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We generalize the binary quantum counting algorithm of Lesovik, Suslov, and Blatter [Phys. Rev. A 82,
012316 (2010)] to higher counting bases. The algorithm makes use of qubits, qutrits, and qudits to count
numbers in a base-2, base-3, or base-d representation. In operating the algorithm, the number n < N = dK is
read into a K-qudit register through its interaction with a stream of n particles passing in a nearby wire; this
step corresponds to a quantum Fourier transformation from the Hilbert space of particles to the Hilbert space of
qudit states. An inverse quantum Fourier transformation provides the number n in the base-d representation; the
inverse transformation is fully quantum at the level of individual qudits, while a simpler semiclassical version
can be used on the level of qudit registers. Combining registers of qubits, qutrits, and qudits, where d is a prime
number, with a simpler single-shot measurement allows us to find the powers of 2, 3, and other primes d in the
number n. We show that the counting task naturally leads to the shift operation and an algorithm based on the
quantum Fourier transformation. We discuss possible implementations of the algorithm using quantum spin-d
systems, d-well systems, and their emulation with spin-1/2 or double-well systems. We establish the analogy
between our counting algorithm and the phase estimation algorithm and make use of the latter’s performance
analysis in stabilizing our scheme. Applications embrace a quantum metrological scheme to measure voltage (an
analog to digital converter) and a simple procedure to entangle multiparticle states.
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I. INTRODUCTION

The representation of an integer number n and its decom-
position into prime factors are basic mathematical operations.
Quantum mechanics offers a new perspective on these tasks,
as has been well known since the seminal work of Shor
[1] on the efficient factorization of large numbers, with a
drastic impact on the security of codes. But even the counting
of small numbers and their factorization may prove useful,
e.g., in the manipulation of physical number states (and
superpositions thereof) or in the entanglement of flying qubits
[2–4]. A quantum algorithm to count n < N = 2K particles
propagating in a wire using an array of qubits (a K-qubit
register) has been proposed recently [4]; a very similar scheme
has been proposed by D’Helon and Milburn [5] in order to
find the number state distribution of a vibrational excitation
in a system of trapped laser-cooled ions. Besides providing
the number n in a binary form (base-2 counting), a simplified
version of this algorithm tests for the divisibility of n by 2k

for a given k � K and thus provides the power of 2 in the
factorization of n. In the present paper, we generalize this
algorithm to perform a base-d counting and a test for the
factor dk in the decomposition of n.

In order to accomplish this goal, we make use of a minimal
formulation of the counting task in terms of the problem
of distinguishing between different known quantum states
in a single-shot measurement. This reduction to a few very
basic elements naturally connects the counting task with
the quantum Fourier transformation and provides us with
a constructive scheme for the setup of a (nondemolition)
quantum counting algorithm. We study various possible
(hardware) implementations of this algorithm, paying special
attention to the case of a ternary (base 3) counting system
involving qutrits as elementary counting devices. We establish

the relation between our quantum counting algorithm and the
phase estimation algorithm and discuss several applications.

Our counting algorithm is inspired by the problem of
counting in mesoscopic systems [6,7] and in quantum optics
[8]. A straightforward setup counting particles in a noninvasive
manner requires of the order of N2 individual counting
elements (see below). A more sophisticated setup providing
a unary counting scheme reduces this effort to an order-N
process, and a drastic further reduction to a (logd N )2 scaling
can be achieved when going over to a counting base d.

The base-2 algorithm proposed in Ref. [4] involves two
steps; in the first (analog) step, a finite train of n charged
particles traversing a quantum wire (see Fig. 1) is coupled
to an array of K nearby qubits, thereby rotating the states
of the qubits in a prescribed manner. In more abstract terms,
this step corresponds to reading a number state |n〉� ∈ H� in
the Hilbert space of number states of particles into a state
|�n〉Q of a K-qubit register in the Hilbert space HQ of the K

qubits. More generally, a superposition of number states gets
entangled with the K-qubit register (not copied, as demanded
by the no-cloning theorem) during the counting process. In
the second step, the qubit state in HQ is manipulated and read
out, providing either the maximal power of 2 contained in n

or the number n in binary form, depending on the readout
algorithm.

These two steps correspond to two quantum Fourier
transformations: expressed in the usual (cf. Ref. [9]) compu-
tational basis |0〉Q = |00 . . . 0〉Q,|1〉Q = |00 . . . 1〉Q, . . . ,|2K −
1〉Q = |11 . . . 1〉Q ∈ HQ of the K-qubit register, the passage of
the n particles in the quantum wire transforms the initial state

|�0〉Q = F(|0〉Q) = 1√
N

2K−1∑
k=0

|k〉Q, (1)
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FIG. 1. Schematic representation of the quantum counting algo-
rithm (shown for the case of base-2 counting with qubits). A particle
number state |n〉� is fed into a quantum wire to undergo quantum
counting. The interaction between the charged particles and the qubits
rotates the spin or qubit states, taking the initial state F(|0〉Q) (the
lowest Fourier harmonic of the computational basis |k〉Q) into the
state F(|n〉Q) (the nth Fourier harmonic). An inverse quantum Fourier
transformation with a subsequent single-shot measurement in the
computational basis provides the number state |n〉Q. Alternatively, a
simple qubit rotation followed by a single-shot measurement provides
the maximal factor 2K in n.

i.e., the lowest Fourier harmonic of the K-qubit register, into
the nth harmonic

|�n〉Q = F(|n〉Q) = 1√
N

2K−1∑
k=0

exp(2πi nk/2K )|k〉Q, (2)

the quantum Fourier transform of the state |n〉Q =
|n1 n2 . . . nK〉Q, with n written in the binary form n =
n1 n2 . . . nK = n12K−1 + n22K−2 + · · · + nK20 (cf. Ref. [9]).

Depending on the desired information (precise counting or
divisibility) and the available hardware (an operating quantum
computer or a set of qubits), the readout of the qubit register
can be done in various ways. The most efficient version for
the second step of the algorithm is the application of a second
(inverse) quantum Fourier transformation F−1 on the qubit
state F(|n〉Q), taking it back into the state |n〉Q. A simultaneous
measurement of the K qubits then provides the particle number
n in binary form; in the case of a superposition of particle
number states, the measurement will execute a projection onto
one of them. Alternatively, the number state may be used
in a further computation. However, performing an inverse
quantum Fourier transformation on the state F(|n〉Q) requires a
quantum computer (or at least those qubit operations required
in the execution of a quantum Fourier transformation). Instead,
we can make use of a semiclassical Fourier transform [10],
a conditional measurement algorithm involving a sequential
readout where the reading of the j th qubit depends on the
results of the previous j − 1 measurements. Finally, a simple
readout is available if we are interested in the power of 2
contained in n rather than n itself. In this case, a simultaneous
(rather then conditional) readout algorithm can be applied
directly to the state F(|n〉Q); this algorithm then provides a
divisibility check of n by 2k , k < K .

The present paper deals with the generalization of this algo-
rithm. The most obvious task to generalize is the determination
of other powers of primes in n, i.e., to find the factorization
of n, n = 2k2 3k3 5k5 . . .. This can be achieved by going over

to generalized qubits; three-level systems, or qutrits; d-level
systems, or qudits; etc. Equivalently, this corresponds to
changing the representation of the number n from binary
(base 2) to ternary (base 3), quinary (base 5), etc. Again,
the two-step algorithm first transfers the information from the
physical number state |n〉� into the computational K-qudit
register [→ F(|n〉Q)] through a particle-qudit interaction and
then extracts the information in the qudit register via an inverse
Fourier transform (→ |n〉Q). This readout step involves a full
quantum transform on the level of each single qudit, while a
semiclassical transform [10] suffices to extract the information
on the level of the K-qudit register.

In order to carry out the above program, it is very helpful
to have an abstract understanding of the counting process.
Indeed, a minimal abstract formulation of quantum counting
in an N -dimensional Hilbert space (allowing us to distinguish
or count at most N objects) naturally leads us to two types
of basis states, the computational basis (corresponding to
the states |n〉Q), in which the result of the counting process
is measured, and the counting basis |ψn〉Q, in which the
actual counting process is done; it turns out that just these
two basis sets are naturally related by the quantum Fourier
transformation, |ψn〉Q = F(|n〉Q). Furthermore, the abstract
analysis of the counting process provides us with a recipe
for how the algorithm can be physically implemented.

In the following, we compare the efficiency of various
quantum counting algorithms (Sec. II) and then briefly repeat
our previous base-2 quantum algorithm with qubits, including
the sequential and single-shot readout schemes; see Sec. III.
We then present in Sec. IV our basic analysis of the quantum
counting process, providing a natural link between quantum
counting and the quantum Fourier transformation as well as
a constructive scheme that helps us to generalize counting
to a base-d system. We then proceed with the simplest
generalization to qutrits in Sec. V, the problem of counting
in a base-3 representation or power counting of 3, and discuss
its further generalization to qudits. To be specific, we consider
an implementation with a three-level system in the form of
three quantum dots and also discuss various ideas for other
hardware implementations of the base-3 algorithm in Sec. VI,
e.g., a spin-1 system, serving rather as a Gedanken experiment
for illustration, and two practical versions of emulating a
qutrit with qubits. In Sec. VII, we discuss an interesting
correspondence between our counting algorithm and the phase
estimation algorithm [9,11,12] (no such correspondence is yet
known for our divisibility check) and apply this insight in
the proposal for a quantum voltage detector (an analog-digital
converter). Another application, a scheme to create multipar-
ticle entangled states in a Mach-Zehnder interferometer, is
discussed in Sec. VIII. We summarize and conclude in Sec. IX.

II. EFFICIENCY OF QUANTUM COUNTING

In a broader context, the efficiency of our quantum counting
algorithm has to be compared with other schemes. For exam-
ple, the most straightforward noninvasive way of counting the
number of (charged) particles flowing in a wire (directed along
x) is to use a spin counter polarized in the xy plane and rotating
the state by an incremental angle φ = π/N (around the z axis)
upon passage of a particle [6]. This spin rotation is achieved
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through the magnetic field pulse generated by the passing
charge [13,14]; see also Refs. [8,15] for a related experiment
in a quantum optical setup. The precise correspondence of
the angle with the number of passed particles then requires
an accurate measurement, to a precision of φ = π/N , of the
spin counter’s final-state polarization; this either necessitates
a large number M > N2/π2 of repetitions of the counting
experiment or a single-shot readout of M identical counters
all measuring the passage of the particles: Measuring the spin
along the y axis, the (theoretical) probability of finding it
pointing upward is given by P ↑ = 〈m↑〉k/M = cos2(nφ/2),
where 〈m↑〉k denotes the average of finding m↑ of the M spins
pointing up in a sequence of k → ∞ realizations of the entire
experiment. On the other hand, the one-time measurement m

↑
m

provides the experimental result P ↑
m = m

↑
m/M , from which we

can find the number n = (2/φ) arccos[(P ↑
m)1/2]. As this proce-

dure is a statistical one, we have to determine how many spins
(measurements) M are needed to predict the particle number n

with certainty. We then require that the difference in probabil-
ity (we assume N > n � 1) δP ↑ = |P ↑(n + 1) − P ↑(n)| ≈
|∂nP

↑| = (φ/2) sin(nφ) has to be much larger than the
uncertainty in the measurement, δP ↑ � [〈(δm↑)2〉k]1/2/M ,
where [〈(δm↑)2〉k]1/2 ≡ [〈(m↑ − 〈m↑〉k)2〉k]1/2. The statistics
of the present Bernoulli process [with two possible outcomes
↑ and ↓ measured with probabilities P ↑ and (1 − P ↑)] is
described by the binomial statistics. The uncertainty then is
〈(δm↑)2〉k = P ↑(1 − P ↑) M , and we find that

M � 1/φ2 > N2/π2 � 1 (3)

spins are needed in order to accurately measure the particle
number n < N . This simple counting measurement is shot
noise limited; e.g., readers familiar with the scattering formal-
ism of quantum transport easily identify the two outcomes,
“up” and “down,” with the transmission and reflection of
particles at an obstacle. The probability P↑ corresponds to the
transmission coefficient T of particles, P↑M is equivalent to
the number of transmitted particles, and 〈(δm↑)2〉k corresponds
to the shot noise in the particle transmission.

