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Quantum process reconstruction based on mutually unbiased basis
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We study a quantum process reconstruction based on the use of mutually unbiased projectors (MUB projectors)
as input states for a D-dimensional quantum system, with D being a power of a prime number. This approach
connects the results of quantum-state tomography using mutually unbiased bases with the coefficients of a
quantum process, expanded in terms of MUB projectors. We also study the performance of the reconstruction
scheme against random errors when measuring probabilities at the MUB projectors.
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I. INTRODUCTION

In physical implementations of quantum-information pro-
cessing, the ability to reconstruct the quantum process associ-
ated with a particular experiment is one of the most important
tasks, which is mainly related to the determination of the
average fidelity of a quantum process in the Hilbert space of
states. The full characterization of the imperfection operations
on a sequence of unitary transformations in quantum devices
and the effects of decoherence on the desired quantum
evolution allow one to determine the fidelity of the quantum
process. One of the more commonly used procedures is
the so-called standard quantum process tomography (SQPT)
[1–3], where the dynamics of a quantum black box, described
by a completely positive map E(ρ) [4,5], is reconstructed.
In this method, for a D-dimensional quantum system, one is
required to prepare an ensemble of D2 linearly independent
input states {ρk = |ψk〉〈ψk|}D2−1

k=0 , subjecting each of them to
the quantum process to be characterized, followed by standard
quantum-state tomography on the output states, E(ρk). The
linearity of E relates the dynamical map to the experimental
outputs via a linear system of equations which, after an
inversion of a linear system of equations, allows one to
reconstruct the quantum-dynamical map.

Several experiments have been implemented by considering
the above-described reconstruction scheme, among them
liquid-state NMR [6], light qubits [7,8], atoms in optical
lattices [9], cavity QED [10], trapped ions [11], and solid-state
qubits [12]. In all these experiments, the use of SQPT allows
the following: determination of the Kraus operators associated
with the system’s dynamics [12]; estimation of the presence
of decoherence mechanisms [13]; and computing of the
experimental fidelity of a quantum gate [6,8,11], and, in this
way, we can have an estimation of how close the real dynamics
are to the theoretical prediction. In SQPT only single-body
interactions are required for the reconstruction procedure.

Recently, an alternative scheme for quantum process
tomography (QPT) which uses an ancillary system has been
implemented, which is the so-called assisted process tomogra-
phy (AAPT) [14–16]. In this scheme, an isomorphism between
a quantum process and a quantum state in an extended Hilbert
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system is established [17]. An input state, defined on the joint
Hilbert space, passes through the map E and a projective
measurement on the the output state is performed, thus recon-
structing the quantum-dynamical map. These measurements
can be implemented by using factorized measurement or joint
measurements using mutually unbiased bases (MUBs). If a
quantum map acts on a set of qubits, one ancilla is added to each
qubit and joint measurements are performed on one system’s
qubit and on its ancilla. For this reason, for an N -qubit system
N -ancillas are needed, and 5N measurements must be carried
out for the reconstruction of the process [17]. Another scheme
that makes use of MUBs is the selective and efficient estimation
of the parameters that characterize a quantum process, using
MUBs for averaging the fidelities of appropriately modified
channels [18,19]. This scheme also needs an ancillary system
for the determination of the off-diagonal terms of the process
in its matrix representation.

In this article, we provide a scheme for QPT, which is based
on mutually unbiased basis quantum-state tomography (MUB
tomography) over the output states [20]. This procedure is
valid for a Hilbert space with prime-power dimension, i.e.,
D = pr , with p and r being a prime number and an integer,
respectively [21]. For instance, it can be applied to a map
acting on a single high-dimensional system or on a multiqubit
system. In this scheme, two-body interactions are needed and
do not require ancillary systems.

This paper has been organized as follows: In Sec. II we
present the reconstruction of the QPT using MUBs, or simply
MUB QPT, showing the expansion of the quantum-dynamical
map E in terms of MUB projectors. Furthermore, we derive
a relation between the expansion of the quantum map and
the measurement of MUB tomography, via a linear system of
equations. In Sec. III, we present numerical simulations on the
performance of the protocol against the presence of random
errors in MUB tomography. In the numerical simulation, we
have considered quantum-dynamical maps describing a local
decoherence channel and a nonlocal quantum map. The article
ends with a summary in Sec. IV.

