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Continuous-variable quantum computation with spatial degrees of freedom of photons
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We discuss the use of the transverse spatial degrees of freedom of photons propagating in the paraxial
approximation for continuous-variable information processing. Given the wide variety of linear optical devices
available, a diverse range of operations can be performed on the spatial degrees of freedom of single photons.
Here we show how to implement a set of continuous quantum logic gates which allow for universal quantum
computation. In contrast with the usual quadratures of the electromagnetic field, the entire set of single-photon
gates for spatial degrees of freedom does not require optical nonlinearity and, in principle, can be performed
with a single device: the spatial light modulator. Nevertheless, nonlinear optical processes, such as four-wave
mixing, are needed in the implementation of two-photon gates. The efficiency of these gates is at present very
low; however, small-scale investigations of continuous-variable quantum computation are within the reach of
current technology. In this regard, we show how novel cluster states for one-way quantum computing can be
produced using spontaneous parametric down-conversion.
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I. INTRODUCTION

Quantum information is usually cast in terms of discrete
two-level systems, which are used to encode qubits—the
simplest form of quantum information. In analogy with
classical bits, a number of single- and multiple-qubit logic
gates can be used to perform quantum computation and
other quantum-information processing tasks [1]. There has
been considerable interest in continuous-variable (CV) de-
grees of freedom for quantum-information processing [2].
Both the standard quantum computational model [1] and
the one-way quantum computational model [3] have been
extended to continuous-variable systems [2,4–7]. In both of
these paradigms of CV quantum computation it is necessary
either to produce non-Gaussian states or to implement non-
Gaussian operations [2,4]. In the standard model, Lloyd and
Braunstein have shown that any single-mode gate that is
cubic or higher order in the canonical variables is sufficient
(in addition to Gaussian operations) to implement universal
quantum computation [2]. In terms of the one-way model,
any single-mode non-Gaussian measurement will suffice [4].
The typical example of a quantum system with continuous
variables involves the quantized modes of the electromagnetic
field, whose CV quadrature operators are analogous to the
position and momentum operators of a quantum harmonic
oscillator [8]. For quantum-information tasks, each mode
corresponds to the analog of a qubit, sometimes called a
“qumode” [7].

The quantum CV formalism applies to any CV quantum
system, and as such there are a number of systems which
can be used to explore quantum-information processing. In
particular, the transverse spatial degrees of freedom of single
photons present a rich playground for the investigation of
quantum information in CVs. Though the transverse modes
of photons have been used to investigate quantum information
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for discrete variables [9–13], to our knowledge they have been
seldom explored in the context of CV quantum-information
processing. In this case, the terminology “qumode” might
seem misleading, since we exploit the spatial multimode
structure of single-photon fields. Nevertheless, there exists a
direct analogy between operators which act in the single-mode
multiphoton Hilbert space of the electromagnetic field and
those that act in the single-photon multimode Hilbert space
of the electromagnetic field [12]. A number of experimental
and theoretical studies which exploit this analogy have been
performed, including the experimental investigation and detec-
tion of two-photon entanglement [14–18], studies of quantum
key distribution [19–21], and simulation of stronger-than-
quantum correlations [22]. Moreover, there is the possibility
of producing spatially non-Gaussian entangled states (which
have interesting properties [23–27]) by manipulating the
pump beam [28]. Furthermore, rotations and measurements
in spatial parity space can be performed so as to implement a
pseudo-spin- 1

2 system [12], and it was shown that the parity
correlations of the spatial degrees of freedom of a pair of
photons violate a Bell inequality [13]. There have also been a
number of experimental investigations of spatial entanglement
with the discrete orbital angular momentum (OAM) degree
of freedom [9,10,29–32], and a number of measurement
devices have been developed to perform OAM measurements
of single photons [33–35], as well as fractional-valued OAM
projections [36–38]. Given the vast possibilities of producing
entangled photons and manipulating their spatial properties,
it is interesting to determine the strengths and weaknesses of
this system and to identify what optical devices are necessary
to perform a universal set of logic operations for investigations
of quantum computation.

As advantages of the spatial variables of single photons for
experimental investigations of CV algorithms we can mention
the following: (i) high-quality entanglement is readily avail-
able with spontaneous parametric down-conversion sources
and coincidence counting; (ii) diverse and robust quantum-
state engineering is possible using masks, gratings, spatial light
modulators, and other diffractive devices, which allow for the
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production of non-Gaussian states and the implementation of
non-Gaussian operations; (iii) photon losses in this case do not
affect the fidelity of the quantum state or operation, but rather
are discarded as null results; and (iv) contrary to quadrature
detection, no local oscillator is necessary in the detection of
the transverse position and momentum of single photons. The
transverse position and momentum are defined with respect to
some transverse plane, and the phase at the detection, which
is relative to the phase at the source, can be varied through
simple free propagation or by using lenses.