III. QUBITS: COUNTING POWERS OF 2

We briefly go through the base-2 counting algorithm
illustrated in Fig. 1, where the n < N = 2K particles to be
counted flow in a quantum wire along x. Single electron
pulses can be generated by appropriate voltage pulses [6,16]
or through injection from a quantum dot [17], and the
counters are conveniently thought of as individual spins (cf.
Refs. [6,13,14]). We use spin states |↑〉 and |↓〉 polarized
along the z axis as our computational basis; equivalently [18],
we refer to qubit states |0〉 and |1〉 with |↑〉 ↔ |0〉 and
|↓〉 ↔ −i|1〉.

Preparation. Polarizing the K spins or qubits along the
positive y axis, | + y〉j = [|↑〉j + i|↓〉j ]/

√
2, j = 1, . . . ,K ,

the K-qubit register resides in the product state |�0〉Q =∏K
j=1[(|0〉j + |1〉j )/

√
2], which is the equally weighted sum

of K-qubit register states |0〉Q,|1〉Q, . . . ,|2K − 1〉Q, |�0〉Q =
(1/

√
2K )

∑
k |k〉Q and hence coincides with the lowest

harmonic in the Fourier transformed computational basis,
|�0〉Q = F(|0〉Q).

Counting and Fourier transformation. The passage of a par-
ticle rotates the spins in the xy plane. The couplings are chosen
such that the j th spin is rotated (counterclockwise) by the
amount φj = 2π/2j [a rotation by Uz(φj ) = exp(−iφjσz/2),
with σz being a Pauli matrix]. After passage of n particles,
the j th spin ends up in the state [|↑〉j + i exp(2πi n/2j )
|↓〉j ]/

√
2, and the K-qubit register resides in the product state

|�n〉Q = ∏K
j=1{[|0〉j + exp(2πi n/2j )|1〉j ]/

√
2}. Using the

binary representation of integers k = k12K−1 + · · · + kK20 =
k1 k2 . . . kK , we rewrite the product over qubit states as a sum
over register states,

|�n〉Q =
K∏

j=1

|0〉j + exp(2πi n 2K−j /2K )|1〉j√
2

(4)

= 1√
2K

∑
k1,...,kK=0,1

e2πi n(
∑K

l=1kl2K−l )/2K |k1 . . . kK〉Q

= 1√
2K

2K∑
k=1

e2πi n k/2K |k〉Q,

and find that |�n〉Q is nothing but the nth harmonic F(|n〉Q).
Hence, the passage of the n particles takes the state F(|0〉Q)
into the nth harmonic F(|n〉Q). We call the states |n〉Q the
computational basis, and the transforms |�n〉Q = F(|n〉Q)
define the counting basis. The fact that the qubits in the
K-qubit register reside in a product state and hence remain
unentangled [10,12] is a crucial element of our algorithm
and, in fact, is decisive for the next step, the readout of the
result with the help of a semiclassical quantum Fourier (back)
transformation.

Readout and inverse Fourier transformation. The semiclas-
sical quantum Fourier (back) transformation provides us with
the desired result, the binary representation of n. Measuring
the first spin along the y axis, we store a 0 in the first
position nK of the binary number if we find it pointing
upward (even parity) or a 1 if the spin points down (odd
parity). In our conditional readout algorithm, this result (the
parity) is used to define the direction along which the second
spin is measured, along the y axis in the case of even
parity [we store a 0 (1) in nK−1 if the spin is pointing
up (down)] and along the −x axis if the parity of n in
odd. The iteration of the readout algorithm is straightforward:
The j th spin is measured along the direction mj−1φj , with
the integer mj−1 = nK−j+2 . . . nK−1nK corresponding to the
binary number encoded in the j − 1 previous measurements.
The j th position in the binary register then assumes a value
nK−j+1 = 0 or nK−j+1 = 1, depending on the measurement
result, 0 for a spin pointing along the axis and 1 for a spin
pointing opposite.

In order to render the algorithm more efficient, rather
than rotating the axis of measurement, the spins are rotated
backward by the corresponding angles. These rotations by
−mj−1φj are conveniently done incrementally: After mea-
surement of the j th spin with outcome 0 or 1, all spins J > j

are rotated by −nK−j+12j−1φJ . These rotations undo the
action of odd-numbered groups of particles: The first rotation
by −2πnK 1/2J acting on the qubits J > 1 compensates
for the last odd-numbered particle. The second rotation by
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FIG. 2. Counting of n = 7 particles by K = 3 qubits. After
passage of the particles, the initial state with all spins pointing
along the y axis and corresponding to the lowest Fourier harmonic is
transformed to the final state, the nth Fourier harmonic with properly
rotated spins. The individual counter qubits are then measured
(M) and the binary digits nj , j = 3,2,1 are determined in reverse
order. After each measurement, the remaining qubits are rotated
(R) to undo the counting of the corresponding moduli: Following
the measurement of the first qubit, the rotations by the last (odd
numbered) particle are undone. After measurement of the second
qubit, the rotation by the last odd-numbered pair is undone.

−2πnK−1 2/2J acting on the qubits J > 2 compensates for
the last odd-numbered pair and so on. These rotations make
the next spin to be measured point up or down since the
action of those particles giving an intermediate result has been
subtracted. The entire algorithm is illustrated in Fig. 2 for the
case of n = 7 particles counted by K = 3 qubits.

Formally, the availability of a sequential readout algorithm
can be derived from a suitable representation of the product
state equation (4): the fraction n/2j in the phase exp(2πi n/2j )
of the j th qubit has to be known only modulo 1, and making
use of the relation

n

2j

∣∣∣
mod(1)

= 0.nK−j+1 . . . nK

= nK20 + nK−121 + · · · + nK−j+12j−1

2j
, (5)

the j th qubit state can be written in the form [|0〉j +
exp(2πi 0.nK−j+1 . . . nK )|1〉j ]/

√
2, where we make use of

the binary representation of fractions 0.n1n2 . . . nK = n1/2 +
n2/4 + · · · + nK/2K ; see Ref. [9]. The final state after passage
of the particles can then be written in the form

|�n〉Q =
K∏

j=1

|0〉j + exp(2πi 0.nK−j+1 . . . nK )|1〉j√
2

. (6)

This representation demonstrates that the state of the first qubit
j = 1 involves only the smallest digit nK of the sought number
n, the second one involves the fraction 0.nK−1nK , and so on.
Hence, each qubit state requires knowledge of the states of
previous qubits, and its measurement adds one digit more to
the binary representation of n.

Divisibility by 2k . A variant of the above counting algorithm
provides a test for the divisibility of n by powers of 2. Consider
the state of the first j = 1,2, . . . ,k � K spins after the passage
of n particles. If the number n contains the factor 2k , then the k

qubits will all point along the positive y axis [and, for k < K ,
the (k + 1)th qubit will point down; alternatively, if n = 2K

then all spins in the register have returned to their initial state
pointing along y]. A single-shot measurement of the K-qubit
register along the y axis thus provides the (maximal) factor 2k

in n. The formal proof of this statement is given in Ref. [4].

IV. DISTINGUISHABILITY AND QUANTUM COUNTING

We now reduce the problem of quantum counting to the
task of distinguishing between quantum states. This reduction
will quite naturally lead us to the definition of two basis
sets, one serving the counting process itself by admitting
a simple manipulation of phases during the counting step
(the computational basis) and the other keeping track of the
counting (counting basis); the two are related by the operation
of quantum Fourier transformation.

We start from the premise that quantum counting cor-
responds to the process of associating distinct states of an
auxiliary quantum system (the counter) to the size (cardinality)
of a physical state. We assume that we want to count at most N
objects; hence, our auxiliary quantum system shall count the
objects modulo N . During the counting process, the initial state
|�0〉 of the counter is, upon passage of n objects, transformed
to the final state |�n〉 (we can safely drop the index Q in this
section). We define the unitary operation C1 to describe the
passage of one particle,

|�1〉 = C1|�0〉, (7)

and a simple iteration produces the state

|�n〉 = Cn
1|�0〉 ≡ Cn|�0〉 (8)

upon passage of n particles. We now require that we can
distinguish between the states |�n〉 and |�0〉 in a single-shot
measurement, implying that the states should be orthogonal,
〈�n|�0〉 = 0. So far, we only require that we can distinguish
between “no particles” associated with the state |�0〉 and a
state with “some particles n” with 0 < n < N and associated
with the state |�n〉, without being able to decide between
different number states with different n. It turns out that a setup
solving this reduced task is also able to distinguish between
the different particle number states |�n〉. Indeed, using Eq. (8)
and the fact that 〈�n|�0〉 = 0 for all 0 < n < N , we find that
(we choose 0 < l < n < N)

〈�l|�n〉 = 〈�0|C†
l Cn|�0〉 = 〈�0|Cn−l|�0〉 (9)

= 〈�0|�n−l〉 = 0,
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and hence, the states |�n〉 are all orthogonal and distinguish-
able. Finally, our wish to count modulo N requires cyclicity,
i.e.,

CN |�0〉 = exp(i	)|�0〉. (10)

If the dimension of our auxiliary counter system is given by
N , then the cyclicity equation (10) follows automatically:
Applying C1 iteratively to the counting states |�n〉, one
finds that all states |�n+1〉 are orthogonal to the previous
states |�l〉, 〈�l|�n+1〉, 0 � l � n < N − 1. Once we arrive
at n = N − 1, the last state completing the Hilbert space, the
further application of C1 produces a state |�N 〉 = C1|�N−1〉,
which has to be a superposition of the previous states,
|�N 〉 = ∑N−1

n=0 〈�n|�N 〉|�n〉. However, since all matrix ele-
ments 〈�n|�N 〉 = 〈�n|C1�N−1〉 = 〈�n−1|�N−1〉 vanish for
0 < n � N − 1, we must have |�N 〉 ∝ |�0〉, and since C1 is
unitary, we arrive at the result (10). Otherwise, for a larger
dimensionality of the auxiliary system, the condition (10) has
to be imposed as a separate requirement.

In the end, the (minimal) auxiliary counter system is
described by an N -dimensional Hilbert space H with or-
thonormal counting basis |�n〉 ∈ H, n = 0, . . . ,N − 1, and
〈�l|�n〉 = δln, a unitary (shift or counting) operator C1 taking
one counting state to the next, C1|�n〉 = |�n+1〉, and the
property of cyclicity, CN

1 = CN = exp(i	). In a specific
physical implementation, the phase 	 is determined by the
dynamical evolution of the system during counting. The states
|�n〉 keep track of the numbers in the counting process; i.e.,
due to their orthogonality they uniquely identify the cardinality
of the counted set.

In order to further characterize the properties of our
auxiliary counting system, we determine the eigenvalues and
eigenvectors of the counting operator C1. Expressed in the
basis {|�n〉}N−1

n=0 , the latter assumes the form

C1 =

⎛
⎜⎜⎜⎝

0 0 . . . 0 ei	

1 0 . . . 0 0
0 1 . . . 0 0
0 0 . . . 0 0
0 0 . . . 1 0

⎞
⎟⎟⎟⎠ . (11)

Its eigenvalues and eigenvectors are easily found: The determi-
nant of C1 − λ1 is given by (−λ)N + (−1)N−1ei	, and hence,
the eigenvalues of C1 are the N roots of 1 on the unit circle
in the complex plane shifted by 	/N , λk = exp(2πik/N +
i	/N ), k = 0,1, . . . ,N − 1. The associated eigenvector |k〉
is given by 〈�n|k〉 = exp(−2πi kn/N − i n	/N )/

√
N . Note

that a phase 	 = 2πl simply renumbers the eigenvectors and
eigenvalues by l.

The eigenstates |k〉 of the counting operator C1 show a
particularly simple behavior in the counting process: They
merely pick up a phase, and these phases are distributed
homogeneously over the unit circle. Hence, expressing the
(unknown) counting states |�n〉 through the eigenstates |k〉 of
the counting operator C1, we obtain

|�n〉 = 1√
N

N−1∑
k=0

e2πi kn/N+i n	/N |k〉 (12)

= ei n	/NF(|n〉).

1

(c) (d)

2
(a) (b)

0

FIG. 3. Sketch for a real-space counter in the form of a three-level
qutrit operating in the amplitude mode; the interaction between the
counter particle and the particle in the quantum wire is assumed
to be attractive (a slightly modified version can be found for a
repulsive interaction). Subsequent lowering of the barriers separating
the quasiclassical states |0〉, |1〉, and |2〉 upon passage of a particle
moves the counter particle to the left: cf. (a) to (b) to (c). The third
particle passing drags the counter particle all the way back to the
initial state: cf. (d).

