , where gN is
the nuclear g factor, and me and mN are the electron and
nuclear masses, respectively. Relativistic corrections enter at
relative order (Zα)2. The dominant QED correction is due to
the anomalous magnetic moment of the electron and enters at
relative order α. Here, we consider the QED correction of order
α (Zα)2, which is the sum of a high- and a low-energy part.
Relativistic corrections to the anomalous magnetic interaction
give one of the dominant contributions to the high-energy
part, which can otherwise be calculated on the basis of a form-
factor approach, using a generalized Dirac equation in which
the radiative effects and the hyperfine interaction are inserted
“by hand.” The low-energy part constitutes a correction to
the Bethe logarithm due to the hyperfine interaction. It can
be formulated as a hyperfine correction to the self-energy,
the effect being equivalent to the self-energy correction to the
hyperfine splitting mediated by low-energy virtual photons [up
to order α (Zα)2].

In our treatment, we follow the formalism of nonrelativistic
QED (NRQED) detailed in Ref. [1], and refer to Refs. [2–7] for
a number of previous investigations regarding the treatment of
the self-energy correction to the hyperfine splitting in systems
with low nuclear-charge number.

Our paper is organized as follows. The general formalism
of the hyperfine interaction is described in Sec. II. For the
self-energy correction, the low-energy part is treated in Sec. III,
and the high-energy part is calculated in Sec. IV. Results and
theoretical predictions are discussed in Sec. V. Conclusions
are reserved for Sec. VI. Natural units with h̄ = c = ε0 = 1
are used throughout the paper.

II. FORMALISM

Following the derivation in Ref. [8], the magnetic dipole
field of the nucleus is described by the vector potential

�Ahfs(�x) = − 1

4π

�µ × �x
r3

, (1)

where �x is the coordinate vector and r = |�x|. The curl of this
vector potential yields the magnetic field

�Bhfs = �∇ × �Ahfs(�x) = −2

3
�µ δ(�x) − 3( �µ · �̂x ) �̂x − �µ

4πr3
, (2)

and the fully relativistic hyperfine interaction Hamiltonian thus
reads

Hhfs = −e�α · �Ahfs(�x) = e

4π
�α · �µ × �x

r3
= e

4π
�µ · �x × �α

r3
.

(3)

The hyperfine interaction couples Dirac eigenstates to the
magnetic field of the nucleus. The electronic states can be
written as |njm〉 ≡ |nj�m〉, where n is the principal quantum
number, and the orbital and total angular momenta of the
electron (� and j , respectively) can be mapped to the Dirac
angular quantum number κ = (−1)j−�+ 1

2 (j + 1
2 ). Finally, m

is the projection of the total electron angular momentum onto
the quantization axis. In this paper, we sometimes suppress
the orbital angular momentum � in the notation because we
consider the coupling of the total electron angular momentum
j to the nuclear spin. Nuclear states are denoted as |IM〉,
where I is the nuclear spin and M is its projection onto the
quantization axis. They are coupled to the electron eigenstates
|njm〉 by the hyperfine interaction to form states with quantum
number |nf mf Ij 〉, which are eigenstates of the total Dirac
plus hyperfine Hamiltonian (f is the total electron plus
nuclear angular momentum and mf is its projection). Using

Clebsch–Gordan coefficients C
f mf

IMjm, the |nf mf Ij 〉 states can
be written as

|nf mf Ij 〉 =
∑
M,m

C
f mf

IMjm |IM〉 |njm〉 . (4)

The hyperfine energy �Ehfs thus reads

Ehfs = 〈nf mf Ij |Hhfs|nf mf Ij 〉. (5)

Using the Wigner–Eckhart theorem, the hyperfine energy can
be rewritten as

Ehfs = α
gN

2

me

mN

[f (f + 1) − I (I + 1) − j (j + 1)]

×
〈
nj

1

2

∣∣∣∣ [�x × �α]0

mer3

∣∣∣∣ nj 1

2

〉
, (6)
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where |nj 1
2 〉 is the Dirac eigenstate with a definite angular-

momentum projection of + 1
2 , and [�x × �α]0 is the z component

(zero component in the spherical basis) of the indicated vector
product.

