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Discrimination of the change point in a quantum setting
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In the change point problem, we determine when the observed distribution has changed to another one. We
expand this problem to a quantum case where copies of an unknown pure state are being distributed. That is, we
estimate when the distributed quantum pure state is changed. As the most fundamental case, we treat the problem
of deciding the true change point tc between the two given candidates t1 and t2. Our problem is mathematically
equal to identifying a given state with one of the two unknown states when multiple copies of the states are
provided. The minimum of the averaged error probability is given and the optimal positive operator-valued
measure (POVM) is given to obtain it when the initial and final quantum pure states are subject to the invariant
prior. We also compute the error probability for deciding the change point under the above POVM when the initial
and final quantum pure states are fixed. These analytical results allow us to calculate the value in the asymptotic
case.
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I. INTRODUCTION

The change point problem, which is studied in many fields
(e.g., statistics [1]), originally arose out of considerations
of quality control. When a process is “in control,” products
are produced according to some rule. At an unknown point,
the process jumps “out of control” and ensuing products are
produced according to another rule. It is necessary to determine
the change point.

In the classical case, we observe sequentially a discrete
series of independent observations X0,X1, . . . whose distri-
bution possibly changes at an unknown point in time. It is
assumed that independent random variables X0,X1, . . . ,Xν−1

are each distributed according to some distribution and the
remaining independent random variables Xν,Xν+1, . . . are
each distributed according to another distribution. Our purpose
is to detect the change point ν [1].

We extend this problem to a quantum setting where copies
of an unknown pure state are being distributed in discrete
time. We now consider the device distributing copies of an
unknown pure state. This device has an unknown change point
and distributes copies of another unknown pure state after the
change point. In this setting, the device distributes unknown
pure states ρ̂t on the d-dimensional space for the discrete time
t = 0,1,2, . . . ,t3. The state ρ̂t is changed at the change point
tc. That is, the states ρ̂0, . . . ,ρ̂tc−1 are identical, and the other
states ρ̂tc , . . . ,ρ̂t3 are also identical.

In this paper, we deal with the most fundamental case; that
is, we have only two candidates, t1 and t2, for the change point
tc. Our goal is to determine whether the true change point tc is
t1 or t2. In order to analyze this problem, we introduce systems
1, 0, and 2 to denote the composite systems corresponding
to the time periods 0 � t < t1, t1 � t < t2, and t2 � t � t3,
respectively, as explained in Fig. 1. Our task is then to choose
the correct change point tc between the two candidates t1 and
t2 by using all three systems. This problem is equal to deciding
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whether the state in system 0 coincides with the state in system
1 or the state in system 2.

When we denote the unknown initial pure state ρ̂0 and the
unknown final pure state ρ̂t3 by ρ1 and ρ2, we have t1 copies of
ρ1 in system 1 and t3 − t2 + 1 copies of ρ2 in system 2. Then,
our problem is to decide whether the state in system 0 is ρ1 or
ρ2. Thus, when we choose the parameters M , N1, and N2 by

M := t2 − t1, N1 := t1, N2 := t3 − t2 + 1, (1)

this problem is mathematically equivalent to quantum dis-
crimination for programmable devices for pure qudit states
with N1 × M × N2. In this problem, it is important to derive
the optimal positive operator-valued measure (POVM) and
the minimum of the averaged error probability with the group
invariant prior. Hayashi et al. derived them when N1 = N2 and
M = 1, i.e., t1 = t3 − t2 + 1 and t2 − t1 = 1. However, Sentis
et al. [2] derived the correct optimal POVM and the correct
minimum of the averaged error probability in the symmetric
case (i.e., the case of N1 = N2), i.e., t1 = t3 − t2 + 1. As
described in the Erratum by Sentis et al. [2],1 they have an
error for the derivation in the asymmetric case (i.e., the case
of N1 �= N2), i.e., t1 �= t3 − t2 + 1. It is natural to restrict our
analysis to the symmetric case from the viewpoint of quan-
tum discrimination for programmable devices; however, this
restriction is not natural from the viewpoint of discrimination
of the change point. So, it is important to treat the asymmetric
case from the latter viewpoint. The first and our main result is
to derive the optimal POVM and the minimum of the averaged
error probability in the general setting with the qudit system
including the asymmetric case.

In order to consider the performance of our optimal POVM
under an arbitrary prior, we need to compute the nonaveraged
error probability under the application of our optimal POVM,
which depends on the inner product of two states in system
1 and system 2. The second result is to calculate this value,
which has not been calculated in the existing results [2,3].

1The Erratum [2] reflects the indication of the preprint version of
this paper.
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As the numbers of copies in three systems approach infinity,
this error probability clearly exponentially approaches 0 unless
the inner product between the density matrices ρ1 and ρ2

is 1. Hence, the convergence speed can be measured by
the exponentially decreasing rate. When we have perfect
knowledge of the density matrices ρ1 and ρ2, our problem
is to determine whether the state in system 0 is ρ1 or ρ2.
Then, the exponentially decreasing rate coincides with the
quantum Chernoff bound [4]. Since we have only N1 copies of
ρ1 and N2 copies of ρ2 as quantum states in our problem, our
optimal POVM has a smaller exponentially decreasing rate of
the nonaveraged error probability than the quantum Chernoff
bound. In this paper, for simplicity we assume the symmetric
case (i.e., the case of N1 = N2). As the third result, using
the analytical result for the nonaveraged error probability, we
derive the above exponentially decreasing rate when N1 = N2,
increasing in proportion with M . We clarify the relationship
between the quantum Chernoff bound and our exponentially
decreasing rate, which depends on this proportional constant.