Making use of the eigenstates |k〉, the counting step can be
implemented in an extremely simple and minimally invasive
manner: Upon passage of a particle, each state |k〉 shall pick
up the additional phase exp[i(2π k + 	)/N ], and |�n〉 goes
over to |�n+1〉, which is just the action of C1 or of counting.
Hence, if we choose as our computational basis the set of
orthonormal eigenstates {|k〉}N−1

k=0 of the shift operator C1,
then the counting process can be implemented in a “soft”
way, adding only phases to the computational states (note that
these are the states in which our final projective measurement
will be done). At the same time, the counting basis, which is
interconnected by the shift operator C1, is made from the states
|�n〉 = exp(i n	/N )F(|n〉), which is nothing but the quantum
Fourier transform (up to a phase) of the eigenstates |n〉. In the
further general discussion below we set 	 = 0; the required
transformation eliminating a finite 	 will be discussed later.

At this point one may ask if there are other counting algo-
rithms that do not exploit the quantum Fourier transformation;
the answer is yes, but such alternative schemes do not provide
the soft counting involving only the addition of phases. As an
example, consider the setup shown in Fig. 3, a multiwell system
(one counter particle in a d-well potential landscape) operating
in the amplitude mode. Assuming an attractive interaction [19],
the passing particle lowers or removes the barrier between
adjacent semiclassical states, allowing the counter particle
to move between two wells. Here the semiclassical states
localized in the individual wells play the role of the counting
states |�n〉: Initializing the counter in the (rightmost) state
|�0〉 (cf. Fig. 3), the first d − 1 particles passing will push the
counter particle to the left in steps of one, |�n〉 → |�n+1〉,
while the dth particle will drag the counter particle back to the
right until it ends up in the initial state |�0〉. The difference
between this device and the soft counting device discussed
above is in the choice of the computational basis: Rather than
selecting the Fourier-transformed states of |�n〉, which are
eigenstates of the shift operator C1 and only pick up phases
during the counting process, here we choose as a computational
basis the counting basis itself; hence, |n〉 = |�n〉. As a result,
rather than adding phases during counting, we shift the counter
particle in real space. Obviously, this setup is difficult to realize
as quite some fine-tuning is required to generate a clean shift
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FIG. 4. (a) Counting device for N = 8 (corresponding to a qudit
with d = N = 8). The (semiclassical) states |k〉, k = 0, . . . ,N − 1,
form the computational basis; their Fourier transforms |�n〉 define the
counting basis. In the elementary counting step, the shift operator C1

transforms one Fourier mode |�n〉 into the next |�n+1〉. (b) Emulation
of the N = 8 qudit through three qubits, implementing quantum
counting with d = 2 and K = 3 (left) and corresponding classical
abacus (right).

operation; furthermore, the shift operation in real space will
generate an appreciable back action on the passing particles.
On the other hand, such a counter is not supposed to evolve
coherently between counting steps; hence, the requirements
on the coherence time are reduced.

In abstract terms, the counting process can be illustrated
through the counting states |�n〉 arranged in a circle, with
the shift operator C1 transforming one state to the next. The
goal then is to have, for the Fourier-transformed basis states
|k〉, a set of (measurable) states that merely pick up phases
when interacting with the passing particles; these states then
shall form our computational states. In this basis, the counting
process (the shift operator C1) transforms one Fourier mode
into the next; see Fig. 4(a).

So far, the abstract computational states |n〉 have been
chosen in a trivial way, without any additional structure;
correspondingly, our counting process is still a simple (and
inefficient) one, requiring as many different states as we
have objects to count. The great reduction in the (hardware)
complexity of the counting process appears with the intro-
duction of a counting base. Introducing a counting base
d [d = 2 (3) for binary (ternary) counting], we have N =
dK and can reduce the hardware requirement from N to
logd N = K elements; correspondingly, the efficiency of the
algorithm increases dramatically from linear in N complexity
to logd N . To illustrate the case, we consider a simple
example N = 8, d = 2, and K = 3, counting up to 8 with
the help of three qubits. The primitive version involves a
loop with eight states |0〉,|1〉, . . . ,|7〉. This can be reduced
to three loops with two states each, |0〉j ,|1〉j , j = 1,2,3; see
Fig. 4. The preparation of the large loop generates the state
|�(8)

0 〉 = ∑7
k=0 |k〉/√8; the properly prepared reduced system

is in the state |�(23)
0 〉 = ∏3

j=1[(|0〉j + |1〉j )/
√

2]. The counting
step on the large loop adds the phase exp(2πik/8), |k〉 →
exp(2πik/8)|k〉, to the state |k〉 in |�(8)

0 〉. On the other hand,
the counting step on the small loops adds sequentially smaller
phases: |ν〉1 → exp(2πiν/2)|ν〉1, |ν〉2 → exp(2πiν/4)|ν〉2,
|ν〉3 → exp(2πiν/8)|ν〉3, ν = 0,1. One easily checks that the
state

∣∣�(23)
0

〉= [|0〉1 + |1〉1] ⊗ [|0〉2 + |1〉2] ⊗ [|0〉3 + |1〉3]√
8

= [|000〉 + |001〉 + |010〉 + |011〉 (13)

+|100〉 + |101〉 + |110〉 + |111〉]/
√

8

(the three entries refer to qubits 1, 2, and 3, e.g., |011〉 ≡
|011213〉 ≡ |0〉1|1〉2|1〉3) transforms to the state

∣∣�(23)
1

〉= [|000〉 + eiπ/4|001〉 + eiπ/2|010〉 (14)

+e3iπ/4|011〉 + eiπ |100〉 + e5iπ/4|101〉
+e3iπ/2|110〉 + e7iπ/4|111〉]/

√
8

upon passage of one particle; this is identical to |�(8)
1 〉 upon

identifying the state |k〉 with its binary equivalent |k1k2k3〉.
Hence, the complexity of the hardware used in the counting
task is easily reduced by going over to a counting base; in
our case, rather than implementing an eight-level system, the
same counting task can be accomplished with the help of three
qubits. This step in reduction of complexity is nothing but
going over to a (quantum) abacus; see Fig. 4(b). Its physical
implementation involves qudits playing the role of the rows in
the classical abacus.

The insight provided by the soft counting procedure and the
reduction in hardware provided by choosing a counting base
(base 2,3, . . . ,d) described above gives us a recipe for how to
construct a physical implementation of the counting process:
Define a quantum mechanical system with N = dK orthogonal
states |k〉, k = 0, . . . ,N − 1, with an identical (trivial) time
evolution; these states form our computational basis and
often appear in the form of semiclassical (measurable) states.
The nontrivial time evolution of these states originates from
their interaction with the particles during their passage. The
coupling of the states to the particles has to be arranged in a
way such that the state |k〉 picks up a phase exp(2πik/N) upon
passage of one particle. Defining the interaction Hamiltonian
Hint, this implies an equidistant distribution of the matrix
elements

∫ tk
0 dt〈k|Hint|k〉; assuming that all levels interact

with the particles during equal time intervals tk = tc, we can
conclude that the spectrum of Hint is equidistant. Furthermore,
returning back to the cyclic phase 	 in the counting operator
C1, we can compensate for a finite value via an energy shift
in the interaction Hamiltonian Hint: adding a constant energy
	h̄/Ntc to Hint, we redefine the counting operator C̃1 =
e−i	/NC1 and the counting basis |�̃n〉 = e−i	 n/N |�n〉, 0 �
n < N , and find that the new condition for the cyclicity reads
|�̃N 〉 = C̃1|�̃N−1〉 = e−i	|�N 〉 = e−i	ei	|�0〉 = |�̃0〉.

As a specific example, we can examine the situation for
the base-2 counting in Sec. III; here the Hamiltonian (more
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E

j = 123

FIG. 5. Equidistant spectrum for the Hamiltonian Hint describing
K = 3 qubits.

precisely, the logarithm of the shift operator i ln C1) describing
one count can be written in the form

1

h̄

∫ tc

0
dt Hint =

K∑
j=1

π

2j
σ (j)

z , (15)

where the Pauli matrix σ (j)
z operates on the j th qubit, resulting

in the expected equidistant spectrum; see Fig. 5. In this
example, the energy zero is located in between two eigenstates,
and hence, 	 = π . Shifting the zero-energy point to one of
the eigenstates, we then can get rid of the cyclic phase 	; e.g.,
shifting the energy zero to the topmost level, we identify the
state |↑ ↑↑〉 with the computational state |0〉.

V. QUTRITS: COUNTING POWERS OF 3

We briefly reformulate the base-2 counting algorithm in
terms of manipulations of a particle in a double-well potential
with semiclassical (computational) states |0〉 and |1〉 [cf.
Fig. 6(a)], as directly realizable with a double-dot charge
qubit [20–22]. We assume the double-dot charge qubit to be
aligned perpendicular to the wire, such that the two wells
couple differently to the charge of the passing electrons; see
Fig. 6(a). We work with the quasiclassical states |0〉 ↔ |↑〉 and
|1〉 ↔ |↓〉 (our computational basis) and consider a “phase-
mode operation” of the counter, with a large barrier separating

(a)

0 1

0

a

1

qutrit (b)

qubit

V V

2

FIG. 6. Double- and triple-well potentials defining (a) qubits and
(b) qutrits. The qubit is manipulated via voltage pulses Va, lowering
the barrier between the wells and changing the amplitude, or voltage
pulses Vϕ , disbalancing the wells and changing the phase of the qubit’s
state (and similar for qutrits).

the quasiclassical states, resulting in an exponentially small
tunneling amplitude ∝ , with 2 being the gap between
the two true eigenstates. The qubit is manipulated by applying
voltage pulses, either to lower the barrier between the two wells
in order to change the amplitude (opening a gap 2 between
the qubit eigenstates during the time t = h̄π/2 moves the
state |0〉 to the state |1〉) or to disbalance the two wells in order
to change the phase [lifting the right well by δ during the time
t = h̄ϕ/δ adds a relative phase exp(−iϕ) to the state |1〉].

Preparation. Starting from the semiclassical state |0〉,
we apply the unitary (amplitude-shift) operator A10 =
exp(−iH10t/h̄) with the tunneling Hamiltonian H10 =
−(|0〉〈1| + |1〉〈0|) and the time t = h̄π/4 to produce the
balanced superposition |�0〉 = ((|0〉 + i|1〉)/√2,

A10 = exp(−iH10t/h̄)|t=h̄π/4 (16)

= 1√
2

(
1 i

i 1

)
.

Counting. Upon passage of one particle, the semiclassical
qubit states |ν〉 pick up a phase exp(2πiν/2). The unitary
operator C1 = exp[iπ (0 |0〉〈0| + 1 |1〉〈1|)] then takes |�0〉
into |�1〉 = C1|�0〉 = (|0〉 + ieiπ |1〉)/√2; the passage of a
second particle brings the state |�1〉 back to |�0〉; hence, C1

is cyclic, C2
1 = 1.

Measurement. The application of the operator A−1
10 = A†

10
transforms |�0〉 back to |0〉 and |�1〉 to |1〉 (up to a phase); a
simple check that the qubit is in the state |0〉 indicates that the
number n of passed particles is even.

K-qubit register: The subsequent qubits j > 1 are prepared
in the same way. Since it is the task of the qubits j > 1 to
detect the passage of groups of particles, these counters are
more weakly coupled to the wire. To find the maximal power
2k in n, we apply the operation A†

10 and check whether the
counter resides in the state |0〉; the first qubit residing in the
state |1〉 determines the power k. In order to find the cardinality
n, the qubits have to be properly rotated before applying A†

10:
After measurement of the j th qubit with outcome 0 or 1, the
measured value is stored as the digit nK−j+1, and all qubits
J > j are given a phase shift −nK−j+12j−1φJ on the state |1〉.

An interesting subtlety concerns the possible entanglement
of the qubits with the passing particles during counting. The
spin counter discussed in Sec. III is entirely unproblematic in
this respect, as the gauge interaction leaves the counted particle
essentially unchanged. On the other hand, a charge qubit acting
as a counter can become strongly entangled with the counted
particle: With the qubit charge in a quantum superposition,
with 1/2 probability to be close to the wire (state |↑〉) and 1/2
probability to be farther away (|↓〉), the particle passing by
is first decelerated and then reaccelerated by the qubit charge.
This process happens with different strengths depending on the
qubit state. As a result, the particle wave function may split
after passing the qubit, with one part (the fast one, |f 〉) moving
ahead of the other (the slow one, |s〉). The calculation of the
probability Py to find the counter state pointing along the y

direction is given by the partial trace over the particle space;
if the two states |f 〉 and |s〉 are distinguishable, 〈f |s〉 = 0,
then Py = 1/2, independent of the phase φ picked up by the
counter qubit. Hence, it is crucial that the counter does not
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generate a wave-function splitting when the particle passes
by; i.e., the counter only works properly if |f 〉 ≈ |s〉 and the
final state is essentially nonentangled. Using the charge qubit
as a measuring device, the requirement of weak splitting boils
down to the condition [23] φ � ξkF, where φ is the angle of
the qubit rotation quantifying the qubit-particle interaction, kF

is the Fermi wave vector in the quantum wire, and ξ is the
width of the wave packet.