We have thus separated the nuclear from the electronic
variables. A detailed analysis of the separation of the nuclear
variables can also be found in Ref. [2]. This procedure allows
one to reduce the evaluations of the hyperfine structure, and
corrections to it, to the evaluation of matrix elements of
operators acting solely on electronic states. Specifically, we
consider corrections to the state-dependent electronic matrix
element �e, where

�e =
〈
nj

1

2

∣∣∣∣ [�x × �α]0

mer3

∣∣∣∣nj 1

2

〉
. (7)

The hyperfine interaction energy thus is

Ehfs = α
gN

2

me

mN

[f (f + 1) − I (I + 1) − j (j + 1)]�e. (8)

Relativistic atomic theory leads to the following result for �e

(see Refs. [4,9]):

�e = (Zα)3me

κ[2κ(γ + n − |κ|) − N ]

N4
(
κ2 − 1

4

)
γ (4γ 2 − 1)

, (9)

where γ =
√

κ2 − (Zα)2. The effective principal quantum
number is N =

√
(n − |κ|)2 + 2(n − |κ|)γ + κ2.

III. LOW-ENERGY PART

A. General Formalism

In order to treat low-energy virtual photons, we apply a
Foldy-Wouthuysen transformation to the total Hamiltonian Ht ,
which is the sum of the Dirac-Coulomb Hamiltonian and the
relativistic hyperfine interaction Hamiltonian,

Ht = HD + Hhfs = �α · �p + βme − Zα

r
− e �α · �Ahfs(�x).

(10)

The Foldy-Wouthuysen transformation of this Hamiltonian
is carried out as described in Refs. [7,8,10–12]. The only
difference to the case of the ordinary Dirac Hamiltonian
is that the odd operator O used in the construction of the
transformation [11] now reads

O = �α · �p − e �α · �Ahfs(�x), (11)

instead of �α · �p. The result of the transformation,

H ′
t + UHtU

−1 = HFW + HHFS , (12)

is the sum of the Foldy-Wouthuysen Hamiltonian HFW from
Ref. [10], and HHFS which is the nonrelativistic hyperfine
splitting Hamiltonian [2,8]

HHFS = e me

4π
�µ · �h = e me

4π
�µ · (�hS + �hD + �hL). (13)

It consists of the three parts

�hS = 4π

3m2
e

�σδ(�x), (14a)

�hD = 3(�σ · x̂)x̂ − �σ
2m2

er
3

, (14b)

�hL =
��

m2
er

3
, (14c)

whose designation is inspired by the apparent angular-
momentum association of the terms. Following the notation
in Ref. [8], lowercase letters in the subscript are used to
label relativistic operators, whereas nonrelativistic operators
are denoted by uppercase letters in the subscript. However, we
use the lowercase notation for the scaled vector quantity �h in
order to denote the electronic operators in the nonrelativistic
hyperfine Hamiltonian. Furthermore, x̂ = �x/|�x| is the position
unit vector. The zero component (z component) h0 = hS,0 +
hD,0 + hL,0 of the Hamiltonian “vector” �h therefore reads as

h0 = 4π

3m2
e

σ0 δ(�x) + 3(�σ · x̂ )x̂0 − σ0

2m2
er

3
+ �0

m2
er

3
. (15)

With the help of h0, the nonrelativistic limit of Eq. (9) is
obtained as

�NR
e =

〈
nj�

1

2

∣∣∣∣h0

∣∣∣∣ nj�
1

2

〉
= κ

|κ|
(Zα)3me

n3(2κ + 1)
(
κ2 − 1

4

) ,

(16)

which we use to define the nonrelativistic quantity

EF = ENR
HFS = EHFS = α

gN

2

me

mN

× [f (f + 1) − I (I + 1) − j (j + 1)]�NR
e , (17)

which in turn is commonly referred to as the Fermi energy.
The relativistic and QED corrections can be expressed as
multiplicative corrections of �e, via the replacement

�NR
e → �NR

e

[
1 + δ�rel

e + δ�QED
e

]
. (18)

By expanding �e to second order in Zα, we obtain

δ�rel
e = (Zα)2

×
[

12κ2 − 1

2κ2(2κ − 1)(2κ + 1)
+ 3

2n

1

|κ| + 3 − 8κ

2n2(2κ − 1)

]
(19)

and the corresponding energy shift

δErel
hfs = EHFS δ�rel

e . (20)