In comparison to the usual quadrature variables of single
modes, some disadvantages of transverse spatial variables
of single photons exist: (a) the production of single- or
multiphoton states is probabilistic and postselected; (b) the
photon-photon coupling required for controlled operations
is very weak; and (c) the single-photon detection process
is based on avalanche photodiodes, which have quantum
efficiencies up to approximately 80%, depending on the
wavelength. At present, item (a) is due to the use of down-
conversion sources for the production of single- or multiphoton
states. Current efforts in the production of heralded single
and multiphoton states may improve the situation. In many
cases the probabilistic production is not problematic, since
typically only the coincidence detection events are considered.
Item (b) might be overcome using linear optical devices
and postselection, as has been done in the case of discrete
quantum-information processing with linear optics [39,40].
The above considerations suggest that the spatial degrees of
freedom of multiphoton states may lend themselves well to
the cluster-state model of quantum computing, in which an
initial entangled state is prepared, and sequential single-site
measurements are performed.

In this paper we show how to implement CV quantum-
logic gates using the spatial degrees of freedom of single
photons, with the goal of encouraging future experimental
investigations of CV quantum-information processing with
this system. We also discuss how in principle these gates can
be used to create CV cluster states in the transverse spatial
degree of freedom of single photons, i.e., the principal resource
in one-way quantum computation [3]. It is important to
emphasize that our formalism follows the traditional approach
in quantum computation with any CV system where the
computational basis is given by the eigenstates associated
with one of the canonical quadratures (transverse position
or momentum of single photons in our case). The fact that
these are unphysical quantum states (not normalizable) forces
one to use appropriate regularized Gaussian squeezed states
as the computational basis in quantum protocols [41] or in the
construction of cluster states for measurement-based quantum
computation [5,6].

Many properties of Gaussian cluster states have been
investigated, though its use as a scalable resource for universal
CV measurement-based quantum computation has not been
demonstrated for finite squeezing [41–43]. In Ref. [42], the
authors analyze the effect of finite squeezing on the localizable
entanglement (LE) [44] between two general sites in a
Gaussian graph state. They show that the LE decays expo-
nentially with the distance between the sites in the graph, even
if non-Gaussian (local) projective measurements are allowed.
Although this result is does not imply in the nonuniversality

of Gaussian cluster states with finite squeezing, it gives strong
evidence of it and points toward the necessity of using non-
Gaussian resources for universal measurement-based quantum
computation. The results of Ref. [43], though slightly more
optimistic than those of Ref. [42], reinforce this view. In this
regard, the ability to easily manipulate the transverse spatial
variables of single photons could be of great interest for the
study of non-Gaussian cluster states.

The paper is outlined as follows. In Sec. II we introduce an
operator formalism which can be used to describe the spatial
degrees of freedom of single photons. In Sec. III we show how
the usual single-mode CV quantum gates can be performed
with linear optics elements alone. These gates, along with
the two-photon gate proposed in Sec. IV, provide a universal
set of gates for quantum-information processing. Section V
is devoted to the discussion of CV cluster computation with
spatial degrees of freedom. Conclusions are presented in
Sec. VI.

II. OPERATOR FORMALISM FOR SPATIAL DEGREES
OF FREEDOM OF SINGLE PHOTONS

We consider here the spatial degrees of freedom (DOF) of
single-photon states in the paraxial approximation, as studied
previously by several authors [12–28,45]. It has been shown
that it is possible to establish a complete isomorphism between
the Hilbert space describing the transverse spatial DOF of
single photons and the Hilbert space associated with the
nonrelativistic quantum states of single point particles in a
two-dimensional space [17,45]. In this respect, one may think
of the transverse field distribution of a single photon as a wave
function in the formalism of first quantization. Thus, this wave
function represents the probability amplitude for the detection
of the single photon at a certain position in the transverse plane.

As the total Hilbert space describing the spatial DOF of
single photons is the tensor product of the Hilbert spaces as-
sociated with the two orthogonal transverse spatial directions,
we only describe the formalism in one spatial dimension. Let
us define the canonical dimensionless variables representing
the transverse position and transverse wave vector of the single
photon as x and p, respectively. The Hilbert spaceH is spanned
by the bases {|j 〉}, where j = x or p. An arbitrary pure state
of H is written as |ψ〉 = ∫

ψ(j ) |j 〉 dj , where 〈j |ψ〉 = ψ(j )
is the transverse wave function in the j representation. For
j = x we have ψ(j ) = W(x), which is the wave function in
position representation or the transverse spatial distribution
of the single-photon field. The wave function in wave-vector
representation is the angular spectrum of the photon field and
is obtained by setting j = p such that ψ(j ) = V(p). The free
evolution of the wave function associated with the transverse
spatial DOF of a paraxial single photon is described, in the
position representation, by the paraxial wave equation [46]:(

∂2

∂x2
d

+ 2ik
∂

∂z

)
W(xd ) = 0, (1)

which is a Schrödinger-type equation analogous to that of a
free massive particle with one DOF. Note that the coordinate
of the paraxial direction of propagation, z, plays the role of
time and λ plays the role of Planck’s constant. Here k = 2π/λ

is the wave number and xd = dx is a dimensional position
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variable, where d has dimension of length. Similarly, we use
a dimensional momentum variable pd = p/d, the canonical
conjugate of xd . Equation (1) has the general solution

W(xd,z) = exp

(
iz

2k

∂2

∂x2
d

)
W(xd,0). (2)