The paper is organized as follows. In the next section we
give the optimal strategy for the minimum averaged error
probability. The optimal POVM is described by using the
representation theory for easy calculation in the following
sections. In Sec. III we obtain the minimum error probability
represented as a function of the number of copies in each of the
three systems and the dimension of the state space. Using the
optimal POVM, in Sec. IV we compute the error probability
which depends on the inner product of two states in system 1
and system 2. In Sec. V we consider the asymptotic behaviors
of the minimum averaged error probability in several scenarios.
In Sec. VI, we finally compute the convergence speed of the
error probability. Some brief conclusions follow and we end
with a technical Appendix.

II. THE OPTIMAL POVM

In order to derive the optimal POVM, we treat our problem
by using the parameters N1, M , and N2 given in Eqs. (1) instead
of t1, t2, and t3. In the following, we denote the unknown initial
pure state by ρ1 and the unknown final pure state by ρ2 on the
d-dimensional vector space Cd . That is, we have N1 (N2)
copies of ρ1 (ρ2) in system 1 (2) in Fig. 1. System 0 has M

copies of the unknown state ρ that is guaranteed to be one
of either ρ1 or ρ2. Note that we assume that N1 � N2, which
creates no loss of generality in this problem. Our purpose is
to identify the state ρ with one of the two states by using
all systems. This is equal to distinguishing two states ρ

⊗N1
1 ⊗

ρ⊗M
1 ⊗ ρ

⊗N2
2 and ρ

⊗N1
1 ⊗ ρ⊗M

2 ⊗ ρ
⊗N2
2 , which are assumed to

occur with equal probability.
In this decision problem, we apply a two-valued POVM

{E1,E2}, in which E1 (E2) corresponds to the decision

FIG. 1. Discrete time series of quantum systems produced by
quantum state generator. When tc = t1, the state ρ is ρ2. When tc = t2,
the state ρ is ρ1.

tc = t1 (tc = t2). Since E1 = I − E2, our POVM can be
described by a Hermitian matrix 0 � E2 � I , where I is the
unit matrix. Then, the error probability is given as

pM,N1,N2 (ρ1,ρ2,E2) ≡ 1
2 Tr

[(
ρ

⊗N1
1 ⊗ ρ

⊗M+N2
2

)
E2

]
+ 1

2 Tr
[(

ρ
⊗M+N1
1 ⊗ ρ

⊗N2
2

)
E1

]
= 1

2 Tr
[(

ρ
⊗N1
1 ⊗ ρ

⊗M+N2
2

)
E2

]
+ 1

2 Tr
[(

ρ
⊗M+N1
1 ⊗ ρ

⊗N2
2

)
(I −E2)

]
.

(2)

Now, we assume that ρ1 and ρ2 are independently dis-
tributed according to the unitary invariant distribution µ�d

on
the set �d of pure states on the d-dimensional vector spaceCd .
By using the POVM {I − E2,E2}, we can define the averaged
error probability as

pM,N1,N2
(E2) ≡

∫
�d

∫
�d

pM,N1,N2 (ρ1,ρ2,E2)µ�d

×(dρ1)µ�d
(dρ2). (3)

Here it is very helpful to use the following formula for the
integral of the tensor product of L identically prepared pure
states [3]: ∫

�d

σ⊗Lµ�d
(dσ ) = IL

Tr[IL]
, (4)

where σ is a pure state and IL is the projector onto the totally
symmetric subspace of (Cd )⊗L.

By using this formula, the averaged error probability reads

pM,N1,N2
(E2) = 1

2

{
1 + Tr

[(
IN1 ⊗ IM+N2

A1

−IM+N1 ⊗ IN2

A2

)
E2

]}
, (5)

where A1 and A2 are defined as follows:

A1 ≡ Tr
[
IN1

]
Tr

[
IM+N2

]
=

(
N1 + d − 1

d − 1

)(
M + N2 + d − 1

d − 1

)
, (6)

A2 ≡ Tr
[
IM+N1

]
Tr

[
IN2

]
=

(
M + N1 + d − 1

d − 1

)(
N2 + d − 1

d − 1

)
. (7)

Note that A1 � A2, and the equation holds if and only if N1 =
N2.

Equation (5) guarantees that the optimal strategy to mini-
mize the averaged error probability is given by the Hermitian
matrix

EM,N1,N2 ≡
{

IN1 ⊗ IM+N2

A1
− IM+N1 ⊗ IN2

A2
< 0

}
, (8)

where {A < 0} represents a projector onto the eigenspaces
with negative eigenvalues of A. That is, plugging Eq. (8) into
Eq. (5), one obtains the minimum averaged error probability.

In order to compute the minimum averaged error probabil-
ity, we deform the expression of the optimal POVM by using
the tensor product representation of the unitary group U(d).
Any irreducible representation of the unitary group U(d) is
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characterized by a Young diagram λ = [λ1,λ2, . . . ,λd ] and
is denoted by Uλ. We use the shorthand notations λ1 and
[λ1,λ2] to denote [λ1,0,0, . . . ,0] and [λ1,λ2,0,0, . . . ,0]. Note
that UL means the totally symmetric subspace of (Cd )⊗L. The
dimension of U[λ1,λ2] is given as

dimU[λ1,λ2] = (λ1 + d − 1)!(λ2 + d − 2)!(λ1 − λ2 + 1)

(d − 1)!(d − 2)!(λ1 + 1)!λ2!
.