The QED term

δE
QED
HFS = EHFS δ�QED

e (21)

is the subject of this paper. For the QED corrections, terms up
to relative order α(Zα)2 with respect to the nonrelativistic
hyperfine splitting will be considered. In order to do the
calculation, we need the three terms from Eq. (13) and a
further correction to the electron’s transition current, due to the
hyperfine interaction. Namely, in the presence of the hyperfine
interaction, the kinetic momentum of the electron finds a
modification

�p
me

→ �p
me

− e

me

�Ahfs = �p
me

+ |e|me

4π
| �µ|δ �jHFS. (22)
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The current

δ �jHFS = �̂µ × �x
m2

er
3

(23)

has the zero component

δ �j0,HFS = 1

m2
er

3
(−yêx + xêy), (24)

which is used in the calculations below.

B. Specific Terms

Following Ref. [8], there are four corrections that arise
from the correction of the interaction current, the Hamiltonian,
the reference-state energy, and the reference-state wave
function.

We first treat the hyperfine correction to the interaction
current and, to this end, define a useful normalization
factor

N = 1〈
nj� 1

2

∣∣h0

∣∣nj� 1
2

〉 = 1

�NR
e

. (25)

The hyperfine correction to the interaction current is then given
as

δ�
δj

L = 4αN
3π

∫ ε

0
dω�kω�k

∑
n′j ′�′m′

〈
nj�

1

2

∣∣∣∣ pi

me

∣∣∣∣n′j ′�′m′
〉

× 1

En − En′ − ω�k

〈
n′j ′�′m′

∣∣∣∣δj i
0,HFS

∣∣∣∣nj�
1

2

〉

= α

π
(Zα)2 4N

3(Zα)2

∑
n′j ′�′m′

(En − En′) ln

( |En′ − En|
me(Zα)2

)

×
〈
nj�

1

2

∣∣∣∣ pi

me

∣∣∣∣n′j ′�′m′
〉〈

n′j ′�′m′
∣∣∣∣δj i

0,HFS

∣∣∣∣nj�
1

2

〉
.

(26)

The term containing the logarithm of ε, which is a scale-
separation parameter that cancels when high- and low-energy
parts are added [13], vanishes after angular integration in
the matrix element. The structure of the logarithmic term
here is very similar to the Bethe logarithm encountered
in Ref. [14]. Terms of this form will arise for the other
corrections in the low-energy part as well. In the following,
these terms are denoted as βHFS and are evaluated numerically
with the methods described in Ref. [15]. Thus, the low-
energy correction due to the nuclear-spin-dependent current
is

δ�
δj

L = α

π
(Zα)2β

δj

HFS. (27)

Next, we treat the corrections to the Hamiltonian, the
energy, and the wave function. The perturbation due to
the hyperfine splitting Hamiltonian yields the term [we define
the resolvent G(ω�k) = 1/(En − HS − ω�k)]

δ�δH
L = 2αN

3π

∫ ε

0
dω�k ω�k

×
〈
nj�

1

2

∣∣∣∣ pi

me

G(ω�k) h0 G(ω�k)
pi

me

∣∣∣∣nj�
1

2

〉

= 2αN
3πm2

e

ln

[
ε

me(Zα)2

]

×
〈
nj�

1

2

∣∣∣∣
(

1

2
[pi,[h0,p

i]] + p2h0

)∣∣∣∣ nj�
1

2

〉

+ α

π
(Zα)2βδH

HFS. (28)

The correction to the energy denominator in the Schrödinger
propagator can be written as

δ�δE
L = −2αN

3π

∫ ε

0
dω�k ω�k

〈
nj�

1

2

∣∣∣∣h0

∣∣∣∣nj�
1

2

〉

×
〈
nj�

1

2

∣∣∣∣ pi

me

[G(ω�k)]2 pi

me

∣∣∣∣nj�
1

2

〉

= − 2αN
3πm2

e

ln

[
ε

me(Zα)2

]〈
nj�

1

2

∣∣∣∣p2

∣∣∣∣nj�
1

2

〉

×
〈
nj�

1

2

∣∣∣∣h0

∣∣∣∣nj�
1

2

〉
+ α

π
(Zα)2βδE

HFS. (29)

