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Photon-number entangled states generated in Kerr media with optical parametric pumping
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Two nonlinear Kerr oscillators mutually coupled by parametric pumping are studied as a source of states
entangled in photon numbers. Temporal evolution of entanglement quantified by negativity shows the effects
of sudden death and birth of entanglement. Entanglement is preserved even in asymptotic states under certain
conditions. The role of reservoirs at finite temperature in entanglement evolution is elucidated. Relation between
generation of entangled states and violation of Cauchy-Schwartz inequality for oscillator intensities is found.
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I. INTRODUCTION

Generation of entangled states and their protection from
disentanglement is a crucial task in quantum information
processing theory. Entangled states can be generated in various
physical systems. Entanglement can be observed in various
degrees of freedom. The most common systems considered as
sources of entangled states are spin systems (NMR), quantum
dots [1], trapped ions [2], and double-well Bose-Einstein
condensates [3]. Typical constituents of these systems can be
represented by two (or more) level atoms that mutually interact
and create this way entangled states. We speak about systems
composed of qubits (see for example [4] and the references
quoted therein), qutrits, or higher dimensional qudits. On
the other hand, entangled states can be found also in field
systems, namely in optical fields. Entanglement emerges here
due to mutual interaction among modes of optical fields. This
interaction typically occurs in nonlinear optical processes [5].
Entanglement can then be observed in polarization states
(for example [6]) or photon-number states [7]. Namely states
entangled in photon numbers are promising for the near future
due to the progress in construction of photon-number resolving
detectors in recent years. Their construction can be based
on optical-fiber loop interferometers [8–10], absorption in
superconductor wires [11], use of intensified CCD cameras
[12,13], complex semiconductor structures [14], or hybrid
photodetectors [15].

Every real physical system interacts with its environment
[16]. Such interaction leads to losses of coherence, and conse-
quently, to gradual degradation of entanglement. In quantum
information processing this represents one of the crucial
problems. That is why many methods for coping with this prob-
lem have been developed; quantum error correction [17–20],
decoherence free subspaces [21–23], proper preparation of
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qubit states [24], multiple system-decomposition method [25],
to name a few. It is well known that an entangled state
interacting with a zero-temperature Markovian environment
asymptotically decays in time. However the character of zero-
temperature reservoir decay can be altered. Under specific
conditions disentanglement may suddenly occur (sudden death
of entanglement) [26–28]. Moreover, if a system interacts with
a thermal or squeezed [29] reservoir the entanglement is lost
in finite time as well. We should also mention that the effect
of sudden entanglement birth can also be observed [30–32].

In this paper we consider two optical modes generated by
parametric down conversion [33] pumped by an intense optical
field. The generated two optical modes propagate through a
medium characterized by Kerr nonlinearity that modifies their
statistical properties. States characterizing two optical modes
can be entangled in photon numbers (see for example [6]) as
a consequence of the fact that photons are emitted in pairs
in parametric down conversion. Provided that interaction with
external reservoir is taken into account the effects of sudden
death and sudden birth of entanglement can be observed.
Entanglement will be quantified by negativity function and
its presence will be compared with nonclassical behavior of
distributions of integrated intensities of two modes. We note
that experimental characterization of nonclassical two-mode
optical fields is experimentally available [34].

Optical fibers are suitable candidates for experimental
generation of the predicted entangled states. They allow
both the generation of photon pairs in parametric processes
[35,36] and exhibit Kerr nonlinearities [37]. Nonlinear fibers
allow us to generate sufficiently high photon-pair fluxes. For
example, a nonlinear fiber 300 m long embedded into a Sagnac
interferometer allows us to generate up to 107 photon pairs per
1 mW of optical pumping [35]. Similar photon-pair generation
rates have also been reported from a 2-m-long microstructured
fiber [36].

However, we note that nonlinear systems excited directly
by an external coherent field (referred to as nonlinear quantum
scissors [38–40]) require giant Kerr nonlinearities that can be
achieved, for example, using induced transparency [41–43].
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The paper is organized as follows. A quantum model of
two interacting optical fields is formulated and solved in
Sec. II that also contains considerations about entanglement.
Generalization of the model to the case of interaction with
reservoir is provided in Sec. III. Nonclassical behavior of
integrated intensities of two modes is discussed in Sec. IV.
Section V provides conclusions.