(9)

In our problem, the total system size is N ≡ M + N1 + N2,
and the total tensor product space (Cd )⊗N can be decomposed
to

(Cd )⊗N = ⊕λUλ ⊗ Vλ, (10)

where Vλ corresponds to the multiplicity of the irreducible
space Uλ.

Since the tensor product space (Cd )⊗N contains the two
subspaces UN1 ⊗ UM+N2 and UM+N1 ⊗ UN2 without multiplic-
ity, these two subspaces have the form

UN1 ⊗ UM+N2 = ⊕N1
k=0U[N−k,k] ⊗ C|uk〉, (11)

UM+N1 ⊗ UN2 = ⊕min(M+N1,N2)
k=0 U[N−k,k] ⊗ C|vk〉, (12)

by using two normalized vectors,

|uk〉 ∈ V[N−k,k](0 � k � N1), (13)

|vk〉 ∈ V[N−k,k](0 � k � min[M + N1,N2]), (14)

satisfying 〈uk|vk〉 � 0. Since the dimension of VN is 1, the
relation |u0〉 = |v0〉 holds.

Letting Iλ be the projector onto the spaceUλ, from Eqs. (11)
and (12) one obtains

IN1 ⊗ IM+N2 =
N1∑
k=0

I[N−k,k] ⊗ |uk〉〈uk|, (15)

IM+N1 ⊗ IN2 =
min(M+N1,N2)∑

k=0

I[N−k,k] ⊗ |vk〉〈vk|. (16)

Here, we note that the ranges of summations are different from
each other. Using these equations, one has

IN1 ⊗ IM+N2

A1
− IM+N1 ⊗ IN2

A2

=
N1∑
k=0

I[N−k,k] ⊗
( |uk〉〈uk|

A1
− |vk〉〈vk|

A2

)

−
min(M+N1,N2)∑

k=N1+1

I[N−k,k] ⊗ |vk〉〈vk|
A2

. (17)

Since |uk〉 and |vk〉 are linearly independent in the range
1 � k � N1 [shown in Eq. (29)], there exists only one
negative eigenvalue of |uk〉〈uk |

A1
− |vk〉〈vk |

A2
. Using the normalized

eigenvector |wk〉 ∈ V[N−k,k] with this eigenvalue, we therefore
can write the optimal POVM as

EM,N1,N2 =
N1∑
k=1

I[N−k,k] ⊗ |wk〉〈wk|

+
min(M+N1,N2)∑

k=N1+1

I[N−k,k] ⊗ |vk〉〈vk|. (18)

III. THE MINIMUM AVERAGED ERROR PROBABILITY

In this section, we compute the minimum averaged error
probability. Plugging Eqs. (17) and (18) into Eq. (5) as E2 =
EM,N1,N2 , one obtains

pM,N1,N2
(EM,N1,N2 )

= 1

2

[ N1∑
k=1

Tr[I[N−k,k]]〈wk|
( |uk〉〈uk|

A1
− |vk〉〈vk|

A2

)
|wk〉

− 1

A2

min(M+N1,N2)∑
k=N1+1

Tr[I[N−k,k]]+1

]
. (19)

When two arbitrary real nonzero constants C1 and C2 and
two linearly independent normalized vectors |a〉 and |b〉 are
given, the unique negative eigenvalue of |a〉〈a|

C1
− |b〉〈b|

C2
is given

by

C2 − C1 −
√

(C2 − C1)2 + 4C1C2(1 − |〈a|b〉|2)

2C1C2
. (20)

Therefore, the eigenvector |wk〉 associated with the negative
eigenvalue satisfies

〈wk|
( |uk〉〈uk|

A1
− |vk〉〈vk|

A2

)
|wk〉

= A2 − A1 −
√

(A2 − A1)2 + 4A1A2(1 − |〈uk|vk〉|2)

2A1A2
.

(21)

We also obtain the following equations:

Tr[I[N−k,k]] = dimU[N−k,k], (22)
N1∑
k=0

Tr[I[N−k,k]] = A1, (23)

min(M+N1,N2)∑
k=0

Tr[I[N−k,k]] = A2. (24)

Using these equations, we can write the minimum averaged
error probability as

pM,N1,N2
(EM,N1,N2 )

= 1

4

[
A1 + A2

A2
−

N1∑
k=0

dimU[N−k,k]

A1A2

×
√

(A2 − A1)2 + 4A1A2(1 − |〈uk|vk〉|2)

]
.