Finally, the correction to the wave function due to the hyperfine
splitting Hamiltonian is

δ�δ
L = 4αN

3π

∫ ε

0
dω�k ω�k

×
〈
nj�

1

2

∣∣∣∣ pi

me

G(ω�k)
pi

me

(
1

En − HS

)′
h0

∣∣∣∣ nj�
1

2

〉

= 4αN
3πm2

e

ln

[
ε

me(Zα)2

]

×
〈
nj�

1

2

∣∣∣∣pi(HS − En)pi

(
1

En − HS

)′
h0

∣∣∣∣ nj�
1

2

〉

+ α

π
(Zα)2βδ

HFS, (30)

where the prime indicates the reduced Green function. Using
commutator relations, one can finally sum up all four correc-
tions in the low-energy part as

δ�L = δ�
δj

L + δ�δH
L + δ�δE

L + δ�δ
L

= αN
3πm2

e

ln

[
ε

me(Zα)2

]〈
nj�

1

2

∣∣∣∣[pi,[h0,p
i]]

∣∣∣∣nj�
1

2

〉

+ α

π
(Zα)2βHFS, (31)

where βHFS is the sum

βHFS = β
δj

HFS + βδH
HFS + βδE

HFS + βδ
HFS. (32)

The double commutator〈
nj�

1

2

∣∣∣∣[pi,[h0,p
i]]

∣∣∣∣nj�
1

2

〉
=

〈
nj�

1

2

∣∣∣∣ �∇2h0

∣∣∣∣nj�
1

2

〉
(33)

vanishes for states with � � 2 up to and including order (Zα)5,
and hence δ�L takes the very simple form

δ�L = α

π
(Zα)2βHFS. (34)
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IV. HIGH-ENERGY PART

Up to relative order α(Zα)2EF , it is sufficient [8] to
consider the problem on the level of the modified Dirac
Hamiltonian,

H
(m)
D = �α[ �p − eF1( �∇2) �A] + βme + F1( �∇2)V

+F2( �∇2)
e

2me

(i �γ · �E − β �� · �B), (35)

where F1 and F2 are the one-loop Dirac and Pauli form factors
of the electron, respectively. Their expressions are known (see
Chapter 7 of Ref. [16]).

The F1 form-factor slope gives rise to the following
effective interaction:

−eF ′
1(0) �∇2 �α · �Ahfs = α

3π

[
ln

(
me

2ε

)
+ 11

24

]
�∇2Hhfs. (36)

Up to the order α(Zα)2EF , we may write the correction in
terms of the nonrelativistic hyperfine Hamiltonian h0,

δ�H,1 = αN
3πm2

e

[
ln

(
me

2ε

)
+ 11

24

] 〈
nj�

1

2

∣∣∣∣ �∇2h0

∣∣∣∣nj�
1

2

〉
.

(37)

However, as already pointed out, the matrix element of �∇2h0

vanishes on states with � � 2, which are relevant to our
investigations, and so

δ�H,1 = 0. (38)

The second correction is a second-order perturbation involving
the F1 correction to the Coulomb potential,

δ�H,2 = 2αN
3πm2

e

[
ln

(
me

2ε

)
+ 11

24

]

×
〈
nj�

1

2

∣∣∣∣ �∇2V

(
1

En − HS

)′
h0

∣∣∣∣nj�
1

2

〉
. (39)

Again, �∇2V is proportional to the Dirac δ and therefore
vanishes for states with � � 1. Accordingly, for states with
� � 2, we have

δ�H,2 = 0. (40)

The Pauli F2 form factor gives rise to a second-order
perturbation involving a magnetic-moment correction to the
Coulomb potential,

δ�H,3 = 2N F2(0)

×
〈
ψ†

∣∣∣∣ −i

2me

�γ · �∇V

(
1

Eψ − HD

)′
Hhfs

∣∣∣∣ψ
〉
, (41)

where F2 is the magnetic form factor. For F2(0), the Schwinger
value F2(0) = α

2π
may be used. After a Foldy–Wouthuysen

transformation, we can write δ�H,3 as the sum of two terms.
The first of these, δ�H,3n, involves no mixing of upper and
lower components in the Dirac wave function and reads

δ�H,3n = αN
2πm2

e

×
〈
nj�

1

2

∣∣∣∣Zα

r3
�σ · ��

(
1

En − HS

)′
HHFS

∣∣∣∣nj�
1

2

〉
.