II. THE MODEL, ITS SOLUTION AND ENTANGLEMENT
EVOLUTION

The considered system is composed of nonlinear medium
(characterized by Kerr nonlinearity) that is excited by an
external field of strength g. At quantum level two photons
(belonging to different field modes) are emitted together in the
parametric process. Interaction Hamiltonian Ĥint of the system
can be written in the following form:

Ĥint = ĤKerr + Ĥpar, (1)

ĤKerr = χa

2
(â†)2â2 + χb

2
(b̂†)2b̂2, (2)

Ĥpar = gâ†b̂† + g�âb̂. (3)

Here Hamiltonian ĤKerr describes two nonlinear Kerr oscil-
lators (with nonlinearities χa,b), whereas Hamiltonian Ĥpar

means an effective interaction Hamiltonian of the two-mode
parametric process [44]. Model Hamiltonians including both
parametric and Kerr processes have been analysed in [45].
It should be noted that our model does not include the Kerr
cross term â†âb̂†b̂, that is important in some Kerr media (for
discussion concerning models involving such Kerr cross term
see, for example, [46,47] and the references quoted therein).
We note that the Hamiltonian analogous to that considered here
has also been used for example by Bernstein [48] or Chefles
and Barnett [49]. The dynamics of the models excluding the
Kerr cross term have also been analyzed in other papers (for
instance in [50,51]).

It should be stressed that various interesting effects beside
those discussed in the quantum information theory can
originate in systems endowed with Kerr nonlinearities. For
instance, Miranowicz et al. [52] have shown that discrete
superpositions of an arbitrary number of coherent states (so-
called Schrödinger cat-like or kitten states) can be generated in
these systems. Moreover, such nonlinear systems (especially,
nonlinear couplers with Kerr nonlinearities [38–40]) can serve
as a source of maximally entangled states (MES) useful not
only in quantum optics but also in other branches of physics.
For instance, Kurpas et al. [53] discussed nonlinear resonances
and entanglement generation in solid state models, particularly
in those involving SQUID systems.

At the beginning we neglect damping. That is why we
simply apply the Schrödinger equation that can be written
in the form of a set of equations for complex probability
amplitudes cnm(t) corresponding to the Fock state with
n photons in mode a and m photons in mode b. Assuming
that the initial state is the vacuum state in both modes
|�(t = 0)〉 = |0〉a|0〉b these equation can be obtained in the

form (we use units of h̄ = 1)

i
d

dt
cnm = 1

2
[n(n − 1)χa + m(m − 1)χb] cnm

+ g
√

nm cn−1,m−1

+ g�
√

(n + 1)(m + 1) cn+1,m+1. (4)

Inspection of the form of Eq. (4) leads to the conclusion that the
dynamics of the system is not restricted to a closed set of two-
mode states. The number of states involved considerably in the
dynamics depends straightforwardly on the level of excitation
g, the larger the value of g the larger the number of involved
states. Assuming the initial vacuum state (|�(t = 0)〉 =
|0〉a|0〉b) and lossless dynamics only two-mode states having
equal photon numbers in modes a and b are involved in the
dynamics.

To be more specific, the number of states that must be
considered depends on the value of ratio r = g/(χa + χb) and
length of the time evolution. For small values of r < 0.1
the conditions resemble those discussed in [38–40] where
nonlinear quantum scissors have been studied. In this case,
only states with small photon numbers in both modes a and
b are involved. In particular, we can restrict the dynamics of
the system to just first three lowest states of the whole set
of two-mode states: |0〉a|0〉b,|1〉a|1〉b,|2〉a|2〉b. Validity of this
approximation can be judged comparing the approximative
solution with the full (numerical) solution. Fidelity between
the two states has been found useful in this case. A typical
example investigated in Fig. 1 shows that the dynamics of the
whole system can be restricted to the subspace of three states
with accuracy of order 3 × 10−4. For this case we assume that
g = 0.15. This value seems to be the optimal one, since it
is small enough to keep the system’s evolution closed within
the desired range of the states and to derive the analytical
formulas for the dynamics. Simultaneously, the value g = 0.15
is sufficient to observe the Bell-states generation. The reason
is that if we assume the value for g to be too small, mostly the
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FIG. 1. Declination of fidelity F from unity as a function of
scaled time t . Fidelity F is calculated between the state defined
in the subspace spanned by states |0〉a|0〉b, |1〉a|1〉b, and |2〉a|2〉b

and the state evolving in the subspace containing states |i〉a|j〉b for
i,j = 0, . . . ,10. The scaled time t is measured in 1/χa,b units. Initial
vacuum state |0〉a|0〉b is assumed, g = 0.15.