(25)
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Our remaining task is to calculate the inner product 〈uk|vk〉.
When we denote the highest weight vector of the spaceU[N−k,k]

by |[N − k,k]d〉, 〈uk|vk〉 is equal to the inner product of
|[N − k,k]d〉|uk〉 and |[N − k,k]d〉|uk〉. We can assume d = 2
without loss of generality since the inner product does not
depend on the dimension. Let us fix some notations as follows:

µ0 ≡ M

2
, µ1 ≡ N1

2
, µ2 ≡ N2

2
,

µ01 ≡ M + N1

2
, µ02 ≡ M + N2

2
, µ ≡ N

2
− k. (26)

Using Wigner’s 6-j function [5], we then can write

〈uk|vk〉 = (−1)µ0+µ1+µ2+µ
√

(2µ01 + 1)(2µ02 + 1)

×
{
µ1 µ0 µ01

µ2 µ µ02

}
. (27)

Moreover, Wigner’s 6-j function can be computed as

{
µ1 µ0 µ01

µ2 µ µ02

}
= (−1)µ0+µ1+µ2+µ

√
(2µ01 + 1)(2µ02 + 1)

√√√√ (
N1

k

)(
N2

k

)
(
M+N1

k

)(
M+N2

k

)
(28)

(see Appendix). Thus, one obtains

〈uk|vk〉 =
√√√√ (

N1

k

)(
N2

k

)
(
M+N1

k

)(
M+N2

k

) , (29)

and in order to denote this value we use the notation φk

satisfying

cos φk =
√√√√ (

N1

k

)(
N2

k

)
(
M+N1

k

)(
M+N2

k

) = 〈uk|vk〉. (30)

Therefore, the minimum averaged error probability can be
written as

pM,N1,N2
(EM,N1,N2 ) = 1

4

[
A1 + A2

A2
−

N1∑
k=0

dimU[N−k,k]

A1A2

×
√

(A2 − A1)2 + 4A1A2 sin2 φk

]
.

(31)

In the case of d = 2, since

A1 = (N1 + 1)(M + N2 + 1),

A2 = (M + N1 + 1)(N2 + 1),

A2 − A1 = M(N2 − N1),

dimU[N−k,k] = M + N1 + N2 − 2k + 1,

Eq. (31) is calculated to the following way. Our result is
different from the original version of Sentis et al. [2];
however, their Erratum coincides with our
result (31):

pM,N1,N2
(EM,N1,N2 ) = 1

4

{
1 + (N1 + 1)(M + N2 + 1)

(M + N1 + 1)(N2 + 1)
−

N1∑
k=0

M + N1 + N2 − 2k + 1

(N1 + 1)(M + N2 + 1)(M + N1 + 1)(N2 + 1)

×
√

M2(N2 −N1)2 +4(N1 +1)(M +N2 +1)(M +N1 +1)(N2 +1)

[
1−

(
N1!(M +N1 −k)!

(M +N1)!(N1 −k)!

)(
N2!(M +N2 −k)!

(M + N2)!(N2 − k)!

)]}
.

(32)

When N1 = N2 (i.e., t1 = t3 − t2 + 1), the equation A1 = A2 holds and this probability is concretely computed as

pM,N1,N1
(EM,N1,N1 ) = 1

2

[
1− (d − 1)N1!(M + N1)!

(N1 +d −1)!(M +N1 +d −1)!

N1∑
k=0

(M + 2N1 − 2k + 1)
(M +2N1 −k+d −1)!(k+d −2)!

(M + 2N1 − k + 1)!k!

×
√

1 −
(

N1!(M + N1 − k)!

(M + N1)!(N1 − k)!

)2]
. (33)

Moreover, plugging d = 2 into this equation, we have

pM,N1,N1
(EM,N1,N1 ) = 1

2

[
1 −

N1∑
k=0

M + 2N1 − 2k + 1

(N1 + 1)(M + N1 + 1)

×
√

1− (
N1!(M +N1 −k)!

(M +N1)!(N1 −k)!
)2

]
. (34)

This result coincides with the result of Sentis et al. [2].

IV. THE ERROR PROBABILITY WITH
THE OPTIMAL POVM

In the previous section, we obtained the averaged error
probability when the initial and final states ρ1 and ρ2 are
distributed independently. However, the unknown states ρ1

and ρ2 do not necessarily obey the uniform distribution. In
order to treat the performance of our optimal POVM in a
more general setting, we consider the error probability with
our optimal POVM when two pure states ρ1 and ρ2 are fixed.
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This error probability depends on the inner product of the two
states, i.e., q ≡ Tr[ρ1ρ2]. In the following, we calculate the
error probability given by Eq. (2) in the case of the optimal
POVM {I − EM,N1,N2 ,EM,N1,N2}.

Theorem. The error probability with the optimal POVM
{I − EM,N1,N2 ,EM,N1,N2} can be written as

pM,N1,N2 (ρ1,ρ2,EM,N1,N2 )

= 1

4

N1∑
k=0

[
Pk + Qk

− (A2 − A1)(Pk − Qk) + 2 sin2 φk(A1Pk + A2Qk)√
(A2 − A1)2 + 4A1A2 sin2 φk

]
,

(35)

where Pk and Qk are given as follows:

Pk ≡ (N − 2k + 1)N1!(M + N2)!

(N − k + 1)!k!

×
N1−k∑
l=0

(
N1 −k

l

)(
M +N2 −k+ l

l

)
ql(1 − q)N1−l ,

(36)

Qk ≡ (N − 2k + 1)(M + N1)!N2!

(N − k + 1)!k!

×
N2−k∑
l=0

(
M +N1 −k+ l

l

)(
N2 −k

l

)
ql(1 − q)N2−l .

(37)

Here we have defined 00 ≡ 1.
When N1 = N2, i.e., t1 = t3 − t2 + 1, we can write

pM,N1,N1 (ρ1,ρ2,EM,N1,N1 )

= 1

2

[
1 −

N1∑
k=0

(M + 2N1 − 2k + 1)N1!(M + N1)!