II. QPT BASED ON MUB TOMOGRAPHY

For this purpose, let us consider the set of mutually unbiased
projectors (MUB projectors) for a D-dimensional system,
whose dimension is a prime or a prime power number (D = pr ,
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with p being a prime number and r a positive integer), where
a set of mutually unbiased bases |ψ (γ )

m 〉 exist [21–26]. For
a D-dimensional system it has been found that the maximum
number of MUBs cannot be greater than D + 1 and this limit is
reached if D is prime [22] or a power of prime [21]. Recently,
it has been suggested that the existence of MUBs for other
dimensions may well be related to the nonexistence of finite
projective planes of certain orders [27] or with the problem of
mutually orthogonal Latin squares in combinatorics [28].

The MUB-projectors are given by

P (γ )
m = ∣∣ψ (γ )

m

〉〈
ψ (γ )

m

∣∣, m = 1, . . . ,D, γ = 0, . . . ,D, (1)

where γ labels one of the D + 1 families of MUBs and m

denotes one of the D orthogonal states in this family. These
projectors satisfy the following relation:

Tr
(
P (γ )

m P (β)
n

) = δβγ δmn + 1

D
(1 − δβγ ). (2)

Besides, these operators define a complete set of projection
measurements, i.e.,

∑D
m=1 P

(γ )
m = 1̂ (1̂ denotes the identity).

The measured set of probabilities pγm = Tr(P (γ )
m ρ) com-

pletely determines the density operator of the system, so that

ρ =
D∑

m=1

D∑
γ=0

pγmP (γ )
m − 1̂. (3)

In a previous work [20], we have shown an optimal protocol
to obtain the probabilities pγm, for the case of having a
multiqubit system. The reconstruction scheme is based on
minimizing the number of conditional logic gates (two-particle
quantum operations) used in quantum-state tomography, due
to the fact that all the MUBs contain nonfactorizable bases. In
this work, our main goal is to perform the quantum process
reconstruction in a fully symmetrical form using MUB for
input states, for output state reconstruction, and to expand the
quantum-dynamical map. The main motivation for doing this
is the recent advancement in experimental implementation of
MUB quantum-state tomography. Quantum-state tomography
of two-qubit polarization using MUBs has been experimentally
demonstrated by the authors of Ref. [29]. They demonstrate
an improved state estimation when comparing with standard
reconstruction. In addition, an experimental implementation of
quantum tomography of seven- and eight-dimensional quan-
tum systems has been reported [30], where higher-dimensional
quantum systems were encoded using the propagation modes
of single photons, and MUB projections were implemented
using programmable spatial light modulators.

To approach this problem, we begin by considering the gen-
eral evolution of a D-dimensional quantum system described
by a completely positive linear map, E (ρ), expressed in the
so-called operator-sum representation,

E(ρ) =
∑

i

AiρA
†
i , (4)

where Ai are the Kraus operators of the system and satisfy∑
i A

†
i Ai � 1̂ [1].

To expand the Kraus operators of the system, we consider
the overcomplete basis of (D2 + D) MUB projectors, P (α)

m , to
expand the operators Ai ,

Ai =
D∑

α=0

D∑
m=1

a
(α)
im P (α)

m . (5)

Hence, the completely positive linear map E (ρ) can be
expressed in the following manner:

E(ρ) =
D∑

α,β=0

D∑
m,n=1

χ (α,β)
mn P (α)

m ρP (β)
n , (6)

where χ
(α,β)
mn ≡ ∑

i a
(α)
im a

(β)∗
in is the process matrix. If we

determine the (D2 + D)2 quantities χ
(α,β)
mn , we can reconstruct

the quantum process in terms of the set of MUB projectors
P (α)

m , unless the determination of the unital condition [31],∑
i AiA

†
i � 1̂, and the features of MUB tomography [20],

mainly related with the expansion of the density operator in
terms of MUB projectors, as is shown in Eq. (3), imply that
we need to use the overcomplete basis of inputs to expand the
Kraus operators and the density operator of the output states.
In this way we can present this scheme as an extension of
the results obtained previously for quantum-state tomography
using MUB. On the other hand, due to the complete set
condition for each family of MUB (labeled by α), the action
of the quantum map over any input state P (γ )

l , according to
Eq. (4) and the linearity of the superoperator, is

E
(
P (γ )

l

) =
∑

i

AiA
†
i −

∑
m�=l

E
(
P (γ )

m

)
. (7)