In a more quantitative analysis, we can consider the evo-
lution of a (Lorentzian; cf. Ref. [16]) wave packet �(x) with
Fourier amplitudes f (k) = √

4πξ exp[−(k − kF)ξ ]	(k − kF)
subject to the scalar field of a charge qubit. For simplicity,
we assume that the state |0〉 acts with a potential V (x) on
the wave function, while the state |1〉, which is farther away
from the wire, has no influence on the particle. Furthermore,
we choose the potential V (x) such that the qubit state is
rotated by φ; i.e., after the passage of the particle, the initial
qubit state |�0〉 = (|0〉 + |1〉)/√2 shall be rotated into the
state |�φ〉 = (|0〉 + eiφ|1〉)/√2. Assuming a smooth potential
V (x), we determine the asymptotic particle-qubit state within
a semiclassical approximation and project the wave function
onto the qubit state |�φ〉; tracing over the particle degree
of freedom, we find the probability Pφ = 1 − φ2/8k2

F ξ
2 to

measure the qubit in the state |�φ〉, and the second term
provides the probability of observing a wrong result. Note that
the error probability involves the square of the small parameter
φ/ξkF.

The base-3 counting with qutrits in the form of triple
wells follows the same scheme as the base-2 counting with
double-dot qubits described above. We start out with one qutrit
counter, i.e., K = 1, which initially resides in the state |0〉; see
Fig. 6(b). First, the qutrit is prepared in a balanced state with
equal weights in each of the three semiclassical ground states
(the phases may be chosen arbitrarily). The (amplitude-shift)
operators A10 and A21 performing this task generalize the
operator A10 above. The angle χ10 = 10t/h̄ in the operator
A10 (we write the matrices in the semiclassical basis),

A10 = exp[iχ10(|0〉〈1| + |1〉〈0|)] (17)

=

⎛
⎜⎝

cos χ10 i sin χ10 0

i sin χ10 cos χ10 0

0 0 1

⎞
⎟⎠ , (18)

is chosen such that 2/3 of the wave function is shifted to the
state |1〉; hence, tan χ10 = √

2. The matrix A10 then assumes
the form

A10 = 1√
3

⎛
⎜⎝

1 i
√

2 0

i
√

2 1 0

0 0
√

3

⎞
⎟⎠ . (19)

The operator A21 shifts weight between states |1〉 and |2〉,

A21 = exp[iχ21(|1〉〈2| + |2〉〈1|)]. (20)

Its task is to take the state A10|0〉 = (|0〉 + i
√

2|1〉)/√3 to
the balanced state |�0〉 = (|0〉 + eiϕ1 |1〉 + eiϕ2 |2〉)/√3 (with

appropriate phases ϕ1,2). Choosing the time such that χ21 =
21t/h̄ = π/4, we obtain the operator

A21 = 1√
2

⎛
⎜⎝

√
2 0 0

0 1 i

0 i 1

⎞
⎟⎠ , (21)

and the balanced state |�0〉 = A21A10|0〉 reads

|�0〉 = A21A10|0〉 = (|0〉 + i|1〉 − |2〉)/
√

3. (22)

We call the combination Up ≡ A21A10 the preparation op-
erator. The particular construction of the state |�0〉 does
not produce the lowest Fourier harmonic |�h〉 = [|0〉 + |1〉 +
|2〉]/√3; if we insist on working with the canonical expression
for the Fourier transformation, we have to properly redefine
the phases of the computational basis states, |0〉 → |0〉, |1〉 →
−i|1〉, and |2〉 → −|2〉. Otherwise, we can start our counting
basis with any Fourier harmonic of the computational basis or
even with any other balanced state as produced in a convenient
physical preparation step. Also, note that our preparation
operator Up is not acting as a Fourier transformation on the
other basis states but is a simpler operator that only transforms
the state |0〉 into a properly balanced state.

Upon passage of one particle, the semiclassical qutrit states
|ν〉 pick up a phase exp(2πiν/3). The unitary operator

C1 = exp[(2πi/3)(0 |0〉〈0| + 1 |1〉〈1| + 2 |2〉〈2|)] (23)

then generates the additional counting states

|�1〉 = C1|�0〉 = |0〉 + ie2πi/3|1〉 − e4πi/3|2〉√
3

, (24)

|�2〉 = C1|�1〉 = |0〉 + ie4πi/3|1〉 − e8πi/3|2〉√
3

. (25)

The further application of C1 brings us back to |�0〉; i.e., C1

is cyclic, C3
1 = 1 (i.e., 	 = 0). It is easy to check that the set

|�0〉, |�1〉, |�2〉 forms a new orthonormalized basis in the
qutrit’s Hilbert space spanned by the semiclassical states |0〉,
|1〉, |2〉.

The readout step involves the inverse preparation operator
U−1

p ≡ [A21A10]−1 = A†
10A†

21; using the explicit forms in
Eqs. (19) and (21), we obtain the expression

U−1
p = 1√

6

⎛
⎜⎝

√
2 −i

√
2 −√

2

−2i 1 −i

0 −i
√

3
√

3

⎞
⎟⎠ . (26)

The application of U−1
p takes the state |�0〉 back to |0〉, while

U−1
p |�1,2〉 are still superpositions of the semiclassical states

|1〉 and |2〉,
U−1

p |�0〉 = |0〉, (27)

U−1
p |�1〉 = −i(|1〉 − |2〉)/

√
2, (28)

U−1
p |�2〉 = −i(|1〉 + |2〉)/

√
2. (29)

The divisibility test by 3 involves the application of U−1
p to the

state Cn
1|�0〉 obtained after passage of the n particles and a

measurement of the qutrit state; if the qutrit resides in the state
|0〉, then n is divisible by 3.
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In order to find the modulus of n to base 3 we have to rotate
the states U−1

p |�1,2〉 to recover the original states |1〉 and |2〉
of the computational basis. Using the spin language in the
two-dimensional space spanned by |1〉 and |2〉, this operation
is achieved by a rotation by π/2 around the z axis, followed by
a rotation by −π/2 around the x axis. The former operation is
executed by the phase operator P2 ≡ exp[i(π/2)|2〉〈2|], while
the latter is nothing but the operation A21. The combination

M = A21P2U−1
p (30)

= 1√
3

( 1 −i −1
−i −e4πi/3 ie2πi/3

1 −ie2πi/3 −e4πi/3

)

then determines the modulus of n since

M|�0〉 = |0〉,
M|�1〉 = −i|1〉,
M|�2〉 = |2〉.

Depending on the outcome |0〉, |1〉, or |2〉 after the measure-
ment of the qutrit, the number n is divisible by 3 modulo 0,
1, or 2. The modulus can be found using a sequential scheme:
After application of U−1

p , the measurement of the state |0〉 tells
whether the modulus is 0; if this is not the case the operator
A21P2 is applied, and the second measurement provides us
with the final result.

In the above derivation, we have adopted those phases that
naturally appear in the simplest manipulation of the three-well
system; as a result, the matrix (30) is not the canonical (inverse)
Fourier transform. The following steps (for the general case
with N counting states) then relate the obtained matrix M with
the canonical form of F−1. First, choosing phases αk in the
definition of eigenstates |k〉 of the counting operator C1, we
interrelate the counting and computational bases through

|�n〉 = 1√
N

∑
k

e2πi kn/Ne−iαk |k〉. (31)

Second, let us assume that our physical manipulations have
produced a measurement operator M such that

M|�n〉 = eiβn |n〉. (32)

Then the measurement operator M and the canonical inverse
Fourier transform F−1 are related via

M = P[β]F−1P[α], (33)

with the unitary (phase) operators

P[χ ] =

⎛
⎜⎜⎜⎝

eiχ0 0 . . . 0
0 eiχ2 . . . 0
...

...
...

...
0 0 . . . eiχN−1

⎞
⎟⎟⎟⎠ , (34)

with phases [χ ] = [α],[β]. For the particular situation of the
qutrit (N = 3), the phases [α] and [β] are defined by the
operators Up, Eq. (22), and M, Eq. (30). Using these phases
in Eq. (33), one easily verifies that expression (30) indeed
corresponds to the inverse Fourier transformation F−1.

Going to a K-qutrit register, we assume that all elements
initially reside in the state |0〉j ; i.e., the register encodes the

state |0〉Q of the computational basis. The qutrits j > 1 serve
the counting of particle clusters, and hence, the elementary
phase shift in C1 is exp(2πi/3j ). The preparation of the j th
qutrit is identical to the first one. Upon passage of a particle,
the semiclassical states |ν〉 in the j th qutrit pick up phases
exp(2πiν/3j ). The readout for the divisibility check involves
the application of U−1

p to all K qutrits and a subsequent test
for the semiclassical state |0〉j in each qutrit: If all qutrits
j < k + 1 reside in |0〉j and the qutrit j = k + 1 does not,
then n is divisible by 3k . In order to recover the number n

in the base-3 representation, the j > 1 qutrit states need to
be corrected for the passage of incomplete groups of particles
before application of M, Eq. (30). After measuring the qutrit j ,
the states |ν〉 of the qutrits J > j are given additional phases
−2πnK−j+1ν 3j−1/3J .

Let us briefly analyze the three operators Up, U−1
p , and

M: Since Up merely takes the state |0〉 into the balanced
state |�0〉 (but does not act as a Fourier transformation on
the others), its inverse U−1

p does not describe an inverse
quantum Fourier transformation. Only after augmenting U−1

p

by the combination A21P2 [cf. Eq. (30)] can we arrive
at the required inverse quantum Fourier transformation M
allowing for the readout of the individual qutrit states. The
subsequent readout of the qutrit register does not require a
fully quantum inverse transformation; rather, the semiclassical
version using sequential measurements and manipulations
(executing the compensation for the passage of incomplete
groups of particles) is sufficient. Below, we will encounter
other implementations, where the preparation operator Up

already acts as the full quantum Fourier transformation on the
computational qudit states |n〉; in this case the measurement
operator is trivially given by M = U−1

p . The reason for sticking
to two different operators Up and M−1 in the above discussion
is due to the simplicity of the preparation step when using
Up. This is particularly advantageous in the case where one
is interested in the divisibility of n by a power 3k , as the
readout only involves the inverse operator U−1

p . Using the
full Fourier transformation M−1, the preparation step becomes
more complex; see the next section.

A. Generalization to qudits

The further generalization to base-d counting with qudits
follows the same ideas as those developed for the base-2 and
base-3 counting with qubits and qutrits. In order to set up
the algorithm, we have to define the following three steps:
preparation through Up, counting with C1, and measurement
with the inverse Fourier transformation M. The first two steps
are clear: The preparation of the initial balanced counting state
|�0〉 starts from the computational state |0〉 and proceeds with
the subsequent shift of weight in the wave function to the
neighboring well, always leaving behind an amplitude with
weight 1/

√
d; the individual steps involve the operators

Aχ

k,k−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 0
...

...
...

...
...

...
0 . . . cos χ i sin χ . . . 0
0 . . . i sin χ cos χ . . . 0
...

...
...

...
...

...
0 0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (35)
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with the (k − 1,k) nontrivial 2 × 2 block shifting the amplitude
between the wells k − 1 and k [cf. Eq. (17)]. This operation is
physically implemented through lowering the barrier between
two neighboring wells k − 1 and k. Similarly, the counting
operator C1 is given by the straightforward generalization of
Eq. (23) involving the rotation or phase operators

Pφ

k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . 0 0
...

...
...

...
...

...
0 . . . 1 0 . . . 0
0 . . . 0 eiφ . . . 0
...

...
...

...
...

...
0 0 . . . . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

with φ = 2πk/d; these are implemented through changing the
gating bias of the well k.