For convenience, we adopt an operator formalism for the
transverse spatial variables [46,47]. In terms of operators and
ket vectors, Eq. (2) can be written as

|W(xd,z)〉 = exp

(−iz

2k
p2

d

)
|W(xd,0)〉, (3)

where we have identified the dimensional momentum operator
as pd → −i∂/∂xd . The operator

Pz = exp
(−izp2

d

/
2k

)
(4)

describes free-space propagation from the origin to position
z. The operator formalism and ket vectors introduced by
Stoler [47] and Marcuse [46] describe the transverse spatial
properties of an electromagnetic field. Here we employ the
same formalism to describe single-photon fields. Thus, we
emphasize that |W(xd,z)〉 in Eq. (3) represents the quantum
state of a quasimonochromatic single photon in the position
representation of the transverse spatial DOF and |x〉 and |p〉 are
ket vectors describing single photons in position or momentum
eigenstates.

The wave-function evolution described by Eq. (3), associ-
ated with the free paraxial propagation of the single-photon
field, is analogous to the evolution of a free particle. Other
Hamiltonians can be implemented with the help of optical
components such as lenses. In the operator formalism the
action of a lens is given by [47]

Lf = exp

(−ik

2f
x2

d

)
, (5)

where f is the focal length. In the next section, we use the
operators Pz and Lf to build a set of logic gates. Here we
assume that the typical dimensions of the optical system used
are sufficiently large that we can safely neglect diffraction
effects, such as with the edges of lenses, for example. Thus, the
size of the optical system provides a constraint which limits the
size of the single-photon field. This limits the amount that one
can focus the field in the conjugate variable and also the amount
of information that can be encoded in the transverse profile.
This is equivalent to an energy constraint for intense fields
which limits the amount of squeezing that can be performed.
We note that, even with this constraint, it was possible to
encode around 5 bits of information per photon in Ref. [20].

At times it is convenient to work with the dimensionless
variables x and p, which can always be obtained by introducing
an appropriate scaling factor d. The operators x and p act
on the elements of the position and wave-vector basis in the
usual way: x |x〉 = x |x〉 and p |p〉 = p |p〉. The bases {|x〉}
and {|p〉} are related via Fourier transform:

|x〉 = 1√
2π

∫
dp e−ixp|p〉, (6)

|p〉 = 1√
2π

∫
dx eixp|x〉, (7)

where 〈x|p〉 = exp(ixp)/
√

2π . Note that Eqs. (6) and (7)
imply that the operators x and p satisfy the canonical
commutation relation [x,p] = i.

III. SINGLE-PHOTON GATES

It has been shown for quadrature variables (see, for exam-
ple, Ref. [2]) that, for the subclass of unitary transformations
that correspond to Hamiltonians that are polynomial functions
of the canonical operators of a continuous-variable system, it is
possible to define a universal set comprising a finite number of
quantum-logical gates of qumodes. Any computation within
this subclass of transformations can be decomposed into a
finite number of applications of the gates in this universal set,
which consists of a two-mode interaction, such as a beam
splitter, and a set of single-mode quantum gates. The single-
mode gates in the universal set are phase-space displacements
and rotations, squeezing, and any operation that is at least
of third order in the canonical variables. We now show how
to implement these CV qumode operations in terms of the
spatial DOF of photons, and we discuss possible experimental
implementations. The analog to a single-mode gate is a
single-photon gate, and a two-photon gate is the analog to the
two-mode gate. The two-photon gate is described in Sec. IV.
As is customary, we consider the position basis {|x〉} as the
computational basis. As mentioned above, these eigenstates
are not normalizable, and thus are unphysical, in the same
sense as quadrature states with infinite squeezing. However,
they can be approximated by physical states with very small
variance [2].

A. Single-lens system

The majority of the necessary single-photon gates can be
implemented with the single-lens system illustrated in Fig. 1.
The operator describing this system is given by U(z,f ) =
PzLf Pz. Explicitly,

U(z,f ) = exp

(
− iz

2k
p2

d

)
exp

(
− ik

2f
x2

d

)
exp

(
− iz

2k
p2

d

)
. (8)

The operators xd and pd under the action of U(z,f ) evolve as

U†(z,f ) xd U(z,f ) =
(

1 − z

f

)
xd + z

k

(
2 − z

f

)
pd , (9)

U†(z,f ) pd U(z,f ) =
(

1 − z

f

)
pd − k

f
xd , (10)

which exactly match the classical evolution of transverse
position, xd , and wave vector, pd . The phase-space operators

z
L

z

FIG. 1. (Color online) Optical setup for the implementation of
single-photon gates. The single-photon field propagates from the
input plane (IN) on the left to the output plane (OUT) on the right.
L is a lens with focal length f and z is the distance of propagation
before and after the lens.