Then, the action of the map on the remaining element P (γ )
l

(m �= l) could be calculated by using the results of the super-
operator E acting over the D − 1 elements,

∑
m�=l E(P (γ )

m ). But
the quantum-dynamical map is unknown, and we can’t predict
the value of

∑
i AiA

†
i . In other words, we don’t know if the

map is unital or not [31]. For this reason, we need to determine
the output state E(P (γ )

l ) by quantum-state tomography. To
summarize, for the reconstruction of the quantum process we
need to prepare (D2 + D) input states P (γ )

l that correspond to
the set of MUB projectors. These states are sent through the
quantum black-box and, after that, we carry out quantum-state
tomography on the output states E(P (γ )

l ), based on mutually
unbiased measurements [20]. We emphasize that the set of
(D2 + D) MUB projectors used to expand the Kraus operators
is the same set used as input states for the quantum process.

We can expand any density operator using the overcomplete
set of MUBs [20]. For this reason, the dynamical map
associated with each input state, E(P (γ )

l ), can be expressed
in the following way according to Eq. (3):

E
(
P (γ )

l

) =
D∑

ε=0

D∑
q=1

pγ,l
εq P (ε)

q − 1̂, (8)

where p
γ,l
εq = Tr[P (ε)

q E(P (γ )
l )] are the probabilities associated

with each P (ε)
q projector after the dynamical map acts on

the input state. These probabilities must be experimentally
determined by using MUB tomography.
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Also, we can write the same dynamical map using Eq. (6),

E
(
P (γ )

l

) =
D∑

α,β=0

D∑
m,n=1

χ (α,β)
mn P (α)

m P (γ )
l P (β)

n . (9)

Combining Eqs. (8) and (9) we obtain

D∑
ε=0

D∑
q=1

pγ,l
εq P (ε)

q − 1̂ =
D∑

α,β=0

D∑
m,n=1

χ (α,β)
mn P (α)

m P (γ )
l P (β)

n . (10)

We make use of property (2); i.e., we apply the P (η)
s projector

on the above expression and take the trace on the whole
expression, obtaining

p(γ,l)
ηs =

D∑
α,β=0

D∑
m,n=1

χ (α,β)
mn Tr

(
P (α)

m P (γ )
l P (β)

n P (η)
s

)
. (11)

We can observe from Eq. (8) that for each input state P (γ )
l

we can obtain a set of D(D + 1) probabilities from the state
tomography. Then, with the experimental results of all the
input states, we get a set of (D2 + D)2 probabilities. Using
this set, p

(γ,l)
ηs , we write a linear system of equations (11) with

all the terms of the χ
(α,β)
mn process matrix and the coefficients

associated with the corresponding probability of the set, given
by Tr(P (α)

m P (γ )
l P (β)

n P (η)
s ). Clearly, as is shown in Eq. (7), not all

the equations that arise from Eq. (11) are linearly independent.
This is not a problem, because the inversion of the linear
system is guaranteed in terms of the generalized inverse,
as we show in Sec. III, even when only D4 equations are
linearly independent. Also, there is the possibility of using
only D2 MUB projectors and the problem of QPT is solved,
but in that case the extension of our previous result, shown in
Ref. [20] related to the reconstruction of quantum process, is
not clear and that is the reason to make a protocol based on an
overcomplete basis set.

Now, for simplicity we assume that the probabilities p
(γ,l)
ηs

and the χ
(α,β)
mn coefficients can be expressed as vectors ( �p and �χ ,

respectively) and that the values given by Tr(P (α)
m P (γ )

l P (β)
n P (η)

s )
can be arranged in a (D2 + D)2-dimensional complex square
matrix β̂.

Let us consider the inversion of Eq. (11). If we define
Tr(P (α)

m P (γ )
l P (β)

n P (η)
s ) ≡ β

mn,ls
αβ,γ η, it follows that, for each p

(γ,l)
ηs ,

p(γ,l)
ηs =

∑
α,β,m,n

χ (α,β)
mn β

mn,ls
αβ,γ η, (12)

namely, �p = β̂ �χ .To make a proper inversion of Eq. (12), let
us consider κ̂ , the generalized inverse of matrix β̂ [32], which
fulfills

β
mn,ls
αβ,γ η =

∑

r,t,x,y

µ ν,ω ,θ

β
rt,xy

αβ,γ ηκ
µν,ωθ
rt,xy β

mn,ls
µν,ωθ . (13)

Hence, χ
(α,β)
mn is defined as

χ (α,β)
mn ≡

∑
γ,η,l,s

κ
αβ,γ η

mn,ls p(γ,l)
ηs . (14)

In this manner, the problem of QPT can be solved by finding
the generalized inverse κ̂ of the complex matrix β̂ and finally
solving �χ = κ̂ �p.