(M + 2N1 − k + 1)!k!√
1 −

(
N1!(M + N1 − k)!

(M + N1)!(N1 − k)!

)2

×
N1−k∑
l=0

(
N1 − k

l

)(
M + N1 − k + l

l

)
ql(1 − q)N1−l

]
.

(38)

Proof. Let us start by defining the notation for Pk and Qk

as

Pk ≡ Tr
[
I[N−k,k] ⊗ |uk〉〈uk|

(
ρ

⊗N1
1 ⊗ ρ

⊗M+N2
2

)]
(0 � k � N1), (39)

Qk ≡ Tr
[
I[N−k,k] ⊗ |vk〉〈vk|

(
ρ

⊗M+N1
1 ⊗ ρ

⊗N2
2

)]
(0 � k � min[M + N1,N2]). (40)

We note that the following equation holds:

N1∑
k=0

Pk =
min(M+N1,N2)∑

k=0

Qk = 1. (41)

Since an arbitrary pure state σ satisfies

I d
Lσ⊗LId

L = σ⊗L, (42)

one obtains

Tr
[(

ρ
⊗N1
1 ⊗ ρ

⊗M+N2
2

)
EM,N1,N2

]
= Tr

[(
IN1 ⊗ IM+N2

)(
ρ

⊗N1
1 ⊗ ρ

⊗M+N2
2

)(
IN1 ⊗ IM+N2

)
×EM,N1,N2

]
. (43)

Plugging Eqs. (15) and (18) into Eq. (43), one has

Tr
[(

ρ
⊗N1
1 ⊗ ρ

⊗M+N2
2

)
EM,N1,N2

] =
N1∑
k=1

|〈vk|wk〉|2Pk. (44)

In the same way, using Eqs. (16) and (43), we obtain

Tr
[(

ρ
⊗M+N1
1 ⊗ ρ

⊗N2
2

)
EM,N1,N2

]
=

N1∑
k=1

|〈vk|wk〉|2Qk +
min(M+N1,N2)∑

k=N1+1

Qk. (45)

When two arbitrary normalized and linearly independent
vectors |a〉,|b〉 and two positive real numbers C1,C2 > 0 are
given, the normalized eigenvector |−〉 with the unique negative
eigenvalue of |a〉〈a|

C1
− |b〉〈b|

C2
satisfies the following equations:

|〈a|−〉|2 = 1

2

[
1 − C2 − C1 + 2C1(1 − |〈a|b〉|2)√

(C2 − C1)2 + 4C1C2(1 − |〈a|b〉|2)

]
,

(46)

|〈b|−〉|2 = 1

2

[
1 − C2 − C1 − 2C2(1 − |〈a|b〉|2)√

(C2 − C1)2 + 4C1C2(1 − |〈a|b〉|2)

]
.

(47)

Applying Eqs. (46) and (47) to the case of |a〉 = |uk〉,|b〉 =
|vk〉, we have

|〈uk|wk〉|2 = 1

2

(
1 − A2 − A1 + 2A1 sin2 φk√

(A2 − A1)2 + 4A1A2 sin2 φk

)
,

(48)

|〈vk|wk〉|2 = 1

2

(
1 − A2 − A1 − 2A2 sin2 φk√

(A2 − A1)2 + 4A1A2 sin2 φk

)
,

(49)

for 1 � k � N1.
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Using these equations, we can write the error probability as

pM,N1,N2

(
ρ1,ρ2,EM,N1,N2

) = 1

2

[
1 + Tr

[(
ρ

⊗N1
1 ⊗ ρ

⊗M+N2
2

)
EM,N1,N2

] − Tr
[(

ρ
⊗M+N1
1 ⊗ ρ

⊗N2
2

)
EM,N1,N2 ]

]

= 1

2

[
1 +

N1∑
k=1

|〈uk|wk〉|2Pk −
N1∑
k=1

|〈vk|wk〉|2Qk −
min(M+N1,N2)∑

k=N1+1

Qk

]

= 1

4

N1∑
k=0

[
Pk + Qk − (A2 − A1)(Pk − Qk) + 2 sin2 φk(A1Pk + A2Qk)√

(A2 − A1)2 + 4A1A2 sin2 φk

]
. (50)

Now we turn our attention to computing Pk . We can
assume d = 2 since Pk does not depend on the dimension.
By using Clebsch-Gordan coefficients and the notations given
by Eq. (26), the projector in Eq. (39) can be written as

I[N−k,k] ⊗ |uk〉〈uk|

=
N−2k∑
l=0

N1∑
i=0

M+N2∑
j=0

|〈µ : µ − l|µ1 : µ1 − i; µ02 : µ02 − j 〉|2

× |µ1 : µ1 − i〉〈µ1 : µ1 − i|
⊗|µ02 : µ02 − j 〉〈µ02 : µ02 − j |. (51)

In the following, we fix the notation |↑〉 (|↓〉) to denote the
vector in the space C2 whose weight is 1

2 (− 1
2 ). Without loss

of generality, we can assume that ρ2 is | ↑〉〈↑ |. Then, we can
write

ρ
⊗M+N2
2 = |µ02 : µ02〉〈µ02 : µ02| = |↑〉〈↑|⊗M+N2 . (52)