The implementation of the inverse Fourier transformation
M with the help of the physical operators (35) and (36) is
more difficult but still possible since this set of operations
(gates) is universal; i.e., given a unitary d × d matrix, it can
be constructed from a product of operators made from Aχ

k,k−1

and Pφ

k . The proof of this statement is similar to the proof
of the universality of two-level unitary gates (cf. Ref. [9]):
Given an unitary d × d matrix (or operator) U, the idea is to
reduce U in an iterative procedure to the unit operator by right
multiplication with amplitude and phase operators. For exam-
ple, consider the entries U0,k−1 = β = |β|eiϕβ and U0,k = α =
|α|eiϕα in U (we number rows and columns with indices from 0
to d − 1). The product U Pφ

k−1 Aχ

k,k−1 generates the new entries
β eiφ cos χ + iα sin χ and α cos χ + iβ eiφ sin χ , and we can
replace the new entry at the position (0,k) by 0 if we choose the
angles χ = arctan(|α/β|) and φ = π/2 + ϕα − ϕβ (if β = 0,
then χ = π/2,φ = 0, and α = 0 implies zero angles). The new
(0,k − 1) entry reads β ′ = ieiϕα

√
|α|2 + |β|2. Repeating this

step d − 1 times, we replace the top row by zeros, except for
the (0,0) entry, which we bring to unity with an additional
phase operation. Hence, 2d − 1 elementary amplitude and
phase operations take the first row to the vector (1,0,0, . . . ,0),
and a total of

∑d
1 (2k − 1) = d2 elementary operations take

the unitary operator U to unity; the desired operator then is
obtained by a simple inversion.

In order to illustrate the procedure, we derive the Fourier
transform M−1,

M−1 = 1√
3

⎛
⎝ 1 1 1

1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3

⎞
⎠ , (37)

for the qutrit. In the implementation of the first step we find
the angles χ = arctan(1) = π/4 and φ = π/2, and the product
M−1

1 = M−1 Pπ/2
1 Aπ/4

2,1 produces the matrix

M−1
1 = 1√

3

⎛
⎝ 1 i

√
2 0

1 −i/
√

2 −i
√

3/2
1 −i/

√
2 i

√
3/2

⎞
⎠ . (38)

The angles for the second step read χ = arctan(
√

2) and φ =
π , and we obtain the matrix M−1

2 = M−1
1 Pπ

0 Aχ

1,0 Pπ
0 ,

M−1
2 = 1√

2

⎛
⎝

√
2 0 0

0 −i −i

0 −i i

⎞
⎠ . (39)

Next, the angles for the third step read χ = π/4 and φ = π/2,
and the product M−1

3 = M−1
2 Pπ/2

1 Aπ/4
2,1 generates the second

row, which is in the form (0,1,0) already; no further phase
rotation is needed in this step. Finally, we have to compensate
for the phase of the (2,2) matrix element, which is done by
the additional rotation M−1

4 = M−1
3 P3π/2

2 , and we arrive at the
unit matrix. Collecting all factors, we obtain the measurement
operator M expressed through elementary shift and phase
operators,

M = [
Pπ/2

1 Aπ/4
2,1

][
Pπ

0 Aχ

1,0 Pπ
0

][
Pπ/2

1 Aπ/4
2,1

][
P3π/2

2

]
. (40)

The result (40) corresponds to expression (30) up to phases.
Indeed, above, we have presented a minimal algorithm with a
preparation step Up generating the first computational state
with phases (1,i, − 1) instead of the canonical ones [the
trivial phases (1,1,1)]. As a result, the final measurement
operator (30) corresponds to the inverse Fourier transform up
to phases. Of course, one could easily introduce additional
phase operations Pφ

k and remove the noncanonical phases
(with Up = P3π/2

1 Pπ
2 Aπ/4

2,1 Aχ

1,0, with χ = arctan
√

2); how-
ever, such additional gates only render the algorithm more
involved. Also, the divisibility check does not require the
implementation of the inverse Fourier transformation, and
hence, it is worthwhile to know how to implement a minimal
version of the preparation operator Up.

VI. IMPLEMENTATIONS OF QUTRITS AND QUDITS

The base-d counting and factorization algorithm obviously
requires a set of suitable and well-operating elementary
quantum devices, qubits, qutrits, or qudits. Starting from qubits
and their analogy with a spin-1/2 system, the most natural
generalization is to try a spin-1 system for the implementation
of qutrits and possibly a spin-d system for the qudits; although
this idea can be realized in principle for the case of a spin-1
system, the preparation and measurement algorithm is rather
complex (see below) and should be viewed as a Gedanken
experiment rather than a realistic proposal. The next idea then
is to generalize the concept of the double-dot charge qubit;
this road has been pursued above and works fine in theory.
However, the implementation of multidot charge qubits may
turn out to be difficult. As an alternative, one may try to
emulate a d-spin qudit (d-level system) by a system of spin-1/2
qubits (two-level systems). Provided we admit two-qubit
interactions in our manipulation scheme, we then are able to
define all the necessary operations required by the algorithm.
Hence, we can offer a scalable route for the implementation
of qudits using qubits as elementary units. Below, we will
discuss the various issues related to the implementation of
qutrits and qudits in more detail, putting our main emphasis
on understanding qutrits, their implementation, and their
manipulation.
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A. Spin-1 qutrit

The most straightforward attempt to generalize the base-2
counting with qubits (spin-1/2 two-level systems) to the base-3
counting with qutrits makes use of a spin-1 three-level system
with the orthogonal (computational) basis |l,m〉z = |1,1〉z =
|0〉, |1,0〉z = |1〉, and |1, − 1〉z = |2〉, where l and m denote
the angular momentum and magnetic quantum numbers. As
in the previous cases (two-level qubit, three-level qutrit), we
have to prepare the system in the initial counting state �0,
e.g., the lowest harmonic of the computational basis or another
balanced state. The logic taking us to a valid balanced state
is the following. (i) We first note that, experimentally, we
can produce either axial states (polarized along a direction
n), such as |1,1〉n, or planar polarized states, such as |1,0〉n;
hence, we will focus on these types of states. (ii) As one
cannot construct axial states with equal weights for all basis
states |0〉,|1〉,|2〉, we concentrate on the planar states. (iii) The
most general planar state (with a director parallel to n defined
by the direction angles ϕ and θ ) assumes the form (in the
computational basis)

|1,0〉n = 1√
2

⎛
⎝− sin θ e−iϕ√

2 cos θ

sin θ eiϕ

⎞
⎠ . (41)

We demand that all components have equal weights, and hence,
θ = arctan

√
2; choosing ϕ = π/4, we obtain the balanced

state

|�0〉 = −e−iπ/4|0〉 + |1〉 + eiπ/4|2〉√
3

(42)

which is the planar state |1,0〉ec
with a director ec =

(1,1,1)/
√

3 pointing along the body diagonal; other values of
ϕ correspond to another direction ec rotated around the z axis.

The other counting states are then obtained by rotating
|�0〉 by the angle 2π/3 (counterclockwise) around the z axis,
|�1〉 = Uz(2π/3)|�0〉 and |�2〉 = Uz(2π/3)|�1〉; physically,
this rotation is achieved by ensuring that passing electrons
create a local magnetic field pulse along the z axis. To simplify
our further discussion, we exchange the two axes, the one for
the preparation and the one defining the counting field: Our
task then is to generate an initial planar polarized state |1,0〉z
and implement the counting step through rotation by an angle
2π/3 (counterclockwise) around the axis ec.

While the creation of axially polarized states is rather
straightforward, creating a planar polarized state |1,0〉n is non-
trivial. Indeed, while we can make use of a simple deterministic
procedure to prepare an axially polarized state (by switching
on a magnetic field and relaxing the spin through coupling
to a bath), the planar polarized state required here is more
difficult to obtain. A simple preparation can be implemented
with the help of a Stern-Gerlach apparatus; however, this
procedure is a statistical one, with a one-half probability for a
positive outcome. In fact, preparing an initial state polarized
along x, |1,1〉x = (|1,1〉z + |1, − 1〉z)/2 + |1,0〉z/

√
2, using a

Stern-Gerlach setup directed along z, and selecting particles
with a straight trajectory (i.e., selecting the “middle spot” in the
Stern-Gerlach setup), we obtain the desired spin state |1,0〉z (a
procedure to generate a proper initial state with unit probability
is discussed later).

1

c 2

0

e

y

x

z

FIG. 7. Spin-1 qutrit. After preparation in the state |1,0〉z, the
system is in a state of planar (xy) polarization; i.e., the spin has no
component along z. Upon passage of a particle, the polarization plane
is rotated (by the angle 2π/3 around ec) for the first particle from xy

to yz, for the second particle to zx, and for the third back to xy.
The divisibility test involves a measurement with a Stern-Gerlach
apparatus with the field directed along the z axis.

With the counting state |�0〉 = |1,0〉z properly prepared,
we define the counting step through a rotation by the angle
2π/3 around the axis ec = (1,1,1)/

√
3 (cf. Fig. 7),

C1 = exp[−i(2π/3)ec · L/h̄]

= exp

⎡
⎣− 2πi

3
√

3

⎛
⎝ 1 e−iπ/4 0

eiπ/4 0 e−iπ/4

0 eiπ/4 −1

⎞
⎠

⎤
⎦ . (43)

As the threefold iteration takes us back to the original state
|1,0〉z, our counting operator is cyclic and generates the
complete orthogonal counting basis

|�0〉 = |1,0〉z, (44)

|�1〉 = |1,0〉x,
|�2〉 = |1,0〉y.

The measurement step for the divisibility check after the
passage of the particles involves a second Stern-Gerlach
experiment directed along the z axis; if the particle moves again
on the straight trajectory, its polarization was unchanged by the
passage of the n particles, and hence, n is divisible by 3. The
other states |1,0〉x = (|1, − 1〉z − |1,1〉z)/

√
2 and |1,0〉y =

i(|1,1〉z + |1, − 1〉z)/
√

2 [cf. Eq. (41)] give no contribution
to the signal on the straight trajectory; see Fig. 8.

As usual, the measurement of the number’s modulus (the
counting measurement) is more involved. We then make use
of the other outcomes |1,1〉z and |1, − 1〉z of the second
Stern-Gerlach experiment and bring them to interference
farther down their trajectories; see Fig. 8. Testing the resulting
state, e.g., the state |1,0〉y = i(|1,1〉z + |1, − 1〉z)/

√
2 (we

choose symmetric trajectories with equal phases), in a third
Stern-Gerlach apparatus polarized along the y axis then
identifies the counting state |1,0〉y on the straight trajectory
(the middle spot; the number’s modulus is 2); if no spin is
measured, the counting state |1,0〉x has been realized, and the
number’s modulus is 1.

Finally, we look for a preparation step with unit efficiency.
This can be achieved by making further use of the states |1, ±
1〉z behind the first Stern-Gerlach device (we still use the input
state |1,1〉x to the Stern-Gerlach apparatus): Superimposing
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z

y
x

2

1,1 x 1,0 z 1,0 z 1,0 y

measurement

0

particles

FIG. 8. Setup for the counting with a spin-1 qutrit. Sending the
initial polarized state |1,1〉x into a first Stern-Gerlach (SG) apparatus
with axis z and selecting the middle (undeflected) trajectory, we obtain
the planar state |1,0〉z with probability 1/2. The counted particles
passing by rotate this state around the axis ec = (1,1,1)/

√
3 and

generate the planar counting states |1,0〉z, |1,0〉x , and |1,0〉y (note
that the counter particle has to be stopped and trapped during the
time of interaction with the particles passing by). These are analyzed
in a second SG apparatus with axis z; if the spin is not deflected,
the number n of counted particles is divisible by 3. Combining the
two deflected beams and analyzing the superposition in a further SG
apparatus directed along the y axis, we find the modulus of n, which
is 2 if the spin is undeflected and 1 otherwise.

these two states, we obtain the component i(|1,1〉z + |1, −
1〉z)/2 = |1,0〉y/

√
2, and rotating this planar state back to the

z axis, we have managed to transform the initial spin |1,1〉x into
two subsequent wave packets with weight 1/2, each describing
the same spin state |1,0〉z. Hence, although we cannot generate
a planar state out of an axial state by simple rotation, the use of
a Stern-Gerlach apparatus and proper manipulation of all three
amplitudes of the split wave function allows us to generate the
desired planar state, though split into two wave packets with
weight 1/2 each.

Obviously, the above scheme is a very complex one and
should be regarded as a “Gedanken” experiment rather than a
realistic setup. Nevertheless, it is interesting to see that a spin-1
qubit can, at least in principle, be used for the implementation
of the base-3 counting algorithm.

B. Triple-dot qutrit

The triple-dot qutrit has been discussed above in Sec. V.
Preparation, counting, and readout can be properly imple-
mented via voltage pulses acting on the semiclassical states
(phase shifts) or on the barriers in between (amplitude shifts).
A drawback is the need to design a new device when going
from base-2 to base-3 counting and, more generally, each time
a new prime factor is to be tested. The emulation of qutrits
(and qudits) through qubits described below allows one to stay
with only one computational unit for all base-d counting tasks
and factorizations.