In general, the determination of probabilities in tomo-
graphic reconstruction of output states is subject to exper-
imental errors (p(γ,l)

ηs → p̃
(γ,l)
ηs = p

(γ,l)
ηs + ε

(γ,l)
ηs , where ε

(γ,l)
ηs

denotes the error for each output state), which can give rise
to unphysical process matrix χ

(α,β)
mn when inverting the linear

system, Eq. (12). This problem can be overcome in a similar
way as in the quantum-state tomography [7] by minimizing a
deviation function f (�t), where �t is a general parametrization
of the physical matrix process coefficients χ̃

(α,β)
mn (�t) [8,12]. In

our case, this function can be written as

f (�t) =
∣∣∣∣

D∑
α,β=0

D∑
m,n

χ̃ (α,β)
mn (�t) − χ (α,β)

mn

∣∣∣∣
2

+
∑
γ,l

λ
(γ )
l

∣∣∣∣
D∑

α,β=0

D∑
m,n

χ̃ (α,β)
mn (�t)Tr

(
P (β)

n P (α)
m P (γ )

l

) − 1

∣∣∣∣
2

.

(15)

The second term on the right-hand side is obtained by summing
on index s in Eq. (12), and λ

(γ )
l are the Lagrange multipliers

corresponding to each input state. The parametrization �t is
chosen in such a way so as to preserve both the hermiticity and
the positivity of the map.

The advantage of MUB tomography is related to the ability
to both maximize information extraction per measurement and
minimize redundancy. Hence, the estimation of the output state
has several advantages with the use of MUB tomography. For
instance, there is no need to invert a linear system of equations,
as in standard quantum-state tomography [29,30]. Our main
purpose is to extend this advantage to quantum process
reconstruction by having a fully symmetrical form using
MUBs, namely, using MUBs for input states, for output state
reconstruction, and for expanding the quantum-dynamical
map.

In the next section, we give an explicit example of this
protocol for local and nonlocal processes in D = 4 and show
how the performance of the protocol is affected when random
errors are introduced into the obtained probabilities from
quantum-state tomography, for local and nonlocal channels.

III. EXAMPLE IN D = 4

Here we apply the above-described scheme for the process
reconstruction in the case of a four-dimensional Hilbert space,
D = 4, which could be associated with a two-qubit system.
There are several approaches for the construction of mutually
unbiased bases for this bipartite quantum system [21–26],
which satisfies the prime-power condition for its construction,
22 = 4. In this case, we use the two-qubit operator set of
Table I, such that the common eigenstates constitute a MUB.
Then, we can obtain 20 MUB projectors from Table I (four
from each row).

The set of projectors P (γ )
l (γ = 0, . . . ,4 and l = 1, . . . ,4)

will be the input states for testing the accuracy of this procedure
for three fixed quantum processes; amplitude damping and
depolarizing channel, as local decoherence mechanisms [1],
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A. FERNÁNDEZ-PÉREZ, A. B. KLIMOV, AND C. SAAVEDRA PHYSICAL REVIEW A 83, 052332 (2011)

TABLE I. Five sets of three operators defining the MUB set for
D = 4.

α Operators

0 σ̂z1̂ 1̂σ̂z σ̂zσ̂z

1 σ̂x 1̂ 1̂σ̂x σ̂x σ̂x

2 σ̂y 1̂ 1̂σ̂y σ̂y σ̂y

3 σ̂x σ̂y σ̂zσ̂x σ̂y σ̂z

4 σ̂y σ̂x σ̂zσ̂y σ̂x σ̂z

and a controlled-NOT gate, UCNOT. Our purpose is to show the
effects on the process matrix χ associated with each map,
which arise from the presence of noise in the estimation of the
probabilities p

(γ,l)
ηs , in each quantum process considered.