Plugging Eqs. (51) and (52) into Eq. (39), we have

Pk =
N1−k∑
l=0

〈µ1 : µ1 − k − l|ρ⊗N1
1 |µ1 : µ1 − k − l〉

×|〈µ : µ − l|µ1 : µ1 − k − l; µ02 : µ02〉|2. (53)

Moreover, converting the variable l into N1 − k − l, this can
be written as

Pk =
N1−k∑
l=0

〈
N1

2
: −N1

2
+ l

∣∣∣∣ρ⊗N1
1

∣∣∣∣N1

2
: −N1

2
+ l

〉∣∣∣∣
〈
N

2
− k :

×N

2
− N1 + l

∣∣∣∣N1

2
: −N1

2
+ l;

M + N2

2
:

M + N2

2

〉∣∣∣∣
2

.

(54)

We can calculate the Clebsch-Gordan coefficients [5] as∣∣∣∣
〈
N

2
−k :

N

2
−N1 + l

∣∣∣∣N1

2
: −N1

2
+ l;

M +N2

2
:
M +N2

2

〉∣∣∣∣
2

= (N − 2k + 1)(N1 − k)!(N1 − l)!

(N − k + 1)!(N1 − k − l)!
(55)

× (M + N2)!(M + N2 − k + l)!

(M + N2 − k)!k!l!
.

Denoting ρ1 = |φ1〉〈φ1|, we obtain |〈φ1| ↑〉|2 = q. Thus,〈
N1

2
: −N1

2
+ l

∣∣∣∣ ρ⊗N1
1

∣∣∣∣N1

2
: −N1

2
+ l

〉

=
(

N1

l

)
|〈φ1|↑〉|2l|〈φ1|↓〉|2(N1−l) (56)

=
(

N1

l

)
ql(1 − q)N1−l .

Therefore, we can write Pk as

Pk ≡ (N − 2k + 1)N1!(M + N2)!

(N − k + 1)!k!

×
N1−k∑
l=0

(
N1 − k

l

)(
M + N2 − k + l

l

)
ql(1 − q)N1−l ,

(57)

where we have defined 00 as 1.
In the same way, one obtains

Qk ≡ (N − 2k + 1)(M + N1)!N2!

(N − k + 1)!k!

×
N2−k∑
l=0

(
M + N1 − k + l

l

)(
N2 − k

l

)
ql(1 − q)N2−l .

(58)

�

V. LIMIT OF THE MINIMUM AVERAGED ERROR
PROBABILITY

When the numbers of copies in system 1 and system 2
approach infinitely large values, we have perfect knowledge to
determine the states in the two systems. In this limit, by using
Eq. (33), the probability pM,N1,N1

(EM,N1,N1 ) can be written as

lim
N1→∞

pM,N1,N1
(EM,N1,N1 )

= 1

2

[
1 − 2(d − 1)

∫ 1

0
x
√

1 − x2M (1 − x2)d−2dx

]

= 1

2

[
1 − (d − 1)

∫ 1

0

√
1 − xM (1 − x)d−2dx

]
, (59)
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where we have defined x = k
n

and used the Euler-McLaurin
summation formula. The case of d = 2 coincides with Eq. (18)
in Ref. [2], and the case of M = 1 coincides with Eq. (41) in
Ref. [3].

This result could be easily anticipated from the minimum
error probability of the discrimination problem [6]. Recall
that the minimum error probability, given M identical copies,
is 1

2 [1 −
√

1 − (Tr[ρ1ρ2])M ]. Assuming that ρ1 and ρ2 are
distributed according to µ�d

independently, the average is
given by∫

�d

∫
�d

1

2
[1 −

√
1 − (Tr[ρ1ρ2])M ]µ�d

(dρ1)µ�d
(dρ2)

= 1

2

[
1 − 2(d − 1)

∫
π
2
0

√
1 − (cos θ )2M (sin θ )2d − 3 cos θdθ

]

= 1

2

[
1 − (d − 1)

∫ 1

0

√
1 − xM (1 − x)d−2dx

]
. (60)

Therefore, our optimal measurement can achieve the average
performance of two-state discrimination under the limit N1 =
N2 → ∞.

Next, we turn our attention to the complementary case; that
is, the number of copies in system 0 is infinitely large. By
using Eq. (31), the minimum averaged error probability in this
limit can be computed as

lim
M→∞

pM,N1,N2
(EM,N1,N2 ) = 1

2
(
N2+d−1

d−1

) . (61)

Note that this result is independent of N1.
In this limit, we have perfect knowledge of the pure state

ρ in system 0 and this problem is equal to distinguishing
two states ρ⊗N1 ⊗ ρ̂⊗N2 and ρ̂⊗N1 ⊗ ρ⊗N2 in the composite
system 12. This problem can be regarded as a generalization of
state comparison [7]. As shown in the following, the minimum
error probability for these two states can be obtained with
a POVM whose elements are {E1 = I1 ⊗ (I2 − ρ⊗N2 ),E2 =
I1 ⊗ ρ⊗N2}, where I1 (I2) is the unit matrix on (Cd )⊗N1

[(Cd )⊗N2 ]. Here, E1 (E2) corresponds to the guess ρ⊗N1 ⊗
ρ̂⊗N2 (ρ̂⊗N1 ⊗ ρ⊗N2 ). We then can write the error probability
as