052326-2



PHOTON-NUMBER ENTANGLED STATES GENERATED IN . . . PHYSICAL REVIEW A 83, 052326 (2011)

vacuum state is populated and an efficient Bell-state generation
is not possible.

In this approximation the evolution of probability ampli-
tudes is governed via the equations

i
d

dt
c00(t) = g�c11(t),

i
d

dt
c11(t) = gc00(t) + 2g�c22(t), (5)

i
d

dt
c22(t) = 2gc11(t) + Ac22(t),

where A = χa + χb.
The solution of Eqs. (5) can be obtained analytically:

c00(t) = r01 exp (s1t) + r02 exp (s2t) + r03 exp (s3t),

c11(t) = r11 exp (s1t) + r12 exp (s2t) + r13 exp (s3t), (6)

c22(t) = r21 exp (s1t) + r22 exp (s2t) + r23 exp (s3t),

where

s1 = ig

3x

(
−1 + 1 + 15x2

M
+ M

)
,

s2 = g

6x
(−2i − X2/M) , (7)

s3 = g

6x
(−2i + X�

2/M).

Amplitudes rij take the following form:

r01 = 12x

m1
[−ix(7 + 75x2) + K + M(−2ix + K) + 2ixM2],

r02 = x

m2
[(−3 − i

√
3)(7 + 75x2)x + (−3i +

√
3)K

+ 2(3 − i
√

3)xM + (3i +
√

3)KM − 4
√

3ixM2],

r03 = x

m3
[(3 − i

√
3)(7 + 75x2)x + (3i +

√
3)K

− 2(3 + i
√

3)xM + (−3i +
√

3)KM − 4
√

3ixM2],

r11 = 12ixM

m1
[15x2 + (1 + M)2], (8)

r12 = −r�
13 =

√
3xM

m2
(X2 − 4iM),

r21 = −72ix2M2

m1
,

r22 = 12i
√

3x2M2

m2
,

r23 = r22
m2

m3
.

Denominators occurring in Eqs. (8) for amplitudes are given
as

m1 = |X1|2,
(9)

m2 = m�
3 = (−1 − 15x2 + M2)X1.

Also the following parameters have been used in the above
relations:

X1 = (3i −
√

3)(1 + 15x2) + (3i +
√

3)M2,

X2 = (i −
√

3)(1 + 15x2) + (i +
√

3)M2,

M = (−1 − 9x2 + 3ixK)1/3, (10)

K =
√

3 + 66x2 + 375x4,

x = g/(χa + χb).

The analytical solution in Eqs. (6) valid for three two-mode
states allows us to analyze entanglement in the system. Here,
we pay attention to qubit-qubit entanglement and quantify
it using negativity. This entanglement measure is defined as
[54,55]

N (ρ̂) = max
(
0, − 2 min

j
µj

)
, (11)

where µj are the eigenvalues of the partial transpose of the
density matrix ρ̂� . The factor 2 appearing in this definition
is chosen to get N (ρ̂) = 1 for Bell’s states. Negativity
is a commonly used entanglement measure allowing the
entanglement quantification; for maximally entangled state
we have N (ρ̂) = 1, whereas N (ρ̂) = 0 occurs for the cases
when the entanglement disappears completely. Moreover, it
can be applied for more general models exceeding the simple
qubit-qubit one.

In our system we can define three subsystems of the
qubit-qubit form: the first subsystem is spanned by the states
|0〉a|0〉b and |1〉a|1〉b (negativity N0110), the second one by
states |0〉a|0〉b and |2〉a|2〉b (negativity N0220), and the third one
by states |1〉a|1〉b and |2〉a|2〉b (negativity N1221). We note that
these subsystems are not independent. Each of the two-mode
states is involved in two considered qubit-qubit subsystems.
This also means that there occur correlations in the presence
of entanglement in these subsystems.