052325-3



TASCA, GOMES, TOSCANO, SOUTO RIBEIRO, AND WALBORN PHYSICAL REVIEW A 83, 052325 (2011)

(xd ,pd ) of a CV quantum system evolve, for any evolution
operator associated with a quadratic Hamiltonian (a meta-
plectic operator), as a multiplication by the symplectic matrix
associated with the linear classical evolution of these operators
[48]. In the paraxial propagation of photons, this classical
evolution is described by the ray optics matrix applied to the
optical system; i.e.,

U†(z,f )

(
xd

pd

)
U(z,f ) = M(z,f )

(
xd

pd

)
, (11)

where

M(z,f ) =
(

1 − z
f

z
k

(
2 − z

f

)
− k

f
1 − z

f

)
. (12)

B. Fourier transform

One of the building blocks of the universal set of single-
mode gates is the Fourier transform operation, which is a
special case of phase-space rotation. The Fourier transform
operator F is the CV analog to the Hadamard gate for qubits [1].
The Fourier transform gate can be performed on the transverse
spatial DOF of photons by using the lens system shown in
Fig. 1 with z = f . Input and output planes which are related
by a Fourier transform sit in the focal planes of the lens with
focal length f . In this case, Eqs. (9) and (10) become

F†xdF = f

k
pd , (13)

F†pdF = − k

f
xd . (14)

To change to dimensionless variables, we choose d = √
f/k,

which leads to

F†xF = p, (15)

F†pF = −x. (16)

The application of F takes position eigenstates to wave-
vector eigenstates (and vice versa). Using Eqs. (15) and (16)
we get

F|p〉 = |x = p〉, (17)

F|x〉 = |p = −x〉, (18)

where, for example, the ket |x = p〉 is an eigenvector of the
position operator with eigenvalue p. This reflects the fact that
after the application of the Fourier operation the dimensionless
transverse position in the output plane corresponds to the
dimensionless momentum in the input plane and vice versa (up
to a sign). Thus, after the Fourier transformation, the angular
spectrum of the photon field in the input plane is mapped onto
the position wave function of the photon field in the output
plane:

Wout(x) = 〈x|F|ψin〉 = 〈p|ψin〉 = Vin(p). (19)

C. Phase-space rotations

The operator describing rotations in the phase space
of a CV quantum system with one DOF can be

written as

Fθ ≡ eiθ/2 exp

(
−iθ

x2 + p2

2

)
. (20)

Its action on the pair of conjugated operators x and p is

F†
θ x Fθ = x cos θ + p sin θ, (21)

F†
θ p Fθ = −x sin θ + p cos θ. (22)

For the spatial DOF of a single-photon field, rotations in
phase space can be implemented using the fractional Fourier
transform (FRFT) [49–51]. It is possible to implement the
FRFT on spatial DOF with free-space propagation alone [50]
or with linear optical systems composed of free propagation
and lenses [49]. Using the lens system shown in Fig. 1,
we set the distance of propagation to zθ = 2f sin2 θ/2 and
define f ′ = f sin θ , which is the fractional focal length. Now,
introducing the scaling parameter d = √

f ′/k on the phase-
space operators, it is possible to describe this optical system
as a fractional Fourier transform operator: Fθ = U(zθ ,f ). It
is worth emphasizing that the appropriate scaling factor d =√

f ′/k is crucial for the description of the field transformation
through the optical system U(zθ ,f ) as an FRFT (i.e., a rotation
in phase space). Here θ is the parameter which defines the
“order” of the FRFT (or the rotation angle in phase space).

Note that the Fourier transform operation defined previ-
ously is the particular case where θ = π/2. This optical setup is
able to implement rotations in the range 0 < θ < π . Rotations
of angles larger than or equal to π can be implemented
with two or more composite FRFT systems, as long as
the f ′ parameter is the same in every consecutive FRFT
system. It is straightforward to show that the matrix element
Fθ (x,x ′) = 〈x|Fθ |x ′〉 is given by

Fθ (x,x ′)=Aθ exp

[
i
cot θ

2
(x2 + x ′2)

]
exp

(
−i

xx ′

sin θ

)
, (23)

where Aθ = √
i exp(iθ )/2π | sin θ |. In optics, Fθ (x,x ′) is the

usual FRFT kernel, and it is also equivalent to the propagator
of the simple quantum harmonic oscillator (of frequency ω)
with the parameter θ = ω(t − t0) [51].

D. Squeezing

In CV systems the operator

S = exp

[
− i

2
ln r (xp + px)

]
(24)

corresponds to a squeezing operation with the squeezing
parameter r . The action of this operator on the pair of
conjugated variables is

S† x S = rx, (25a)

S† p S = 1

r
p. (25b)

In principle, the squeezing gate for the transverse spatial
DOF is simply the focusing by a lens. A collimated beam,
focused by a convergent lens, assumes its waist at the focal
plane. The width of the beam at the waist depends on the
focal length and on parameters such as the position and
waist before the lens. Nevertheless, this beam may diverge
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f1

L1 L2

f1 f2 f2

FIG. 2. (Color online) Optical setup for the squeezing gate. Two
lenses L1 and L2 with focal lengths f1 and f2, respectively, are placed
in a confocal setup.

drastically after passing through the focal plane, especially in
the case of large squeezing. To construct an optical squeezing
system which preserves the collimation of the beam, we make
use of the system shown in Fig. 2. Two lenses of focal
lengths f1 and f2 are arranged in a confocal configuration,
resulting in an optical system described by the operator
Uf1Uf2 ≡ U(z = f1,f1)U(z = f2,f2). This system implements
two consecutive Fourier transform optical gates F π