1
2 Tr[ρ⊗N1 ⊗ ρ̂⊗N2E2]+ 1

2 Tr[ρ̂⊗N1 ⊗ ρ⊗N2E1]= 1
2 (Tr[ρρ̂])N2.

(62)

Thus, the average is computed as follows:∫
�d

∫
�d

1

2
(Tr[ρρ̂])N2 µ�d

(dρ)µ�d
(dρ̂)

= (d −1)
∫ π

2

0
(cos θ )2N2 (sin θ )2d−3 cos θdθ

= d −1

2

∫ 1

0
xN2 (1−x)d−2dx = 1

2
(
N2+d−1

d−1

) . (63)

Since this value is the same as the expression in Eq. (61), the
POVM {E1 = I1 ⊗ (I2 − ρ⊗N2 ),E2 = I1 ⊗ ρ⊗N2} realizes the
optimalperformance.

VI. EXPONENTIALLY DECREASING RATE OF THE
ERROR PROBABILITY

When the numbers of copies N1, N2, and M are infinitely
large, that is, the states in three systems are perfectly known,
the error probability approaches zero unless q = 1. In order to
treat the convergence speed, we focus on the exponentially
decreasing rate of the error probability when the optimal
POVM EM,N1,N1 is applied. For simplicity, we assume that the
numbers N1 and N2 of copies in systems 1 and 2, respectively,
increase in proportion to the number M of copies in system 0.
When the proportional constant is given to be α > 0, we have
N1 = N2 = αM . Thus, using the real numbers

Ck ≡ (M + 2αM − 2k + 1)(αM)!(M + αM)!

2(M + 2αM − k + 1)!k!

×
[

1 −
√

1 −
(

(αM)!(M + αM − k)!

(M + αM)!(αM − k)!

)2]
, (64)

Dk,l ≡
(

αM − k

l

)(
M + αM − k + l

l

)
ql(1 − q)αM−l , (65)

we can write from Eq. (38)

pM,αM,αM (ρ1,ρ2,EM,αM,αM ) =
αM∑
k=0

αM−k∑
l=0

CkDk,l . (66)

The convergence speed is represented as

lim
M→∞

−1

M
ln pM,αM,αM (ρ1,ρ2,EM,αM,αM ), which can be

deformed as

lim
M→∞

−1

M
ln pM,αM,αM (ρ1,ρ2,EM,αM,αM )

= lim
M→∞

−1

M
ln

( αM∑
k=0

αM−k∑
l=0

CkDk,l

)
(67)

= lim
M→∞

−1

M
ln

(
max

0�k�αM
max

0�l�αM−k
CkDk,l

)
.

In this paper, we adopt the natural logarithm. Moreover, using
the approximation formula

√
1 − x ≈ 1 − 1

2x (when x � 1)
and the Stirling approximation n! ≈ nne−n

√
2πn, one obtains

lim
M→∞

−1

M
ln pM,αM,αM (ρ1,ρ2,EM,αM,αM )

(68)
= min

0�β�α
min

0�γ�α−β
h(β,γ ),

where we have defined β ≡ k
M

, γ ≡ l
M

, and

h(β,γ ) ≡ (α − β − γ ) ln(α − β − γ ) − (1 + α − β + γ )

× ln(1 + α − β + γ ) + (α − β) ln(α − β)

− (1 + α − β) ln(1 + α − β) − 3α ln α

+ (1 + α) ln(1 + α) + β ln β

+ (1 + 2α − β) ln(1 + 2α − β)

+ 2γ ln γ − γ ln q − (α − γ ) ln(1 − q). (69)
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FIG. 2. For α = 5, h(β1,γ1) (thin line), − ln q − 1−q

q(α−1)+2 (dashed
line), and − ln q (thick line).

There is the unique root of ∂h
∂β

= ∂h
∂γ

= 0 in the range 0 <

β < α, 0 < γ < α − β and we use (β1,γ1) to denote it. These
can be calculated as

γ1 = q(α − 1) +
√

q2(α − 1)2 + 4qα

2
, (70)

β1 = (2α + 1) −
√

(2α + 1)2 − 4(α2 − αγ1)

2
. (71)

One can agree that h(β1,γ1) is the minimum of the function h

in the range 0 < β < α, 0 < γ < α − β due to the following
equations:

∂2h

∂β2
(β,γ ) > 0,

∂2h

∂γ 2
(β,γ ) > 0,

lim
β→0

∂h

∂β
(β,γ ) = lim

γ→0

∂h

∂γ
(β,γ ) = −∞, (72)

lim
β→α−γ

∂h

∂β
(β,γ ) = lim

γ→α−β

∂h

∂γ
(β,γ ) = +∞,

When α is sufficiently large, we can write

h(β1,γ1) = − ln q − 1 − q

q(α − 1) + 2
+ O

(
1

α2

)
. (73)

2 4 6 8 10 12 14
α

0.4

0.5

0.6

0.7

Convergence Speed

FIG. 3. For q = 0.5, h(β1,γ1) (thin line), − ln q − 1−q

q(α−1)+2
(dashed line), and − ln q (thick line).

In fact, as is numerically demonstrated in Figs. 2 and 3,
− ln q − 1−q

q(α−1)+2 well approximates h(β1,γ1) when α is large.
Therefore, we obtain the convergence speed of the error
probability,

lim
M→∞

−1

M
ln pM,αM,αM (ρ1,ρ2,EM,αM,αM )

= − ln Tr[ρ1ρ2] − 1 − Tr[ρ1,ρ2]

Tr[ρ1ρ2](α − 1) + 2
+ O

(
1

α2

)
.