(42)

We find the following general result for states with � � 2:

δ�H,3n = α

π
(Zα)2

(
1

2�κ

60�4 + 120�3 + 55�2 − 5� − 3

(2� + 1)2 (4�3 + 8�2 + � − 3)

+ 3

2n

1

κ(2� + 1)
− 3

8n2

�(� + 1)

κ
(
� + 3

2

)(
� − 1

2

)
)

. (43)

Lower components of the Dirac wave function give rise to the
mixing term

δ�H,3m = −i
αN

2πme

〈
nj�

1

2

∣∣∣∣Zα

r3
( �γ · �x)

1

2me

Hhfs

∣∣∣∣ nj�
1

2

〉

= αN
π

−κ

8j (j + 1)

〈
nj�

1

2

∣∣∣∣ Zα

m3
er

4

∣∣∣∣ nj�
1

2

〉
. (44)

We find the general result

δ�H,3m = α

π
(Zα)2 |κ|

4j (j + 1)

(2κ + 1)
(
κ2 − 1

4

)
(2� − 1)(2� + 3)

(
� + 1

2

)
×

[
1

n2
− 3

�(� + 1)

]
. (45)

The F2 correction to the magnetic photon exchange of electron
and nucleus gives rise to the effective interaction

−F2( �∇2)
e

2me

β �� · �Bhfs = F2( �∇2)

[
eme

4π
β �µ · (�hs + �hd )

]
.

(46)

Here, �hs and �hd are the generalizations of �hS and �hD to 4 × 4
matrices,

�hs = 4π

3m2
e

�� δ(�x), (47a)

�hd = 3 ( �� · �̂x) �̂x − ��
2 m2

e r3
. (47b)

Taking F2( �∇2) ≈ F2(0) in Eq. (46), we obtain the correction

δ�H,4 = NF2(0)〈ψ |β(hs,0 + hd,0)|ψ〉
= αN

2π
〈ψ |β(hs,0 + hd,0)|ψ〉. (48)

Generalizing results from Ref. [17] for the term of relative
order α, we find the result

δ�H,4 = α

π

{
1

4κ
+ (Zα)2

[
24κ3 + 18κ2 − κ − 1

8κ3(4κ3 + 4κ2 − κ − 1)

+ 3

8n

1

|κ|κ + 1

n2

1

2κ

1 − 3κ

2κ − 1

]}
. (49)

Taking the slope of F2 in Eq. (46), we obtain

F ′
2(0)

e

2me

β �∇2 �� · �Bhfs

= α

12π

{
eme

4π
β �µ · [ �∇2(�hs + �hd )]

}
, (50)

with F ′
2(0) = α/12π . As F ′

2(0) �∇2 already is of relative
order α(Zα)2, this operator only has to be applied to the
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nonrelativistic wave function where it vanishes for states with
� � 2, and thus

δ�H,5 = αN
12π

〈
nj�

1

2

∣∣∣∣ �∇2(hS,0 + hD,0)

∣∣∣∣nj�
1

2

〉
= 0. (51)

Finally, since

δ�H,1 = δ�H,2 = δ�H,5 = 0, (52)

we have, for the high-energy part, the result

δ�H = δ�H,3n + δ�H,3m + δ�H,4. (53)

It is quite surprising that the result obtained by adding the
above expressions,

δ�H = α

π

{
1

4κ
+ (Zα)2

[
1

8κ3

24κ3 + 18κ2 − κ − 1

4κ3 + 4κ2 − κ − 1

+ 1

2�κ

60�4 + 120�3 + 55�2 − 5�− 3

(2�+ 1)2 (4�3 + 8�2 + �− 3)

− 3

�(�+ 1)

j + 1
2

4j (j + 1)

(2κ + 1)
(
κ2 − 1

4

)
(2�− 1)(2�+ 3)

(
�+ 1

2

)
+ 1

n

3

8κ

4
(
j + 1

2

) + (2�+ 1)

(2�+ 1)
(
j + 1

2

) + 1

8n2

(
4

1 − 2κ
− 4

κ

+ (2j + 1)(2κ − 1)(2κ + 1)2

2j (j + 1)(2�+ 3)(4�2 − 1)
− 3�(�+ 1)

κ
(
�+ 3

2

)(
�− 1

2

))
]}

,

(54)

can actually be simplified quite considerably as

δ�H = α

π

{
1

4κ
+ (Zα)2

[
1

n

3

8

κ

|κ|
6κ + 1

κ2(2κ + 1)
+ 1

n2

× 4κ − 1

2κ(1 − 2κ)
+ (4κ + 1)(6κ + 1)(6κ2 + 3κ − 1)

8κ3(2κ + 1)2(2κ − 1)(κ + 1)

]}
.