2
for the

dimensional phase-space operators (xd ,pd ), each one with a
different focal length parameter. Direct application of Eqs. (9)
and (10) shows that the complete transformation performed by
this system is

U†
f2

U†
f1

xd Uf1Uf2 = −f2

f1
xd , (26)

U†
f2

U†
f1

pd Uf1Uf2 = −f1

f2
pd , (27)

which is the squeezing gate with squeezing parameter
r = f2/f1. Thus, we have S = U(f1,f1)U(f2,f2). We note that
this transformation is a squeezing operation regardless of the
scaling parameter d. We can still keep d = √

f ′/k, which is
necessary for the application of the FRFT gate, as our scaling
parameter. It is essential to keep the same scaling parameter
along the entire computation in order to be able to describe
all the operations in the same phase space. Note that this gate
is equivalent to an imaging system with magnification, and
the minus sign accounts for the inversion of the image, which
could be undone with a phase-space rotation. For f1 = f2 we
have as output the inverted image of the input field with unit
magnification. The application of the squeezing optical gate
(Fig. 2), with the input plane corresponding to position space,
squeezes the transverse operators according to Eqs. (25). Its
application when the input plane corresponds to momentum
space (i.e., after the application of a Fourier transform on the
input field) squeezes the operators in the opposite way, dividing
x by r and multiplying p by r .

E. Pauli gates

The CV analog to the usual Pauli gates σz and σx are defined
as

X(t) = exp(−itp) (28)

and

Z(s) = exp(isx), (29)

where s and t are displacement parameters. The action of these
gates is to displace the position and momentum eigenstates as
X(t) |x〉 −→ |x + t〉 and Z(s) |p〉 −→ |p + s〉. The elements

of the computational basis {|x〉} are the eigenstates of Z(s)
with eigenvalues eisx , while the elements of the conjugate
basis {|p〉} are eigenstates of X(t) with eigenvalues e−itp. The
evolution of the phase-space operators under the action of the
CV Pauli operators is

X†(t) x X(t) = x + t, (30a)

X†(t) p X(t) = p, (30b)

and

Z†(s) x Z(s) = x, (31a)

Z†(s) p Z(s) = p + s. (31b)

Equations (30) and (31) imply that the CV Pauli gates
will displace the wave function of the single-photon state.
For position displacement, we have

Wout(x) = 〈x|X(t)|ψin〉 = 〈x − t |ψin〉 = Win(x − t). (32)

For wave-vector displacement, we have

Vout(p)=〈p|Z(s)|ψin〉 = 〈p − s|ψin〉 = Vin(p − s). (33)

Position displacements of the transverse wave function of
paraxial photons could be implemented with the help of a pair
of reflecting or refracting optical elements such as mirrors or
prisms. The optical elements should be positioned in the path of
the optical field in order to displace it with respect to the axis of
propagation. For momentum displacements, one would have
to first map the momentum distribution onto position space
and then apply the displacement. This scheme, nevertheless,
might be difficult to implement for small displacements (in
comparison to the width of the transverse distribution).

A more realistic scheme makes use of a basic property
of the Fourier transform, namely the shift theorem [52]:
translation of one variable corresponds to a linear phase
shift in its conjugated variable. The angular spectrum of the
position-displaced wave function Eq. (32) is

Vout(p) = 〈p|X(t)|ψin〉 = e−itp〈p|ψin〉 = e−itp Vin(p). (34)

The wave function in position representation relative to the
displaced angular spectrum Eq. (33) is

Wout(x) = 〈x|Z(s)|ψin〉 = eisx〈x|ψin〉 = eisx Win(x). (35)

Thus, displacement in one variable can be achieved by
inserting a linear phase shift on its conjugate variable. For
example, a phase shift sx in the position domain corresponds
to a displacement s in the wave-vector domain. In practice, this
can be achieved with the spatial DOF of photons by inserting
an optical element which introduces a linear phase shift on
the transverse field distribution. We call this element a “linear
phase shifter” (LPS). It could be, for example, a transparent
plate with length l and transverse linear modulation of its
refractive index: n(xd ) = n0xd [see Fig. 3(a)]. In this case the
optical path varies linearly with the transverse position, so
the displacement in the conjugated dimensionless variable is
s = n0ld. Another possibility is a wedge-shaped plate with
constant refractive index [see Fig. 3(b)]. In this case the
linear modulation of the width of the phase plate makes the
optical path vary linearly with the transverse position. Perhaps
the most promising method with current technology is to
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x x

z z

(a) (b)

FIG. 3. (Color online) Linear phase shifter. (a) Representation
of the graded-refractive-index LPS. It is composed of a transparent
optical plate with width l and the refractive index n(x) is a linear
function of the transverse position x. (b) Wedge-shaped LPS.
Transparent optical plate with constant refractive index and thickness
that changes linearly with transverse position.

produce the linear phase shift with a programmable spatial
light modulator.