This is illustrated in Fig. 2 where the negativities N0110,
N0220, and N1221 for the subsystems are plotted. Negativity
N0220 oscillates with a relatively small amplitude (around
the value of 0.17) similarly as negativity N1221 (having the
amplitude around 0.3). On the other hand, values of negativity
N0110 show that the system can be treated as a generator of
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FIG. 2. Negativities N0110, N0220, and N1221 as functions of scaled
time t measured in 1/χa,b units. The coupling g = 0.15, other
parameters and used units are the same as in caption to Fig. 1.
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Bell states in certain time instants in which N0110 ≈ 1. The
generated Bell states are of the form

|B1〉 = 1√
2

(|0〉a|0〉b + i|1〉a|1〉b) ,

(12)

|B2〉 = 1√
2

(|0〉a|0〉b − i|1〉a|1〉b) .

Moreover, whenever negativity N0110 achieves the shallower
minimum (with amplitude approximately ∼0.3), entanglement
is partially transferred to the subsystem spanned by states
|1〉a|1〉b and |2〉a|2〉b {1221}. In addition, when negativity
N0110 equals zero negativity N1221 also vanishes. However,
the whole system is not in a pure state in this specific case
because N0220 �= 0. The values of negativity N1221 are not
high for a fixed value of g, but we have observed that the
mechanism of entanglement transfer alters as g increases. At
larger values of g temporal evolution of negativities N0110,
N0220, and N1221 is more complex [see Fig. 3(a)]. In particular,
the role of higher populated two-mode states (|2〉a|2〉b) is
more pronounced and entanglement in subsystem composed
of states |0〉a|0〉b and |1〉a|1〉b is weaker. There occur time
instants in which negativity N0110 achieves one of its minima
and nearly simultaneously entanglements in the other two
subspaces reach their maximal values. For comparison, we
have also drawn in Fig. 3 parameter R that quantifies the
violation of Cauchy-Schwartz inequality (CSI, for definition,
see later) and serves as a measure of nonclassicality of the
whole system.

Inspection of curves in Fig. 3 indicates that maximum
of parameter R can be reached in time instants in which
qubit-qubit negativities are far from their maximal values. This
reflex complexity of quantum states was found in temporal
evolution of the discussed system. It should be noted that,
for the case discussed here, we have assumed the greater
value of parameter g. The used value g = 0.6 has been found
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FIG. 3. (a) Negativities N0110, N0220, and N1221 and (b) parameter
R indicating violation of the Cauchy-Schwartz inequality violation
as they depend on scaled time t . The scaled time t is measured in
1/χa,b units. Initial vacuum state |0〉a|0〉b is assumed, g = 0.6.

optimal for the entanglement generation within the considered
qubit-qubit subsystem. However, the states involving more
than two photons are nonnegligibly populated and so we cannot
apply the analytical formulas derived above.

III. ENTANGLEMENT GENERATION
IN DAMPED RESERVOIR

As any real physical system is not completely isolated, we
should include into considerations concerning entanglement
formation also its time-evolution environmental effects. We
describe damping in the standard Born and Markov approxi-
mations. We thus apply the following master equation for the
reduced statistical operator ρ̂:

d

dt
ρ̂ = −i(Ĥ ρ̂ − ρ̂Ĥ ) + γa

[
âρ̂â† − 1

2
(ρ̂â†â + â†âρ̂)

]

+ n̄aγa(â†ρ̂â + âρ̂â† − â†âρ̂ − ρ̂ââ†)

+ γb

[
b̂ρ̂b̂† − 1

2
(ρ̂b̂†b̂ + b̂†b̂ρ̂)

]

+ n̄bγb(b̂†ρ̂b̂ + b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂b̂†), (13)

where γa,b are damping constants and n̄a,b denote mean photon
numbers of noise in modes a and b.

Operator equation written in Eq. (13) can be transformed
into the following differential equations of motions for the
elements ρn m,k l of statistical operator ρn m,k l ≡ 〈k|〈n|ρ|m〉|l〉:

d

dt
ρn m,k l = −1

2
{iχa[n(n − 1) − m(m − 1)]

+ iχb [k(k − 1) − l(l − 1)]

+ γa [n + m − 2n̄a(n + m + 1)]

+ γb [k + l − 2n̄b(k + l + 1)]}ρnm,k l

+ g
√

nk ρn−1 m,k−1 l

− g
√

(m + 1)(l + 1) ρn m+1,k l+1

+ g�
√

(n + 1)(k + 1) ρn+1 m,k+1 l

− g�
√

ml ρn m−1,k l−1

+ γa [(1 + n̄a)
√

(n + 1)(m + 1) ρn+1 m+1,k l

+ n̄a

√
nm ρn−1 m−1,k l]

+ γb [(1 + n̄b)
√

(k + 1)(l + 1) ρn m,k+1 l+1

+ n̄b

√
kl ρn m,k−1 l−1]. (14)

In numerical calculations, the number of equations in Eq. (14)
that have to be considered depends strongly on the value of
constant g: the larger the value of g the greater the number of
equations.