(55)

V. RESULTS AND PREDICTIONS

The total self-energy correction to the hyperfine splitting is
obtained as the sum of the high- and low-energy parts given in
Eqs. (55) and (34), and reads

δ� = α

π

{
1

4κ
+ (Zα)2

[
1

8κ3

(4κ + 1)(6κ + 1)(6κ2 + 3κ − 1)

(2κ + 1)2(2κ − 1)(κ + 1)

+ 1

n

3

8

κ

|κ|
6κ + 1

κ2(2κ + 1)
+ 1

n2

4κ − 1

2κ(1 − 2κ)
+ βHFS

]}
.

(56)

TABLE I. Low-energy contribution βHFS of the self-energy
correction for the hyperfine splitting for D states (� = 2). The
numbers in parentheses are standard uncertainties in the last figure.

n βHFS(nD3/2) βHFS(nD5/2)

3 −2.068 39(5) × 10−2 −3.455 22(5) × 10−2

4 −1.302 99(5) × 10−2 −3.793 94(5) × 10−2

5 −1.025 92(5) × 10−2 −3.965 95(5) × 10−2

6 −0.943 28(5) × 10−2 −4.084 82(5) × 10−2

TABLE II. Low-energy contribution βHFS of the self-energy
correction for the hyperfine splitting for F states (� = 3). The
numbers in parentheses are standard uncertainties in the last figure.

n βHFS(nF5/2) βHFS(nF7/2)

4 −1.021 46(5) × 10−2 −0.953 04(5) × 10−2

5 −0.683 94(5) × 10−2 −1.077 62(5) × 10−2

6 −0.504 64(5) × 10−2 −1.141 28(5) × 10−2

7 −0.407 32(5) × 10−2 −1.182 43(5) × 10−2

The Bethe-logarithm-type correction βHFS is given in Eq. (32).
Restoring the reduced-mass dependence [we define r(N ) ≡

me/mN ] and adding the relativistic correction of relative order
(Zα)2, we find that

νhfs = R∞c
Z3α2

n3

r(N )

[1 + r(N )]3

κ

|κ|
gN

(2κ + 1)
(
κ2 − 1

4

)
× [f (f + 1) − I (I + 1) − j (j + 1)]

{
1 + (Zα)2

×
[

12κ2 − 1

2κ2(2κ − 1)(2κ + 1)
+ 3

2n

1

|κ| + 3 − 8κ

2n2(2κ − 1)

]

+ α

π

1

4κ
+ α

π
(Zα)2

[
3

8n

κ

|κ|
6κ + 1

κ2(2κ + 1)
+ 1

n2

4κ − 1

2κ(1 − 2κ)

+ 1

8κ3

(4κ + 1)(6κ + 1)(6κ2 + 3κ − 1)

(2κ + 1)2(2κ − 1)(κ + 1)
+ βHFS

]}
.

(57)

Numerical data for βHFS for D, F , and G states, and selected
Rydberg states, can be found in Tables I, II, III, and IV,
respectively. Those in Table IV are relevant for a possible
determination of fundamental constants from Rydberg-state
spectroscopy in hydrogenlike ions of medium nuclear-charge
number (see Ref. [18]).