The application of the LPS corresponds to the application
of the Z(s) CV Pauli gate. Displacements of the position
or momentum coordinates can be achieved by inserting the
LPS in the Fourier or imaging plane of the target photon
field, respectively. In this way, displacement gates in general
involve LPSs and Fourier transforms. Figure 4(a) shows the
implementation of a displacement in position space. A Fourier
transform gate maps the angular spectrum of the photon field
onto position space. The LPS is then applied to the field
distribution at the focal plane of the first lens and another
Fourier transform gate is performed to map the initial position
distribution (now displaced) back to position space. In terms of
the operator formalism, the sequence of operations necessary
to implement a displacement of the position wave function is

X(t = s) = F† Z(−s) F, (36)

which can be proven using Eqs. (15) and (29).

f f f f

(a)

(b)

FIG. 4. (Color online) (a) Optical setup for the implementation
of the position displacement gate. The first Fourier transform system
maps the angular spectrum of the input state to the transverse field
distribution at the forward focal plane, where a linear phase shift
is introduced. The second Fourier system maps the phase-shifted
field distribution back to wave-vector space, resulting in a displaced
position distribution. (b) Optical setup for the implementation of the
wave-vector displacement gate. An LPS is applied on the initial field
distribution and thus displaces its angular spectrum.

The Hermitian conjugate of the Fourier transform gate
(or the inverse Fourier transform gate) involved in the CV
Pauli gate X(s) expressed in Eq. (36) can be implemented
with three consecutive Fourier transform gates: F† = F3, or a
single Fourier transform and coordinate inversion. Thus, the
optical setup illustrated in Fig. 4(a) implements the sequence
F Z(−s) F, which displaces the wave function as

Win(x) → Wout(x) = Win(−x − s), (37)

where the minus sign multiplying the position coordinate is due
to the inversion caused by the two Fourier transform gates.
If it is necessary to recover the initial orientation, another
imaging system F2 can be applied at the end of the operation.
Figure 4(b) shows the optical setup required to perform a
displacement in the momentum domain. It consists of an
LPS, which is applied directly in the path of the photon field,
and shifts its phase in position space, according to Eqs. (33)
and (35).

We finally note that the choice of the scaling parameter d

affects the amount of displacement introduced by the optical
systems described in Figs. 4(a) and 4(b) but, once its value is
fixed, it is always possible to describe the field transformation
through these optical systems as a CV Pauli operation. The
choice of the scaling parameter as d = √

f ′/k is mandatory
for the phase-space rotation gate and thus might be adopted
for the CV Pauli gates.

F. Higher-order gates

One advantage of the spatial DOF of photons is that higher-
order gates of the form

B(n,α) = exp(iαxn) (38)

can be performed by simply modifying the spatial profile of
the field. Arbitrary modulation of the transverse profile of
an optical beam can be made with a spatial light modulator
(SLM). This device can work by transmission or reflection and
can be adjusted to perform an arbitrary phase modulation on
the transverse profile of the transmitted or reflected beam. The
phase modulation can be applied in position space by directly
placing the SLM on the path of the beam. Phase modulations
in momentum space can be performed with the help of an
additional Fourier transform gate. Note that the SLM can
also apply linear or quadratic phases, thus allowing for the
implementation of all single-photon gates discussed above.

Finally, it is important to remark that errors in the z

positioning of the optical elements (SLM or lenses) translates
into an error in the single-photon gates. However, if the
Rayleigh length associated with the single-photon sources is
large, error in the z positioning of an optical element leads to a
negligible error in the implementation of the single-photon
gates. Also, there is a limit to the resolution of position
detection that can be achieved using an array of photodiodes,
such as in an intensified CCD (ICCD) camera. The spatial
resolution of the transverse position is limited to the size of
the pixels in the ICCD camera, which have typical dimensions
of a few micrometers. Nevertheless, one can always magnify
the transverse distribution of a single photon with an imaging
system. The magnification could be applied in order to achieve
the desired degree of precision in the transverse position
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discrimination, and it would be limited ultimately by the size
of the array of photodiodes, which is approximately 1 cm in
most commercial ICCD cameras.

IV. TWO-PHOTON GATES

A general experimental difficulty for quantum-information
processing with light is the need for nonlinear optical pro-
cesses. For example, for universal quantum computation with
CVs defined in the quadrature variables of single modes,
a Kerr-type nonlinearity is required to realize higher-order
quantum gates [2]. On the other hand, for universal quantum
computation with photonic qubits, optical nonlinearity is
needed to perform controlled logic operations of two or more
qubits encoded in different photons [53]. In Ref. [39], it was
shown that this nonlinearity could be introduced using only
linear optical elements and postselection. This has allowed for
the proof-of-concept realization of a number of multiphoton
gates [54–58].

The one-way model of quantum computation [3] is an
interesting paradigm from the point of view of photonic
quantum computing, since it allows for the multiphoton gates
to be moved offline. In the one-way model applied to this
context, multiphoton gates would be used to construct an initial
entangled state. Processing then occurs through single-photon
measurements and classical feed forward. In this way, one
can replace deterministic multiphoton gates with probabilistic
entangling gates. Smaller-scale investigations even allow for
the use of probabilistic sources of entangled photons.