A. Zero-temperature reservoir

The zero-temperature reservoir is defined by the require-
ment that mean number of photons is zero, that is, the system is
influenced only by vacuum fluctuations of the environment. In
the analysis we restrict ourselves to the subspace that contains
states with no more than two photons in mode a and b. We
have found for the case discussed here that some amount of
entanglement described by negativities occurs in the system
regardless of the damping strengths γa,b. It is documented in
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FIG. 4. Map of negativity N1221 as a function of scaled in 1/χa,b

units time t and damping γ (measured in χa,b units). Nonzero values
of negativity N1221 occur inside grey and black areas. In the inset
temporal evolution of negativity N1221 for γ = 0.0025 is shown. The
coupling g = 0.6, other parameters and units are the same as in
caption to Fig. 3.

Fig. 4 where the map of negativity N1221 as a function of time
t and damping constant γ is plotted (γ ≡ γa = γb).

A typical temporal evolution of negativity is such that after
oscillations at the beginning an asymptotic nonzero value is
reached (set the inset in Fig. 4). It is interesting to note that the
asymptotic value does not depend on the level of damping (for
g = 0.6, N1221 ∼ 0.054). On the other hand, negativity N0110

shows that the effect of sudden death of entanglement occurs
in the subsystem with zero and one photons in modes a and
b. Even more interestingly, negativity N0220 of the subsystem
composed of states |0〉a , |2〉a , |0〉b, and |2〉b brings evidence of
the effects of sudden death and sudden birth of entanglement.
After entanglement rebirth negativity N0220 reaches its nonzero
asymptotic value (N0220 ∼ 0.035 for g = 0.6) regardless of the
damping strength γ . Positions of the borders between zero and
nonzero values of negativities N0110 and N0220 are plotted in
Fig. 5. It is worth mentioning that entanglement described
by negativity N0220 lives almost two times longer before
its sudden death compared to that described by negativity
N0110.

Analytical treatment enables us to reveal the origin of the
observed features to a certain extent. If the system is not
damped, the generated states are in a coherent superposition of
states |i〉a|i〉b containing i photon pairs [compare the form of
Hamiltonian Hint in Eq. (1)]. In a damped system depopulation
channels due to spontaneous emission are opened and, as a
consequence, the system has to be described by statistical
operator ρ̂. Nevertheless, projected statistical operators ρ̂red

of the considered qubit-qubit subsystems attain an “X” type
form:

ρ̂red =

⎛
⎜⎜⎜⎝

a11 0 0 a14

0 a22 0 0

0 0 a33 0

a41 0 0 a44

⎞
⎟⎟⎟⎠ . (15)

In Eq. (15) elements aii describe populations of the corre-
sponding states, whereas aij (i �= j ) stand for coherences
(probability flows).
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γ
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death time of N
0110

birth time of N
0220

FIG. 5. Borders between the regions with zero/nonzero negativ-
ities N0110 (dashed curve) and N0220 (solid curves) at the time axis
as they depend on damping γ (measured in χa,b units). The curves
indicate instants in which the effects of sudden death and sudden
birth of entanglement occur. In the area between two solid lines, no
entanglement described by negativity N0220 is found. The coupling
g = 0.6, other parameters and the units used here are the same as
for Fig. 3.

The statistical operator ρ̂red written in Eq. (15) can be after
partial transposition easily diagonalized. Its eigenvalues can
be written as

λ1 = a11,

λ2 = 1
2

[
a22 + a33 −

√
(a22 − a33)2 + 4a14a41

]
,

(16)
λ3 = 1

2

[
a22 + a33 +

√
(a22 − a33)2 + 4a14a41

]
,

λ4 = a44.

Nonzero negativity N occurs whenever at least one of the
eigenvalues written in Eq. (16) is negative [56]. The analysis
of the formulas in Eq. (16) shows that this situation is found
whenever a22a33 < a14a41. The equality a22a33 = a14a41 then
represents the border condition that localizes the effects of
sudden death and sudden birth of entanglement. A detailed
discussion of the relation between the form of a statistical op-
erator and conditions for entanglement vanishing or rebuilding
can be found in the review article [4].