(74)

In the discrimination problem of two pure states [6], when
the number of copies of the state to be identified is infinitely
large, the convergence speed is given by

lim
M→∞

−1

M
ln

1

2
[1−

√
1− (Tr[ρ1ρ2])M ] = −ln Tr[ρ1ρ2]. (75)

This is called the quantum Chernoff bound [4] and it is
equal to the limit of Eq. (74) as α → ∞. This fact means
that the performance of our optimal POVM is close to
that of the optimal POVM in the sense of quantum state
discrimination.

VII. CONCLUSIONS

We have studied the discrimination of the change point
problem in a quantum setting when two candidates t1 and
t2 of the true change point tc are given. This problem is
equal to discriminating two unknown general states when
multiple copies of the state are provided. We have obtained
the minimum averaged error probability, Eq. (31). Our result
of special cases coincides with the results of Refs. [2,3].
However, our result is more general, allowing for arbitrary
numbers of copies of general pure states. Moreover, we have
calculated the nonaveraged error probability, Eq. (35). This
value depends on the inner product between the initial state
and the final state. As could be anticipated, when the time
lengths t1 and t3 − t2 + 1 are infinitely large, we recover the
average of the usual discrimination problem. We have also
paid attention to the exponential decreasing rate and shown
that the convergence rate of the nonaveraged error probability
approaches the quantum Chernoff bound.

In discrimination problems one can also consider the
unambiguous approach, as was studied in Refs. [2,3]. From the
change point perspective, however, the unambiguous approach
does not arise in a natural way and it is beyond the scope of this
paper. Since it is meaningful from the viewpoint of quantum
discrimination for programmable devices, it is an interesting
future problem to extend our result to the case of unambiguous
discrimination.
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APPENDIX: CALCULATION OF WIGNER’S 6-j FUNCTION

Let us consider the calculation of Wigner’s 6-j function

{ a b c
d e f }. Let us define some notations as

α1 ≡ a +b+d+e, α2 ≡ a+c+d+f, α3 ≡ b+c+e+f,

β1 ≡ a + b + c, β2 ≡ a + e + f, (A1)

β3 ≡ b + d + f, β4 ≡ c + d + e,

and let us define A1, A2, and A3 to be the smallest, middle, and
largest values of α1, α2, and α3 and define B1, B2, B3, and B4

to be the smallest, second smallest, second largest, and largest
values of β1, β2, β3, and β4. When B4 = A1, from the formula
in Ref. [8] we can calculate

{
a b c

d e f

}

= (−1)B4

[
B4−B3∏

i=1

(B3 + 1 + i)(A3 − A1 + i)

(A3 − B1 + i)(A2 − B2 + i)

] 1
2

×
[

1

(B1 + 1)(B2 + 1)

×
A2−A1∏

i=1

(A1 − B1 + i)(B4 − B2 + i)(B4 − B3 + i)

(A1 + B1 − A2 + i)(A1 + B2 − A2 + i)i

] 1
2

.

(A2)

We compute Wigner’s 6-j function { µ1 µ0 µ01
µ2 µ µ02

} in Eq. (27).

1. Case 0 � k � M

In this case, we can write

A1 = N − k, A2 = N, A3 = M + N − k,

B1 = M +N1, B2 = M +N2, B3 = N −k, (A3)

B4 = N − k.

Plugging these into Eq. (A2), one obtains{
µ1 µ0 µ01

µ2 µ µ02

}

= (−1)N−k

[
1

(M + N1 + 1)(M + N2 + 1)

×
k∏

i=1

(N1 − k + i)(N2 − k + i)

(M + N1 − k + i)(M + N2 − k + i)

] 1
2

.

(A4)

This is deformed as{
µ1 µ0 µ01

µ2 µ µ02

}
= (−1)µ0+µ1+µ2+µ

√
(2µ01 + 1)(2µ02 + 1)

√√√√ (
N1

k

)(
N2

k

)
(
M+N1

k

)(
M+N2

k

) .

(A5)

2. Case M + 1 � k � N1

In this case, we can write

A1 = N − k, A2 = M + N − k, A3 = N,
(A6)

B1 = M +N1, B2 = M +N2, B3 = N −k,

B4 = N −k.

Plugging these into Eq. (A2), one obtains{
µ1 µ0µ01

µ2 µ µ02

}
= (−1)N−k

[
1

(M + N1 + 1)(M + N2 + 1)

×
M∏
i=1

(N1 − k + i)(N2 − k + i)

(N1 + i)(N2 + i)

] 1
2

. (A7)

Since M + 1 � k, one has(
N1

k

)(
N2

k

)
(
M+N1

k

)(
M+N2

k

) =
M∏
i=1

(N1 − k + i)(N2 − k + i)

(N1 + i)(N2 + i)
. (A8)

Thus,

{
µ1 µ0 µ01

µ2 µ µ02

}
= (−1)µ0+µ1+µ2+µ

√
(2µ01 + 1)(2µ02 + 1)

√√√√ (
N1

k

)(
N2

k

)
(
M+N1

k

)(
M+N2

k

) .

(A9)

also holds.
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