C. Emulation of spin-1 qutrit

The basic idea we pursue here is to emulate the qudits
needed in the base-d counting and factorization through
simpler qubits. We start by combining two qubits into a qutrit.

1. Emulation using a spin triplet

An obvious way to choose three appropriate states in the
product Hilbert spaceH1/2 ⊗ H1/2 of the two qubits is to make
use of the decomposition into singlet and triplet sectors,

H1/2 ⊗ H1/2 = H0 ⊕ H1, (45)

and use the three-dimensional triplet space H1. Contrary to
the simple spin-1 qutrit, the emulated version using two qubits
provides us with the necessary degrees of freedom to perform
all of the required steps (preparation with Up and readout with
M) in the counting and factorization algorithm with the help of
one- (σ (i)

x ,σ (i)
z ) and two-qubit (σ (1)

z σ (2)
z ) operations. Referring to

the previous paragraph, we start from the computational basis
|0〉 = |↑ ↑〉, |1〉 = (|↑ ↓〉 + |↓ ↑〉)/√2, and |2〉 = |↓ ↓〉 and
seek those manipulations that provide us with the counting
states in the form of three orthogonal planar polarized states
with balanced weights. The latter take the form (41), whereas
the axial states can be written as (again in the computational
basis)

|1,1〉n = 1

2

⎛
⎝ (1 + cos θ ) e−iϕ√

2 sin θ

(1 − cos θ ) eiϕ

⎞
⎠ , (46)

with n being the direction of the spin axis. Note that once these
states are chosen, the operators σ (i)

z and σ (1)
z σ (2)

z only change
the relative phases in |1,0〉n and |1,1〉n but not the relative
weights in the amplitudes. It is then our task to construct
three orthogonal planar states out of the computational basis,
which consists of two axial states and one planar state. In
this way, we can find a preparation operator Up, which
is congruent to the Fourier transformation; i.e., Up = M−1

transforms the computational basis {|k〉}|2k=0 into the counting
basis {|�n〉}|2n=0.

We first note that the planar states (41) always have the
same weight in the components |0〉 and |2〉, and hence, we
first have to rotate the axial states of the computational basis
into the xy plane. This is done with the operator eiπσx/2, where
σx = (σ (1)

x + σ (2)
x )/2, and results (up to a phase) in the states

[θ = π/2 in Eq. (46)]

|1,1〉ey
= 1

2

⎛
⎝ 1√

2 i

−1

⎞
⎠ , |1,1〉−ey

= 1

2

⎛
⎝ −1√

2 i

1

⎞
⎠ ; (47)

see Fig. 9. Note that the simple rotation takes the planar state
|1〉 into a planar state (with a director along y). In order to map
the axial states in Eq. (47) to planar states we choose θ = π/4
in Eq. (41) and obtain the candidate states

|1,0〉nπ/4 = 1

2

⎛
⎝−e−iϕ√

2
eiϕ

⎞
⎠ . (48)

The planar and axial states in Eqs. (48) and (47) now have equal
amplitudes. In order to select the appropriate phases ϕ in the
planar states (48), we note that the phase differences between
the |0〉 and |2〉 components of the axial states are equal to ±π ;
these have to be matched with the phase differences π − 2ϕ

in the planar states, and hence, we choose planar states with
ϕ = 0,π ,

|1,0〉x,−z = 1

2

⎛
⎝ 1√

2
−1

⎞
⎠ , |1,0〉x,z = 1

2

⎛
⎝ −1√

2
1

⎞
⎠ . (49)

The two states are characterized by directors pointing along
the xz diagonals; see Fig. 9. In order to map the axial states
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FIG. 9. Rotations generating the quantum Fourier transformation
on the triplet sector of a two-qubit system; we denote the axial states
|0〉 = |↑ ↑〉 and |2〉 = |↓ ↓〉 by double arrows and planar states (e.g.,
|1〉 = [|↑ ↓〉 + |↓ ↑〉]/√2) by a director. (a) to (b): Rotation by −π/2
around the x axis; (b) to (c): conditional rotation transforming the two
axial states into planar ones with directors along the diagonals in the
xz plane; (c) to (d): rotation by ϕ = − arctan(1/

√
2) around the x

axis of three planar states to position them symmetrically around the
z axis. The last step defines the counting states that transform among
one another through a rotation by the angle −2π/3 around the z axis.

(47) to the planar states (49) we make use of the two-qubit
operator

Uχ = eiχσ
(1)
z σ

(2)
z . (50)

The latter adds the phases χ (−χ ) to the components |0〉,
|2〉 (|1〉) and hence leaves the relative phase between the
components |0〉, |2〉 unchanged while adding a relative shift
−2χ to the middle one. Hence, choosing χ = −π/4, we can
map the axial state |1,1〉ey

to the planar state |1,0〉x,z and
|1,1〉−ey

to the planar state |1,0〉x,−z; see Fig. 9. Since the
component |1〉 in the planar state |1,0〉ey

has weight 0, the
operator U−π/4 leaves it unchanged.

Hence, we have arrived at three orthogonal planar states
directed along y and along the xz diagonals; a final rotation
eiϕσx with σx = (σ (1)

x + σ (2)
x )/2 by ϕ = arctan(1/

√
2) around

the x axis then arranges the three states symmetrically around
the z axis. Combining the three operations, we obtain the
preparation and inverse measurement operator

Up = M−1 = eiϕσx e−iπσ
(1)
z σ

(2)
z /4eiπσx/2. (51)

The actions of the three operations in Eq. (51) on the
computational basis states {|n〉}|2n=0 are illustrated in Fig. 9;
the resulting counting basis is given by the three (planar) states
|�n〉 = Up|n〉,

|�0〉 = e−5πi/12

√
3

|0〉 + e3πi/4

√
3

|1〉 + e11πi/12

√
3

|2〉,

|�1〉 = eiπ/4

√
3

|0〉 + ei3π/4

√
3

|1〉 + eiπ/4

√
3

|2〉, (52)

|�2〉 = ei11π/12

√
3

|0〉 + ei3π/4

√
3

|1〉 + e−i5π/12

√
3

|2〉.

One can confirm that the counting step involving the
application of the operator C1 = exp(2πi σz/3) with σz =
(σ (1)

z + σ (2)
z )/2 indeed transforms the three counting states in

Eq. (52) into each other, i.e., |�n〉 = Cn
1|�0〉 = Cn|�0〉 (note

the symmetric definition of σz used here and compare with
the corresponding definition of C1 in the next paragraph in
Sec. VI C 2).

2. Efficient emulation

Although the emulation of the qutrit by the triplet sector of
two qubits can be done consistently, this scheme is inefficient in
scaling up to larger primes. Indeed, emulating a spin-2 system
within this scheme requires four qubits, whereby most of the
Hilbert space (an 11-dimensional sector) is not used since only
the component H2 out of the decomposition

H⊗4
1/2 = H2 ⊕ 3H1 ⊕ 2H0 (53)

is needed. A suitably scalable case should make maximal
use of the emulating qubits, i.e., use a large fraction of the
Hilbert space. In choosing the appropriate subset of states
in the multiqubit Hilbert space, we have to select states
with an equidistant spectrum. For example, for the case
d = 3 and 2 qubits, we choose three consecutive states from
|0〉 = |↑ ↑〉, |1〉 = |↑ ↓〉, |2〉 = |↓ ↑〉, |3〉 = |↓ ↓〉 and an
elementary phase shift operator C1 = exp[−iλ(σ (1)

z + σ (2)
z /2)];

upon passage of a particle, the four states then pick up the
phases exp(−3iλ/2), exp(−iλ/2), exp(iλ/2), and exp(3iλ/2).
Choosing λ = 2π/3 and the first three states |0〉, |1〉, and |2〉,
the (relevant sector of the) operator C1,

C1 =

⎛
⎜⎜⎝

e−iπ 0 0 0
0 e−iπ/3 0 0
0 0 eiπ/3 0
0 0 0 eiπ

⎞
⎟⎟⎠ , (54)

coincides with expression (23), up to an overall phase
exp(3iλ/2) = exp(iπ ) [to be added to (54)]. The generaliza-
tion of this scheme to an E-qubit emulation of a qudit is
straightforward,

C1 = exp

[
− iλ

E∑
l=1

σ (l)
z /2(l−1)

]
. (55)

In addition to the shift operator C1, we need to know the
form of the preparation operator Up. For the above qutrit
emulation, this operator takes the form (see the Appendix for
the derivation)

Up = e−iπσ
(2)
x /4eiπσ

(1)
z σ

(2)
z /8eiπσ

(2)
z /8 (56)

×eiπσ
(2)
x /4eiπσ

(1)
z /4eiθσ

(1)
x /2

with the angle θ = 2 arctan(1/
√

2). As this is not yet the
full Fourier transformation on the computational basis |k〉,
k = 0,1,2, we still have to find the measurement operator M.
In order to accomplish this task, one notes that the three
counting states |�n〉, n = 0,1,2, are entangled, while the
three computational states |k〉, k = 0,1,2, are not. The inverse
Fourier transformation M then has to disentangle the counting
states, a criterion that helps us to find its explicit form. In the
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end, the measurement operator M is obtained in the form of a
product of three unitary operations Ui , i = 0,1,2,

M = U0U1U2, (57)

where U2 and U1 serve to disentangle the three counting states
|�n〉, n = 0,1,2, and U0 is a conditional Hadamard operation,
turning the spin of qubit 2 into the z axis if the qubit 1 is in the
state |↑〉. The detailed derivation of Eqs. (56) and (57) and the
form of the operators Ui , i = 0,1,2, are given in the Appendix.

VII. RELATION TO PHASE ESTIMATION ALGORITHM
AND ITS APPLICATION

It turns out that our counting algorithm has much in
common with the phase estimation algorithm (PEA); the
following discussion of the PEA is formulated in a way to make
this connection apparent. The phase estimation algorithm first
appeared as a part of Shor’s factorization algorithm [1]; an
extended separate algorithm was presented by Kitaev [11] and
later by Cleve et al. [12]. The phase estimation algorithm
attempts to find the “phase” 0 � ϕ < 1 in the eigenvalue
exp(2πiϕ) of a unitary operator U associated with a given
eigenvector |u〉. In the version of Refs. [9,12], this is achieved
with the help of two qubit registers, one of which (the second)
is storing the vector |u〉 and acts on it with the operators
U2j−1

, j = 1, . . . ,K , to generate the phases exp(2πi 2j−1ϕ).
The other (first) register consists of K qubits and produces the
desired phase estimate in the following manner: With all qubits
initialized in the state |0〉j , a Hadamard operation generates
the balanced states (|0〉j + |1〉j )/

√
2 for all qubits in the first

register. A controlled U2K−j

operation between the second
register and the j th qubit in the first register then puts the
qubit into the state [|0〉j + exp(2πi 2K−jϕ)|1〉j ]/

√
2, hence

generating the quantum Fourier transform (we express the
product state through the computational basis and assume that
the phase ϕ can be represented by K binary digits)

F(|2Kϕ〉) = 1√
2K

∑
k

e2πikϕ |k〉Q (58)

in the first register. A final inverse Fourier transformation then
generates the state |2Kϕ〉Q|u〉, and the projective measurement
of the K-qubit register in the computational basis provides us
with the phase ϕ; for an arbitrary phase 0 < ϕ < 1 we obtain
a K-binary-digit estimate ϕdig of the phase ϕ.

Comparing this algorithm with our counting setup, we
identify the action of the n particles traversing the quantum
wire with the action of the second register in the PEA, with
the correspondence |n〉� ↔ |u〉. The controlled U2j

operation
in the PEA is replaced by the coupling of the wire to the
qubits: The interaction of the n particles with the last (Kth)
qubit has to be identified with the action of the controlled U
operator in the PEA; hence, ϕ = n/2K . The qubits j < K are
more strongly coupled to the wire that corresponds to higher
powers of the operator U in the PEA; in fact, the j th qubit
coupling is enhanced by the factor 2K−j , and its interaction
with the particles in the wire corresponds to the action of the
controlled U2K−j

operator. Finally, the intermediate states in
Eqs. (6) and (58) agree with one another with the identification
n/N = n/2K ↔ ϕ. The final states exhibit the correspondence

|n〉Q|n〉� ↔ |2Kϕdig〉Q|u〉. Note that our divisibility algorithm
has no counterpart in the PEA.

This analogy immediately allows us to profit from the
performance analysis [9,12] of the PEA: Assume that we wish
to measure the phase ϕ in the PE problem to an accuracy of
1/2A (i.e., we want to encode ϕ with A bits) and be sure of our
measurement result with at least a probability P = 1 − ε; then
the setup must involve K = A + �log2(2 + 1/2ε)� qubits.