In detail, negativity N0110 is larger than zero provided that

ρ00,11ρ11,00

ρ01,01ρ10,10
< 1. (17)

Similarly, the conditon

ρ00,22ρ22,00

ρ02,02ρ20,20
< 1 (18)

guarantees nonzero values of negativity N0220. In general
and roughly speaking, the conditions written in Eqs. (17)
and (18) say that entanglement is lost at the moment when
populations become larger than coherences. However, if
coherences become larger than populations later, entanglement
is revealed. This is documented in Fig. 6 for the evolution of
entanglement in the subsystems described by negativities N0110

and N0220. Whereas the curves in Fig. 6 clearly identify the
instant of sudden death of entanglement in case of negativity
N0110 [Fig. 6(a)], instants of both the sudden death and sudden
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FIG. 6. Time evolution of quantities F and G giving numerators
and denominators, respectively, in conditions written in Eq. (17) (a)
and Eq. (18) (b). Crossing of the curves indicate instants of sudden
death and sudden birth of entanglement. Inset in (b) shows a detail
of temporal evolution. The damping constant γ = 0.01, the coupling
g = 0.6, other parameters are the same as in caption to Fig. 3. Time
t is measured in 1/χa,b units.

birth of entanglement can be determined in case of negativity
N0220 [Fig. 6(b)].

We note that the explanation of occurrence of entanglement
sudden death and sudden birth presented here is very similar to
that discussed by Ficek and Tanaś in [30] when investigating
two two-level atoms in a cavity. They have shown that
dark periods of entanglement are observed provided that
the population of a symmetric state became larger than the
appropriate coherences.

We would like to stress that in our model entanglement does
not vanish in the long-time limit even for a damped system.
Some parts of the whole system are disentangled as evidenced,
for example, by zero asymptotic values of negativity N0110.
However, there exist parts of the whole system that remain
asymptotically entangled. Moreover, the study of temporal
dynamics of entanglement has revealed that entanglement
can “flow” among different subsystems. This may preserve
entanglement from damping processes and its loss. We also
note that the studied system does not evolve into a pure state

which distinguishes it from many other systems that exhibit
total disentanglement in the long-time limit.

B. Thermal reservoir damping

Considering a thermal reservoir at finite temperature, mean
numbers n̄a and n̄b of reservoir photons are nonzero and so
dynamics of the system is governed by the master equation
in its general form given by Eq. (13). Unfortunately such
reservoirs lead to weakening of entanglement compared to
the case of zero-temperature reservoirs discussed above.

Assuming smaller values of mean reservoir photon numbers
n̄a and n̄b, entanglement is generated in all three considered
qubit-qubit subsystems, as described by negativities N0110,
N0220, and N1221 for finite times. Whereas entanglement
indicated by negativities N0110 and N0220 arrives at the crucial
points of sudden death, certain amount of asymptotic entangle-
ment is preserved as evidenced by nonzero asymptotic values
of negativity N1221. It holds that the larger the mean reservoir
photon-numbers n̄a and n̄b, the smaller the asymptotic values
of negativity N1221 (see Fig. 7). The dynamics of entanglement
is in general more complex for finite-temperature reservoirs
compared to those at zero temperature, as documented in
Fig. 7 where many periods of entanglement sudden death and
sudden birth occur in the evolution of negativity N1221. We have
also observed that entanglement described by negativity N0110

disappears approximately two times faster compared to that
monitored by negativity N0220. The instants of sudden death of
entanglement depend strongly on damping constants γa and γb:
the larger the values of constants γa and γb, the sooner the effect
of sudden death occurs. Qualitatively the same dependence as
that depicted in Fig. 5 for zero-temperature reservoirs has been
revealed.

Asymptotic values of negativity N1221 are zero for suf-
ficiently large values of mean reservoir photon numbers n̄a

and n̄b. In this case, entanglement in the whole system is
completely lost. In this case also parameter R describing
violation of Cauchy-Schwartz inequality is smaller than one
indicating classical behavior of two modes.
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FIG. 7. Time evolution of negativity N1221 for n ≡ n̄a = n̄b = 0.1
(solid curve), n = 0.2 (dashed curve), and n = 0.3 (inset); γ = 0.01.
The coupling g = 0.6, other parameters and units are the same as in
caption to Fig. 3.
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We note that, similarly as in the case of zero-temperature
reservoirs, entanglement is present whenever populations are
larger than coherences.