The Kraus operators that represent local decoherence oper-
ations we denoted as Âij . They act individually at each qubit
[labeled by ], so Âij = Âi ⊗ Âj , and satisfy

∑
ij Âij Â

†
ij = 1̂.

These local processes, for a single-qubit operation, have the
following representation:

Depolarizing channel Amplitude damping

A1 =
√

1 − 3p

4 1̂ A1 = 1
2 (1 + √

1 − γ )(1̂ + σ̂z)

A2 =
√

p

4 σ̂x A2 =
√

γ

2 (σ̂x + iσ̂y)

A3 =
√

p

4 σ̂y

A4 =
√

p

4 σ̂z

The input states evolve in these local channels as E(P (γ )
l ) =∑

ij AijP (γ )
l (Aij )†. We have chosen these channels because

none of the input states P (α)
m are an eigenstate of the Aij

operators and, for this reason, all the states will be affected
by these decoherence mechanisms. This assumption will be
not accomplished if, for example, we choose the bit-phase flip
channel [1]. In this case, the operators Aij associated with the
channel are those in the third row of Table I. This implies
that the input states P (2)

m will not be affected by this local
decoherence mechanism, because they are eigenstates of all
the operators that belong to the set α = 2 and, in this way, the
set of three projectorsP (2)

m will be a decoherence-free subspace
(DFS) for the bit-phase flip channel. We avoid this by choosing
the amplitude damping and the depolarizing channel, because
none of the 20 MUB projectors obtained from the Table I
constitute a DFS.

On the other hand, the considered nonlocal operation is the
controlled-NOT gate, which can be written as a coherent sum:

UCNOT = 1
2

(
1̂ ⊗ 1̂ + 1̂ ⊗ σ̂x + σ̂z ⊗ 1̂ − σ̂z ⊗ σ̂x

)
. (16)

This process evolves the input states according to E(P (γ )
l ) =

(UCNOT)P (γ )
l (UCNOT)†. We apply this set of operations to the

whole set of input states P (γ )
l , as is shown in Eq. (4). Then,

with the output states obtained, E(P (γ )
l ), we calculate the

corresponding probabilities associated with this dynamical
map, p

(γ,l)
ηs = Tr[E(P (γ )

l )P (η)
s ].

To have an estimation of the quality of this procedure, we
have considered an error model for the probabilities p

(γ,l)
ηs ,

because in the experiments we always have to deal with small
errors associated with these values. Then, our noisy probability
p̃

(γ,l)
ηs is obtained by adding to the calculated probability a

random value ζ (uniformly distributed between 0 and 1) times
a constant error parameter µ:

p̃(γ,l)
ηs = p(γ,l)

ηs + µζ (γ,l)
ηs , (17)

where ε
(γ,l)
ηs = µζ

(γ,l)
ηs . This allows us to simulate a noisy

measurement of the output states E(P (γ )
l ), for the three

different quantum operations considered. For each output
state E(P (γ )

l ), we normalize the new probabilities obtained
according to Eq. (17) for each measurement basis of the MUB
tomography (labeled by η), that is,

∑
s p̃

(γ,l)
ηs = 1. With these

values, we can calculate a noisy process matrix associated with
the quantum channels considered, χ̃

(α,β)
mn , which is obtained

in an experiment with nonideal measurements of the output
states. We obtain this new process matrix by using Eq. (14)
with the noisy probabilities on the right side,

χ̃ (α,β)
mn =

∑
γ,η,l,s

κ
αβ,γ η

mn,ls p̃(γ,l)
ηs . (18)

For this purpose, we perform a numerical simulation with 100
steps for every value of µ, each one representing the error
model for the probabilities defined by Eq. (17); i.e., it adds a
set of random values into the probabilities of detection. The
dimensionless error parameter µ takes values between 0.01
and 0.15, with increments of 0.01. We then obtain then a set
of 100 noisy process matrices χ̃

(α,β)
mn for each value of µ.

The process fidelity F [8,33] is a good way to estimate the
quality of the determination of the dynamics with this basic
error model, comparing the ideal process matrix χ

(α,β)
mn with

each one of the noisy matrices χ̃
(α,β)
mn obtained in the simulation.