For CV spatial DOF of photons, single-photon gates to
arbitrary order are implemented only with linear optical
elements. However, a photon-photon interaction would be
required for two-photon CV gates such as a controlled-phase
gate [8]. Two-photon (or multiphoton) gates are required,
whether for direct quantum computation or for the construction
of cluster states in the one-way model. Even though the photon-
photon interaction is weak, small-scale implementation of this
sort of operation should be possible with current technology,
and efficiencies might be improved in the future with the
further development of photonic technology. We note that
investigations using the one-way model might take advan-
tage of the spatial entanglement produced from spontaneous
parametric down-conversion, which is discussed in Sec. V.

To illustrate the type of two-photon interaction required, we
outline a proof-of-principle method for entangling the spatial
variables of single photons using a nonlinear four-wave mixing
(4WM) interaction. The Hamiltonian describing the 4WM
process reads

B4WM ∝
∫

dρ

∫
dz[E(+)

1 E(+)
2 E(−)

s E(−)
i ] + H.c., (39)

where (E1,E2) and (Es ,Ei) are the field operators for the two
input and two output fields, respectively. The electric field
operator in the paraxial approximation is given by [59]

E(ρ,t) ∝ ei(kz−ωt)
∫

dqa(q)eiq·ρe−iq2z/2k, (40)

where ρ = (x,y) and q = (qx,qy) = (px,py)/h̄ are the two-
dimensional transverse components of the position vector r

and wave vector k. The operator a(q) annihilates a photon
with transverse wave vector q.

Substituting the field operator (40) into the Hamiltonian
(39) and integrating over z and ρ, one obtains

B4WM ∝ e−i	ωt

∫
dq1dq2dqssinc[(	k − 	q2)L]

×a(q1)a(q2)a†(qs)a†(q1 + q2 − qs) + H.c., (41)

where 	k = k1 + k2 − ks − ki , 	ω = ω1 + ω2 − ωs − ωi ,
and 	q2 = q2

1/2k1 + q2
2/2k2 − q2

s /2ks − q2
i /2ki , and it has

been assumed that the 4WM medium is large in the transverse
directions and of length L in the longitudinal direction. Let
us consider that frequency filters are used so that ω1 = ωi and
ω2 = ωs , which gives 	ω = 0 and 	k = 0. If the length of the
nonlinear medium L is small, the sinc function is practically
constant and the Hamiltonian can be written as

B4WM ∝
∫

dq1dq2dqsa(q1)a(q2)a†(qs)a†(q1 + q2 − qs)

+ H.c. (42)

Let us now return to the one-dimensional case. Application
of the Hamiltonian B4WM to the initial momentum state
|q1〉1 |q2〉2 |vac〉s |vac〉i gives the output state of signal and
idler photons

|ψ〉 = N

∫
dq|Q − q〉s |q〉i , (43)

where Q = q1 + q2. This state Eq. (43) is a maximally
entangled state or an Einstein-Podolsky-Rosen state. We note
that the 4WM process is not an implementation of a controlled-
phase gate, since application of B4WM to the entangled state
(43) does not result in a product state. Nevertheless, the
4WM process can be used to spatially entangle photons that
are initially in a separable state. In this fashion, we show
in the next section that it is possible to construct arbitrary
entangled cluster states which can be used for CV quantum
computation.

V. ONE-WAY COMPUTATION WITH SPATIAL
DOF OF PHOTONS

The one-way quantum computation model [3] extended to
continuous-variable systems [4–6] requires the production of
an appropriate entangled cluster state, which is determined by
the problem at hand. The basic recipe for the construction of
CV cluster states consists of the preparation of momentum
eigenstates with p = 0 and implementation of controlled
momentum displacement (CZ) gates to entangle different
nodes in the cluster. An example of a cluster state is shown in
Fig. 5. Each node represents one DOF of a photon or mode, and
the lines connecting each node represent entanglement, which
is produced via the CZ gate. The one-way computation is then
carried out by performing sequential projective measurements
on the individual nodes and classical feed forward of the
measurement results. For the power of universal computation,
it is necessary to perform both Gaussian and non-Gaussian
operations [4], just as in the quantum circuit model [2]. This
can be achieved using a cubic-order (or higher-order) gate or
by performing non-Gaussian measurements. We have shown
above that the complete set of single-photon gates can be
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FIG. 5. (Color online) Example of a cluster state. The circles
represent individual qumodes, and the lines represent entanglement,
created by a controlled-momentum displacement operation.

implemented on the spatial variables of single photons. We
now show that it is possible in principle to build CV cluster
states of photons. To build the entangled cluster state in the
spatial DOF of photons, one first prepares each photon in
a zero-momentum state |p = 0〉 and then applies the gate
sequence FjB4WMij to each pair of photons connected by a
line:

FjB4WMij |p = 0〉i |p = 0〉j = Fj

∫
dp|p〉i |−p〉j

= 1√
2π

∫ ∫
dxdx ′eixx ′ |x ′〉i |x〉j . (44)

Applying the above operations to every link between nodes
creates the CV cluster state.