This result can be applied to our counting algorithm.
Consider the case where a noninteger number x = n + δn has
passed the counter, with n being an integer and 0 < δn < 1
being a real number. Such a situation may occur when the
interaction between the particles and the counting qubits
is still finite at the moment when the readout procedure
starts, corresponding to the passage of a fraction of a full
charge. Concentrating first on the implementation with a
fully quantum inverse Fourier transformation, the performance
analysis of the PEA tells us that we still can measure the
number to any desired precision. For example, if we want
to be able to measure the number n < N = 2K such that
|nmeas − x| < 1/2 with a probability P = 1 − 2−r , we need
to be able to resolve fractional charges δn ∼ 2−r � 1; i.e.,
we have to add additional qubits that measure half charges
(turning by 2π on the passage of one particle), quarter
charges (rotating by 4π ), etc. The entire setup then has to
involve ≈K + log2(1/2−r ) = K + r qubits. This result can
be extended to qudits: Requiring a precision P = 1 − d−r ,
we need ≈K + logd (1/d−r ) = K + r qudits. Hence, we can
trade additional qudits in the counting process against a higher
probability to obtain a correct integer result.

Next, we consider the semiclassical inverse Fourier trans-
formation; we demonstrate below that this semiclassical
scheme exhibits the same stability as the fully quantum
version, although the passage of a fractional charge strongly
affects the conditional measurement of subsequent qubits,
e.g., for δn = 1/2 the measurement of the first qubit gives
a random input for the direction of measurement of the
second qubit. However, this error does not propagate through
the entire measurement scheme. Instead, the measurements
of higher qubits recover from false results measured for
lower qubits. Formally, this can be proven by comparing
the two probabilities PqF(n; x) (using a full quantum Fourier
transformation) and PscF(n; x) (using a semiclassical Fourier
transformation) to find the integer number n when a noninteger
number x has passed by the qubit register.

Indeed, let us calculate the probability PscF(n,x) of finding
the integer result n = ∑K

j=1 nj 2K−j upon measurement of
a noninteger signal x by the qubit register. The proba-
bility p1(nK,x) that the first qubit provides the value nK

is given by the matrix element between the qubit state
(|0〉1 + e2πix/2|1〉1)/

√
2 and the state (|0〉1 + eπinK |1〉1)/

√
2 to

be measured (i.e., the projection | + y〉1 for nK = 0 or | − y〉1

for nK = 1; cf. Sec. III):

p1(nK ; x) = |(1〈0| + e−πinK
1〈1|)(|0〉1 + e2πix/2|1〉1)|2

4
.

(59)
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Next, the conditional probability of measuring the value
nK−1 for the second qubit is given by the product
p1(nK ; x)p2(nK−1,nK ; x), with

p2(nK−1,nK ; x) = |(2〈0| + e−πi(nK−1+nK/2)
2〈1|),

(|0〉2 + e2πix/4|1〉2)|2/4. (60)

Using Eq. (5), we can rewrite the first factor in p2(nK−1,nK ; x)
in the simpler (and equivalent to the second factor) form

p2(n; x) = |(2〈0| + e−2πin/4
2〈1|)(|0〉2 + e2πix/4|1〉2)|2

4
.

(61)

The straightforward iteration of this scheme then produces the
final result for PscF(n,x) in the product form

PscF(n,x) =
K∏

j=1

pj (n; x), (62)

where

pj (n,x) = |(j 〈0| + e−2πin/2j

j 〈1|)(|0〉j + e2πix/2j |1〉j )|2
4

.

(63)

Evaluating the product, the result (62) is easily rewritten in the
form PscF(n,x) = |Q〈�n|�x〉Q|2, with the generalized counting
state [cf. Eq. (2)]

|�x〉Q = 1√
2K

2K−1∑
k=0

exp(2πi xk/2K )|k〉Q. (64)

Expressing the counting state |�n〉Q as a Fourier transform
of the computational state |n〉Q, |�n〉Q = F(|n〉Q), we arrive at
the result PscF(n,x) = |Q〈n|x〉Q|2, where |x〉Q = F−1(|�x〉Q) is
defined in terms of the back-transformed counting state. But
this is nothing other than the probability PqF(n,x) of finding
the number n in a one-shot measurement of the qubit register
after application of an inverse quantum Fourier transformation
on the detected state |�x〉Q; hence, PscF(n,x) = PqF(n,x). We
conclude that the semiclassical and the fully quantum Fourier
transformation exhibit the same stability to systematic errors
introduced by incomplete (noninteger) counting. Furthermore,
we note that the semiclassical algorithm is rather robust with
respect to random errors; the latter can be handled with a
classical multiqubit error correction scheme combined with a
simple majority rule (cf. Ref. [4]).

A. Quantum metrology: Voltage measurement

The above discussion allows us to use our counting device
to measure continuous variables. The insight paves the way for
its use as a quantum voltage detector, a particular form of an
analog-to-digital converter (ADC). Consider a setup similar to
the one in Fig. 1, but with the wire replaced by a finite metallic
object; see Fig. 10.

Assuming that the applied voltage translates into a relative
shift δK = αKeV (δ1 = α1eV ) of the most weakly (strongly)
coupled qubit [which is the qubit j = K (j = 1)], the reading
of the qubit array after detaching the voltage provides us with

j =1

V

t

K 2

FIG. 10. Quantum voltage detector made from K counter qubits.
A voltage V applied over a time interval t generates a continuous
phase ϕ = eV t/h̄, which can be measured by the K -qubit register
and translated into a binary digital output signal.

a binary digital number n, which translates into the phase ϕ

according to

ϕ = eV t

h̄
= 2π

αK

n

2K
= 2π

α1

n

2
, (65)

provided that the quantity 2α1eV t/h can be represented by
an integer number. In order to handle successfully the general
case with an arbitrary drive V t , we have to add additional
qubits in order to arrive at a digital estimate of ϕ: For a result
with a relative precision 1/2K and with a probability better than
1 − ε, we need a measuring device with K + �log2(2 + 1/2ε)�
qubits.

The sensitivity of our quantum ADC improves as 1/t , where
t is the time of observation; this is because the accumulated
phase increases linearly in time, while the most sensitive qubit
always resolves phases of π . The precision then is better by a
factor 1/

√
t than the usual classical (shot-noise-limited) sensi-

tivity, which scales as 1/
√

t , a finding that agrees with standard
expectations [24] of quantum metrology. In particular, using
the straightforward algorithm described in Sec. II to measure
a voltage V < Vmax = π h̄/eτ with an accuracy δV , we either
need M = (π/φ)2 = (Vmax/δV )2 qubits or have to run re-
peated experiments over a time t = Mτ , where τ is the measur-
ing time of the individual experiment. Solving for the desired
accuracy δV , we obtain the scaling δV ∼ √

h̄Vmax/et ; i.e., the
precision improves only with the square root of the overall
measuring time t , the same as for the usual classical case.

VIII. MULTIPARTICLE ENTANGLEMENT

Another application of our counting device is the generation
of multiparticle entangled states with the help of a Mach-
Zehnder interferometer; see Fig. 11. Injecting particles into
the device through the lower left arm, the splitter generates
a superposition of number states in the two arms of the
interferometer; measuring the counter placed near the upper
arm and selecting a particular reading projects the system to
the desired entangled state. The functionality of the device has
been described in detail in Ref. [4]. Here we use the device
with our qutrit counter to generate the original Greenberger-
Horne-Zeilinger (GHZ) state [25] and to unveil in more detail
the entanglement between the counter states and the physical
number states in the quantum wire; the generalization to other
cases with more particles and counters follows the previous
discussion in Ref. [4].
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U

D

A

d

u

FIG. 11. Mach-Zehnder interferometer with qutrit counter. Parti-
cles enter the interferometer through the left leads (here the bottom
lead) and are measured on the right. The qutrit counter in the upper
arm U detects the passage of particles. The magnetic flux � through
the loop allows us to tune the phase difference between particles
propagating along different arms.

Consider a particle entering the Mach-Zehnder interferom-
eter from the lower-left lead and propagating along one of
the two leads U and D; see Fig. 11. The wave function can
propagate along two trajectories, the upper arm U , where the
particle picks up a phase ϕU and the counter is activated, or
the lower arm D, accumulating a phase ϕD and leaving the
counter state unchanged. The total wave function evaluated at
position A then assumes the form

�1A = t eiϕU |↑〉 ⊗ |�1〉 + r eiϕD |↓〉 ⊗ |�0〉, (66)

where t and r denote the transmission and reflection coeffi-
cients of the beam splitter and we have introduced a pseudospin
notation to describe the propagation of the particles along the
two arms: A pseudospin ⇑ (⇓) refers to the particle propagating
in the upper (lower) arm. The qutrit state depends on the
particle’s trajectory and reads either |�1〉, if the particle has
passed in the nearby upper arm, or |�0〉, if the particle passed
through the lower arm of the interferometer.

Next, we inject three particles (from the bottom left) into
the Mach-Zehnder (MZ) loop. We assume the three individual
wave functions describing the initial state to be well separated
in space, allowing us to ignore exchange effects in our (MZ)
geometry. The wave function at position A then reads

�3A = [t3 e3iϕU |⇑ , ⇑ , ⇑〉 + r3 e3iϕD |⇓ , ⇓ , ⇓〉] ⊗ |�0〉
+ tr2 ei(ϕU +2ϕD )[|⇑ , ⇓ , ⇓〉 + |⇓ , ⇑ , ⇓〉
+ |⇓ , ⇓ , ⇑〉] ⊗ |�1〉
+ t2r ei(2ϕU +ϕD )[|⇑ , ⇑ , ⇓〉 + |⇑ , ⇓ , ⇑〉
+ |⇓ , ⇑ , ⇑〉] ⊗ |�2〉. (67)

Assuming scattering coefficients for a symmetric beam splitter,
e.g., t t∗ = 1/2, r2 = −1/2, and r t∗ = ±i e−iϕt /2 (with ϕt the
transmission phase), the projection to the counter state |�0〉
provides one with the GHZ-like state |�GHZ〉 = (|⇑ , ⇑ , ⇑〉
∓ i e3i(ϕD−ϕU −ϕt )|⇓ , ⇓ , ⇓〉)/√2; manipulation of the flux �

in the Mach-Zehnder loop then allows one to implement
the desired entangled state. Furthermore, the wave function
(67) unveils the entanglement between the (split) number
states and the counter. Note that the indistinguishability of
particles exploited in the above entanglement process is an
“artificial” one defined by the qutrit detector, rather than the
“fundamental” one of identical particles.

IX. DISCUSSION AND CONCLUSION

Summarizing, we have generalized the binary (base 2)
quantum counting algorithm and divisibility test by 2k to
ternary (base 3) and higher counting systems. This extension
is quite nontrivial in several respects: On the device level,
the qubits used in the base-2 algorithm have to be replaced
by qutrits for a ternary counting system and by qudits
for a base-d algorithm. Since the algorithm is based on
two subsequent quantum Fourier transformations, suitable
manipulation schemes have to be defined in order to implement
a quantum Fourier transformation on the level of individual
qubits, qutrits, and qudits. Furthermore, rather than developing
new hardware for every new counting base, we have discussed
how to use qubits in order to emulate qudits, with particular
emphasis on the qutrits.

Starting from binary counting with qubits, it does not seem
immediately clear how to generalize the concept. It turns out
that defining the quantum counting task on an elementary level
through a one-to-one correspondence between the counting
objects and distinguishable states in a Hilbert space provides us
with a constructive scheme for how this task can be achieved.
Also, the analysis of the unary counting scheme naturally
introduces the quantum Fourier transformation as the basic
operation in a nondemolitian counting process. Indeed, the
task of counting naturally introduces a shift operator C1 in
the counting space, taking one counting state |�n〉 into the
next |�n+1〉. When expressing these counting states through
the eigenstates |n〉 of C1, the counting operation only adds
a phase exp(2πin/N ) to each of these states. Hence, using
these eigenstates |n〉, which are nothing more than the Fourier
transforms of the counting states |�n〉, as our computational
basis provides for us a soft nondemolitian counting scheme.
Choosing another computational basis involves an energy
exchange between the counted object and the counting system
and introduces a much more severe perturbation.