This quantity is defined as

F = Tr
(
χ

(α,β)
mn χ̃

(α,β)
mn

)

Tr
[(

χ
(α,β)
mn

)2] (19)

and takes values between 0 and 1. Figure 1 shows how the mean
fidelity on the determination of the process matrix decreases
when the error in the probabilities grows, as we expected.
The mean fidelity is calculated using all the noisy matrices
χ̃

(α,β)
mn obtained in the simulation. Because of the introduction

of the random errors, the precision in the estimation of the
gate decays, but in the case of nonlocal gates, this behavior is
more notorious. To explain this issue, we take one entangled
input state and then apply the noisy nonlocal operation.
Then, we calculate how the concurrence of the state changes
when we introduce the random error. We observe that the
concurrence decays in the same way as the process fidelity
for that operation. Hence, the quantum correlations that the
nonlocal operation induces are destroyed by the introduction
of the random error, making the process fidelity F decay more
strongly than the local ones.

The measurements in any set of MUBs contain nonfactoriz-
able bases; we require application of nonlocal gate operations.
These operations currently cannot be performed with unit
fidelity. In our previous work [20], we defined the physical
complexity, for each set of bases, as the number of CNOT gates
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FIG. 1. (Color online) Process fidelity F , for local and nonlocal
quantum operations, when the process matrix χ is determined via
noisy measurements in MUB tomography, with error parameter µ.
Here, the fidelity in the determination of the process matrix associated
with the nonlocal operation UCNOT is plotted with a blue dashed-
dotted line. For the local channels, amplitude damping with γ = 0.4
is plotted with a red dotted line and the depolarizing channel with
p = 0.1 corresponds to the black dashed line.

needed for implementing projective measurements. Hence, for
quantifying the amount of resources for implementing the QPT
scheme, we use the physical complexity of the chosen set of
MUBs.

In the case of MUB tomography, for a D-dimensional
quantum system, the physical complexity for each set of MUBs
is denoted as Cα (α = 0, . . . ,D). Then, for implementing
projection measurements in (D + 1) bases, we need C =∑D

α=0 Cα CNOT gates. Therefore, for each input state P (γ )
l

we need to perform C nonlocal operations to carry out MUB
tomography over the output state E(P (γ )

l ). But, to prepare each
input state (MUB projectors) we also require a number of
CNOT gates, given by the complexity of each MUB Cα . As D

input states are prepared from each MUB, therefore the total
number of CNOT gates required will be (DCα). Summing over
the (D + 1) MUBs, then we need (DC) nonlocal operations to
prepare all the input states. Finally, we require a total number
of (DC2) CNOT gates for the whole QPT protocol.

Here, we assumed that the local operations are performed
with unit fidelity. For a given dimension D of the Hilbert

space, only certain factorization structures are admitted [23],
each one of them having a different complexity. Then, we
need to minimize C for the Hilbert space considered, in order
to carry out a lesser number of CNOT gates. This is discussed
in more detail in Ref. [20].

IV. SUMMARY

The choice of the set of MUB projectors both as input
states and as an operational basis and the calculation of p

(γ,l)
ηs

by the experimental data of MUB tomography permit us to
reconstruct an unknown quantum process, determining the
process matrix χ

(α,β)
mn and improving the way that standard

QPT relates to the experimental outcomes with the parameters
of the process matrix. We also can recover the Kraus operators
for the system Ai , by the diagonalization of the process
matrix. The simulations suggest good process fidelity, even
when the values of the random errors µζ

(γ,l)
ηs are similar to

the theoretically calculated probabilities p
(γ,l)
ηs , according to

Eq. (17), making this protocol robust against the presence
of noise when determining probabilities. This protocol is
valid in any Hilbert space with prime-power dimension and
where two-body interactions are available, due to the fact
that MUB tomography for all input states requires (DC2)
CNOT gates for its physical implementation, where C is the
physical complexity of the chosen MUBs, which depends
on the factorization structure of the D-dimensional Hilbert
space. The case of not completely positive maps [34], the
performance of this protocol compared with other procedures
of QPT discussed in Sec. I, in terms of the inaccuracy of
estimated probabilities in the experiments, and the dimension
of the considered Hilbert space, and how these features involve
the estimation of the quantum process are now left as open
questions. A similar experimental setup used in Ref. [30]
can be used for a proof of principle implementation of this
reconstruction scheme, where an extra spatial light modulator
along the propagation path of single photons can be used for
implementing different processes in a controlled way.

ACKNOWLEDGMENTS

We thank J. P. Paz for helpful discussions. This work was
supported by Grants Milenio ICM P06-67F and FONDECYT
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