A. Cluster-state computing with two degrees
of freedom per photon

One problem in quantum computing with single photons
is the weak nonlinearity, which is required for the two-
photon gate in Sec. IV. At present, the most immediate path
for experimental investigation of CV quantum computing
with spatial variables of photons is to produce entangled
photon pairs directly by using spontaneous parametric down-
conversion (SPDC) [60] and to exploit the bidimensionality
of the transverse space. This type of approach has been
employed in experimental investigations of qubit cluster
states [61]. The spatial properties of the two-photon state
from SPDC can be engineered in many ways [23,28,62,63].
Under appropriate conditions, SPDC produces states in
Einstein-Podolsky-Rosen-like states, which are equivalent
to cluster states up to local transformations. These cluster
states can be produced by exploiting both transverse spatial
DOF, that is, in the x and y directions. The SPDC state
is [23,63]

|ψ〉SPDC =
∫

v(q1 + q2)γ (q1 − q2)|q1〉|q2〉dq1dq2. (45)

Typically, the function γ is very large compared to v, and it
can be approximated by unity. The function v is the angular
spectrum of the pump laser beam [63]. If the pump beam is
well approximated by a plane wave, so that v(q) ≈ δ(qx)δ(qy),
we have the product of two entangled states:

|ψ〉SPDC =
∫

|qx〉|−qx〉dqx

∫
|qy〉|−qy〉dqy. (46)

x1

signal photon

signal photon

idler photon

idler photon

x1

x2

x2

y1

y2

y1

y2

x1

signal photon

signal photon

idler photon

idler photon

x2

y1

y2

y2

x2

y1

x1CZxy
1

CZxy
1

CZxy
2

(a)

(b)

FIG. 6. (Color online) Circuit diagram illustrating the generation
of CV cluster states using two spatial degrees of freedom per photon of
the two-photon state from SPDC. Evolution is from left to right. The
closed curves represent entanglement. The CZ gates are performed
on different spatial dimensions of the same photon. Generation of (a)
linear cluster state and (b) ring cluster state.

Applying a two-dimensional Fourier transform F2yF2x to one
of the photons, this state can be transformed to

|ψ〉SPDC ∝
∫ ∫

e−ix1x2 |x1〉|x2〉dx1dx2

×
∫ ∫

e−iy1y2 |y1〉|y2〉dy1dy2, (47)

which is the product of two two-mode clusters states. The x

and y DOF of a single photon j can be entangled by applying
a single-photon CZj

xy gate:

CZj
xy = exp(ixjyj ). (48)

This operation can be easily implemented using a spatial light
modulator, for example. Applying the gate CZ1

xy or CZ2
xy

results in a linear cluster state, as in Fig. 6(a). Applying
CZ1

xyCZ2
xy results in a ring cluster, as in Fig. 6(b).

Interesting investigations might exploit the angular spec-
trum transfer [63] of the pump beam to the two-photon state
(45). In this way, it is possible to produce non-Gaussian
entangled states as in Ref. [28], which could serve as the CV
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cluster state. We leave further investigation of the generation
of useful non-Gaussian states for future work.

VI. DISCUSSION AND CONCLUSIONS

The quantum correlations between the spatial degrees of
freedom of photons produced in parametric down-conversion
have been studied for more than 20 years. Even though
the fundamental aspects of these correlations have been
studied since the early 1990s, their implications and possible
applications in quantum computation and information are still
subjects of intense research. On the one hand, the scalability
of this system toward the implementation of reliable quan-
tum computers is quite difficult with current technological
resources. On the other hand, there have been a number of
proof-of-concept experiments, particularly with polarization-
entangled photons, which have strongly contributed to advance
the understanding of quantum entanglement and its application
in quantum information. In this regard, we expect spatial
DOF to allow for important investigations of CV quantum-
information processing.

Spatial degrees of freedom of photons are continuous
variables, but the experiments are performed in the photon
counting regime. In traditional quantum optics, it is very often
the opposite. Even though the photon number is a discrete
variable, the intensities of optical fields are converted into
electric currents, and their fluctuations are analyzed in terms
of the continuous-variable field quadratures. In this paper, we
discussed the use of the spatial degrees of freedom of photons
as a continuous variable associated to a single photon in a
multimode field. The detection of a single photon, or two
“single” photons in coincidence, postselects the state of the
field. This allows one to describe the single-photon multimode
field with the same quantum formalism as a nonrelativistic
point particle.

Using this description of the single-photon multimode field,
we presented methods for the implementation of the basic log-
ical gates and demonstrated that it is possible to produce entan-
gled states of several photons, at least in principle. This allows
for the construction of CV cluster states, which can be used for
the one-way quantum computation architecture. We would like
to stress the experimental simplicity for the implementation of
many important operations. Rotations in phase space, Pauli
gates, and squeezing can be implemented with free propa-
gation and lenses, and higher-order gates can be performed
with a spatial light modulator. However, conditional operations
are more complicated. Our proposal using four-wave mixing
shows that it is possible to entangle two initially disentangled
photons, which is equivalent to a conditional operation. Both
the implementation of conditional gates and the production
of clusters with this method are strongly limited by the low
efficiency of the process. However, even at the low-efficiency
regime, it could be quite useful in preliminary investigations.
Moreover, a notable technical evolution in the efficiency of
nonlinear optical processes, such as the development of peri-
odically poled nonlinear crystals, has occurred in the last few
years.

In conclusion, we have presented the basic elements
necessary to the use of the spatial degrees of freedom of
photons in quantum information and quantum computation.
We hope that this will open the door for novel experimental
investigations of CV quantum-information processing.
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