Comparison with the model of a nonlinear coupler interact-
ing with a thermal reservoir and excited by an external coherent
field as analyzed in [40] underlines a distinguished property of
this system, the ability to generate asymptotic entanglement at
finite temperatures.

IV. NONCLASSICAL CORRELATIONS
OF INTEGRATED INTENSITIES

Entanglement between fields in modes a and b has been
monitored using negativity of different qubit-qubit subsystems
defined inside modes a and b. The presence of entanglement in
at least one of the subsystems reflected entanglement between
optical fields in these modes. We have observed that whenever
the system shows entanglement nonclassical correlations
between integrated intensities of fields in modes a and b

also occur [57]. These nonclassical correlations of intensities
occur only provided that the joint quasidistribution (in the
form of a generalized function) of integrated intensities related
to normal ordering of field operators attains negative values
for some regions of intensities [44]. These negative values
can be monitored, for example, using second-order intensity
correlation functions �(2) that violate the Cauchy-Schwartz
inequality. Violation of this inequality can be quantified using
parameter R defined as [58]

R(t) = �
(2)
a,b(t)√

�
(2)
a,a(t)�(2)

b,b(t)
, (19)

where the second-order intensity correlation functions �(2) are
defined as

�
(2)
k,l (t) = Tr{ρ̂(t)N Îk Îl}. (20)

In Eq. (20) ρ̂ means statistical operator Îk = k̂†k̂ and N stands
for normal-ordering operator. Nonclassical states obey the
inequality R > 1.

Considering the system without damping, fields in modes
a and b are always entangled and also parameter R is always
larger than one [compare temporal evolution of negativities N

and parameter R in Fig. 3(a)]. Considering zero-temperature
reservoirs, nonclassical correlations of intensities are always
observed. On the other hand, finite-temperature reservoirs
gradually destroy nonclassical correlations of intensities, as
they similarly weaken entanglement. Nonclassical correlations
in intensities are asymptotically preserved for smaller values
of mean reservoir photon numbers n̄a and n̄b. However, larger
values of mean photon numbers n̄a and n̄b result in the loss
of nonclassical correlations in finite times. We also note that
the greater the values of damping constants γa and γb the
sooner the nonclassical correlations are lost. These features are
documented in Fig. 8 where temporal evolution of parameter
R is plotted.

Investigation of entanglement based on negativities of
qubit-qubit subsystems composed of Fock states with low
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FIG. 8. Temporal evolution of parameter R for damping constants
γ = 0.001, 0.005, and 0.01 assuming n = 0.4. For comparison,
temporal evolution of parameter R for zero-temperature reservoirs
(n = 0) is given for γ = 0.01. The coupling g = 0.6. Values of other
parameters are the same as in caption to Fig. 3. Time t is measured
in 1/χa,b units.

numbers need not guarantee a correct determination of
nonclassicality of intensity correlations. The problem is that
entanglement “flows” among different subsystems during its
temporal evolution and it may happen that it exists only
in subspaces composed of Fock states with larger numbers.
As an example we consider systems described in Fig. 8
(n̄a = n̄b = 0.4, g = 0.6) and also exhibiting entanglement
in subsystems involving states |3〉a|3〉b and |4〉a|4〉b.

V. CONCLUSIONS

We have analyzed entanglement between number states
generated in two nonlinear Kerr oscillators pumped by optical
parametric process using qubit-qubit negativities. We have
shown that maximally entangled states of Bell type can be
generated under certain conditions. Interaction of the system
with zero-temperature reservoirs on one side weakens the
ability to generate entanglement, but on the other side leads
to a more complex evolution of entanglement with the effects
of its sudden death and sudden birth. The effect of sudden
birth occurs provided that coherences in the system dominate
populations. Instants of sudden deaths and sudden births of
entanglement differ for different qubit-qubit systems which
reflects “dynamical flow of entanglement” in the system.
Finite reservoir temperatures inhibit the effect of entanglement
sudden birth and destroy asymptotically entanglement for
greater reservoir mean photon numbers. We have found
that entanglement occurs whenever there exist nonclassical
correlations in intensities of two oscillator modes that violate
Cauchy-Schwartz inequality.
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