The following is a numerical example: For the transition
|1〉 ↔ |2〉 in atomic hydrogen (Z = 1), where

|1〉 = |n = 15,� = 14,j = 29/2,f = 15〉, (58)

|2〉 = |n = 16,� = 15,j = 31/2,f = 16〉, (59)

we find the following frequency shift from the Dirac value
indicated in Eq. (2) of Ref. [17],

�νhfs,1→2 = 96.759 863 0(8) Hz + 78.764 693(13) Hz,

(60)

where the first term is due to the hyperfine effects calculated
here, and the second term is due to relativistic recoil and QED

TABLE III. Low-energy contribution βHFS of the self-energy
correction for the hyperfine splitting for G states (� = 4). The
numbers in parentheses are standard uncertainties in the last figure.

n βHFS(nG7/2) βHFS(nG9/2)

5 −0.368 23(5) × 10−2 −0.341 76(5) × 10−2

6 −0.147 39(5) × 10−2 −0.388 58(5) × 10−2

7 −0.012 93(5) × 10−2 −0.414 24(5) × 10−2

8 0.072 16(5) × 10−2 −0.430 98(5) × 10−2
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TABLE IV. Low-energy contribution βHFS of the self-energy correction for the hyperfine splitting for
highly excited states. The numbers in parentheses are standard uncertainties in the last figure. The exponent
of the numerical data is chosen to be the same as in Tables I–III, illustrating the monotonic decrease of the
coefficients with the angular-momentum quantum numbers.

n � 2j κ βHFS 2j κ βHFS

16 15 29 15 0.006 310(5) × 10−2 31 −16 −0.002 130(5) × 10−2

16 14 27 14 0.016 397(5) × 10−2 29 −15 −0.003 041(5) × 10−2

15 14 27 14 0.006 888(5) × 10−2 29 −15 −0.002 795(5) × 10−2

15 13 25 13 0.019 372(5) × 10−2 27 −14 −0.004 086(5) × 10−2

14 13 25 13 0.007 420(5) × 10−2 27 −14 −0.003 741(5) × 10−2

14 12 23 12 0.023 029(5) × 10−2 25 −13 −0.005 617(5) × 10−2

13 12 23 12 0.007 794(5) × 10−2 25 −13 −0.005 122(5) × 10−2

effects calculated in Ref. [18]. The final theoretical prediction
for the shift from the Dirac value

�νhfs,1→2 = 175.524 556(13) Hz, (61)

where the fundamental constants of the Committee on Data
for Science and Technology (CODATA) 2006 [19] have
been used in the numerical evaluation. The next higher-order
term neglected here is the recoil correction of relative order
(Zα)2 r(N ), for which a general expression has been derived
in Ref. [20] (the corresponding expression also is given in
Eq. (42) of Ref. [4]). The recoil correction is numerically
suppressed for Z = 1.

VI. CONCLUSIONS

Rydberg states of hydrogenlike ions with medium nuclear-
charge number have been proposed as a device for the determi-
nation of fundamental constants [18]. Here, we demonstrate
that it is possible to obtain accurate theoretical predictions
for transition frequencies, even in cases where the nucleus
carries spin. To this end, we calculate the self-energy cor-
rection to the hyperfine splitting of the high-lying states.
Vacuum polarization effects can be neglected for states
with � � 2 to the order relevant for the current investi-
gation.

We split the calculation into a low-energy part, which
contains Bethe-logarithm-type corrections (Sec. III), and a

high-energy part, which can be treated on the basis of
electron form factors (Sec. IV). For the low-energy part,
we find that the net result can be expressed as the sum
of corrections due to the hyperfine Hamiltonian, the energy
correction, the wave-function correction, and the hyperfine
modification of the electron’s transition current. For the high-
energy part, we find a sum of two terms, one of which is
due to a second-order effect involving the Pauli form-factor
correction to the Coulomb field, and the second of which is
an anomalous-magnetic-moment correction to the hyperfine
splitting, evaluated on relativistic wave functions. The first
correction can be split into two terms, which involve and do
not involve mixing of the upper and lower components of
the Dirac wave function, respectively. Quite surprisingly, the
high-energy contribution can be expressed in closed analytic
form, valid for an arbitrary excited state [see Eq. (55)]. For the
Bethe-logarithm-type corrections relevant to the low-energy
part, a numerical approach is indispensable.

Finally, as indicated in Tables I–III, we also find results
for D, F , and G states, which are of general interest to high-
precision spectroscopy.
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[9] P. Pyykkö, E. Pajanne, and M. Inokuti, Int. J. Quantum Chem.

7, 785 (1973).

[10] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).
[11] J. D. Bjorken and S. D. Drell, Relativistische Quantenmechanik

(Bibliographisches Institut, Mannheim/Wien/Zürich, 1966).
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