The aforementioned basic understanding of quantum count-
ing has provided us with a constructive scheme for the
counting algorithm: Starting with a set of measurable states
(the computational basis {|n〉Q} in the Hilbert space HQ of
qubits) that evolve with a prescribed phase accumulation
upon the passage of particles, we have to prepare from them
a balanced state |�0〉Q, which is used as the first counting
state. With the appropriate phase increment picked up during
counting, this first counting state evolves to the next and returns
to the first one after an N cycle. As we have seen, we do not
have to enter the cycle in the lowest harmonic, any harmonic
will do, and even arbitrary phases in a balanced state (an
equal-weight superposition of the computational basis states)
are acceptable. In the latter case, the Fourier transformation
is modified with additional phases, which are not, however,
harmful to the algorithm.

Equipped with this general scheme, we have been able to
generalize the binary algorithm to a ternary and to base-d
counting. We have seen that one possible straightforward
extension of the hardware, going from a spin-1/2 to a spin-1
system, poses severe problems due to the lack of suitable
operators in the state preparation. Indeed, although any
superposition of two states is allowed in quantum mechanics,
it might be difficult to prepare this superposition in practice.
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For example, if we want to superpose two different eigenstates
of the same Hamiltonian, we have to act on the states with
an operator that might not be available in the given physical
system; this situation is actually encountered in the spin-1
system. However, emulating a spin-1 system through the
triplet sector of two qubits provides a viable alternative:
The two-qubit operation combined with single-qubit rotations
provides sufficient degrees of freedom to carry out all required
operations for counting, the state preparation, and the inverse
Fourier transformation. Further emulation of qudits with
qubits, however, should not be done in the spin-d sector, as
this is a waist of resources. Instead, a straightforward sequence
of neighboring energy states will do. An important element to
realize is that the Fourier transformation, which we can handle
semiclassically “between” the qudits, has to be fully quantum
“within” the qudits. Hence, the larger the chosen counting basis
d is, the larger the part of the inverse Fourier transformation
that is done fully quantum is.

We have demonstrated that the substitution of the
semiclassical inverse Fourier transformation for the fully
quantum one does not entail any disadvantage for the counting
algorithm; this is an important result, with respect to both the
stability of the counting algorithm against systematic errors
(noninteger counting) and its application in metrology. It
thus appears that the conditional operation in the quantum
Fourier transform can be fully substituted by a measurement
combined with a conditional operation in the semiclassical
scheme. In both cases, a noninteger reading may affect some
of the last digits of the sought number, but the leading digits
are not compromised. Furthermore, adding additional qubits
(digits) allows us to trade an extension of the hardware for a
better precision in the output.

In terms of applications of our counter, we have generalized
the scheme producing multiparticle entanglement in a Mach-
Zehnder interferometer and have proposed its use as a quantum
voltage detector, a particular example of an analog-digital
converter. We may speculate that our quantum counting
scheme can be generalized to other broadband measurement
algorithms and thus contribute to other applications in quantum
metrology [24].

ACKNOWLEDGMENTS

We thank Klaus Ensslin, Alexei Kitaev, Gerald Milburn,
Renato Renner, and Peter Shor for discussions, and we
acknowledge financial support by the Pauli Center at ETH
Zurich and the Russian Foundation for Basic Research under
Grant No. 08-02-00767-a.

APPENDIX A: DERIVATION OF U p AND M FOR THE
QUBIT-EMULATED QUTRIT

Motivated by our general discussion in Sec. IV, we start out
with the counting basis in the form

|�0〉 = 1√
3

(|↑ ↑〉 + |↑ ↓〉 + |↓ ↑〉),

|�1〉 = 1√
3

(|↑ ↑〉 + e2πi/3|↑ ↓〉 + e4πi/3|↓ ↑〉),
(A1)

|�2〉 = 1√
3

(|↑ ↑〉 + e4πi/3|↑ ↓〉 + e2πi/3|↓ ↑〉),
|�3〉 = |↓ ↓〉

[we choose a balanced state |�0〉 and apply the counting
operator C1 in Eq. (54) to obtain this form, up to an overall
phase]. These counting states are entangled, whereas those
defining the computational basis, |0〉 = |↑↑〉, |1〉 = |↑↓〉, and
|2〉 = |↓↑〉, are not. This feature can be conveniently exploited
in finding the operators Up and M for preparation and readout.

We begin with the preparation step: Rather then finding Up,
we search for the inverse operator U−1

p , which disentangles
the state |�0〉. In order to accomplish this task, we have the
operators σ (1)

x , σ (2)
x , σ (1)

z , σ (2)
z and the two-qubit operator σ (1)

z σ (2)
z

at our disposal. In our construction below, we will make heavy
use of the conditional rotation

Uϕ ≡ exp
( − iϕ σ (1)

z σ (2)
z /4

)
. (A2)

This operator will generate the decisive step in the disentangle-
ment of the qubit states. Let us consider a general (entangled)
two-qubit state

|φ〉 = |↑〉1|χa〉2 + |↓〉1|χb〉2, (A3)

with normalization 〈φ|φ〉 = 〈χa|χa〉 + 〈χb|χb〉 = 1. The state
|φ〉 is not entangled if and only if |χa〉 = α|χb〉 or one of the
states |χa〉, |χb〉 vanishes. Acting with Uϕ on |φ〉,

Uϕ|φ〉 = |↑〉1e
−iϕσ

(2)
z /4|χa〉2 (A4)

+|↓〉1e
iϕσ

(2)
z /4|χb〉2,

we find that Uϕ disentangles |φ〉 if θa = θb = θ and ϕ =
ϕb − ϕa (here the angles θa,b and ϕa,b denote the directions
of the second spin described by the states |χa,b〉); see Fig. 12.
Furthermore, the operator Uϕ transforms a product state
|ψ〉1|χ〉2 into a product state if either |ψ〉1 or |χ〉2 is directed
along the z axis.

In order to find the operator U−1
p disentangling |�0〉, we

write the latter in the form

|�0〉 = |↑〉1
|↑〉2 + |↓〉2√

3
+ |↓〉1|↑〉2√

3
; (A5)

hence, |χa〉2 = (|↑〉2 + |↓〉2)/
√

3 and |χb〉2 = |↑〉2/
√

3. The
sequence of operations shown in Fig. 13 disentangles the state
|�0〉 by aligning |χa〉2 and |χb〉2 along the diagonal in the xy

plane and produces the state |ψ〉1|↑〉2 with

|ψ〉1 =
√

2/3 |↑〉1 +
√

1/3 |↓〉1. (A6)

The remaining one-qubit operations exp(−iπσ (1)
z /4) and

exp(−iθσ (1)
x /2) with θ = 2 arctan(1/

√
2) then produce the

computational state |↑ ↑〉 up to a phase, Up|↑ ↑〉 =

(b)

a
b a,b

z

y

x

z

y

x

(a)

FIG. 12. Action of Uϕ in disentangling a state. The two compo-
nents |χa,b〉 to be aligned point along the same polar angle θ . The
conditional rotation by ϕ aligns the two components if ϕ matches the
azimuthal angle difference, ϕ = ϕb − ϕa .

052317-17



M. V. SUSLOV, G. B. LESOVIK, AND G. BLATTER PHYSICAL REVIEW A 83, 052317 (2011)

(a)

aa

b

a,b

z

x

y
a,b

a,b

zz

x x

yy

(c)

(b)

z

x

y
(d)

z

x

y(e)

b

FIG. 13. Rotations generating the operator U−1
p ; shown are the

rotations acting on the components |χa〉2 ∝ (|↑〉2 + |↓〉2) and |χb〉2 ∝
|↑〉2 in |�0〉; see Eq. (A5) (the arrows reflect the polarization angles
of the spin states). The first rotation (a) to (b) by −π/2 around the
x axis rotates χb into the direction along the y axis. The subsequent
two-qubit rotation Uπ/2, (b) to (c), aligns both components along
the xy diagonal; this step disentangles the state. The next rotation
by π/4 around the z axis makes the two states χa,b point along the
y axis, and the subsequent rotation by π/2 around the x axis aligns
them parallel to the z axis. The final two rotations of the qubit 1 (not
shown) transforms the state |ψ〉1|↑〉2 into the state e−iπ/4|↑〉1|↑〉2,
which coincides (up to a phase) with the computational state |0〉 =
|↑ ↑〉.

exp(iπ/4)|�0〉. One easily verifies that the above sequence
of operations produces the operator Up, Eq. (56).

The construction of the inverse quantum Fourier transfor-
mation M for the readout follows the same scheme. That is, we
look for the operator M that disentangles the counting states
|�j 〉 and maps |�2〉 to |2〉 = |↓↑〉, |�1〉 to |1〉 = |↑↓〉, and
|�0〉 to |0〉 = |↑↑〉; this will be done in three consecutive steps,

M = U0U1U2, (A7)

with Ui , i = 0,1,2, appropriate unitary operators serving to
disentangle the three counting states |�j 〉, j = 0,1,2, and
producing the simple computational states |j 〉, j = 0,1,2.

We start with the disentanglement of |�2〉, which we write
in the form

|�2〉 = |↑〉1
|↑〉2 + ei4π/3|↓〉2√

3
+ ei2π/3|↓〉1|↑〉2√

3
. (A8)

We require U2 to disentangle |�2〉 while leaving the fourth state
|�3〉 unchanged (up to a phase). This task is accomplished by
the operator

U2 = e−iπσ
(2)
x /4e−iπσ

(2)
z /8e−iπσ

(1)
z σ

(2)
z /8

×eiπσ
m(2)
x /4e−iπσ

(2)
z /3

y

a

b b

b

a

a

a,b

(a) (b)zz

(c)z z(d)

x x

x x

y

yy

FIG. 14. Rotations generating the operator U2; shown are the
operations acting on the components |χa〉2 ∝ (|↑〉2 + ei4π/3|↓〉2) and
|χb〉2 ∝ |↑〉2 in |�2〉 of qubit 2 in Eq. (A8) (vectors mark the
polarizations of the spin states). The first rotation, (a) to (b), by
2π/3 around the z axis rotates the in-plane component χa into the
x axis. The second rotation, (b) to (c), by −π/2 around the x axis
makes χb point along the y axis. The subsequent two-qubit rotation
Uπ/2, (c) to (d), aligns both components along the xy diagonal; this
step disentangles the state. The remaining rotations of qubit 2 by π/4
around the z axis and by π/2 around the x axis serve to prepare for
the operation U1 and take the spin 2 back to the z axis. The state
|�3〉 merely picks up a phase, while the states |�0〉 and |�1〉 remain
entangled; see Eqs. (A11).

= 1√
2

⎛
⎜⎜⎝

e−iπ/3 eiπ/3 0 0
ei2π/3 eiπ/3 0 0

0 0
√

2e−iπ/3 0
0 0 0

√
2eiπ/3

⎞
⎟⎟⎠ , (A9)

where the first expression is used in an implementation through
single and two-qubit gates and the second provides the simpler

a

(a) (b)zz

(c)z z(d)

x x

x x

2

/3

y y

y

b

y

FIG. 15. Rotations generating the operator U1; shown are the
rotations acting on the components |χa〉1 ∝ (|↑〉1/

√
2 + e−iπ/3|↓〉1)

and |χb〉1 ∝ |↑〉1 in U2|�1〉 and U2|�0〉 of qubit 1; see Eq. (A11)
(vectors mark the polarizations of the spin states). The first rotation,
(a) to (b), by −π/6 around the z axis rotates the component |χa〉 into
the yz plane. The second rotation, (b) to (c), by −θ around the x axis
takes the two states symmetrically around the z axis. The subsequent
two-qubit rotation Uπ , (c) to (d), aligns both components in the xz

plane; this step disentangles the state. The remaining rotations of
qubit 1 serve to align its state along the z axis.
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overall unitary matrix, The first two rotations prepare the
states |χa〉2 and |χb〉2 to allow the two-qubit operator Uπ/2

to align them and hence disentangle the state (see Fig. 14);
the remaining one-qubit operators acting on qubit 2 serve to
prepare the state for the action of U1. The operator U2 leaves the
state |�3〉 = |↓↓〉 parallel to itself, U2|↓↓〉 = exp(iπ/3)|↓↓〉,
and transforms |�2〉 into the product state

U2|�2〉 = (
√

2e−iπ/3|↑〉1 + eiπ/3|↓〉1)|↑〉2√
3

. (A10)

The other two states remain entangled,

U2|�0〉 =
( |↑〉1√

6
+ e−iπ/3|↓〉1√

3

)
|↑〉2

+eiπ/2|↑〉1|↓〉2√
2

,

U2|�1〉=
(

e−i2π/3|↑〉1√
6

− |↓〉1√
3

)
|↑〉2 (A11)

+ei5π/6|↑〉1|↓〉2√
2

.

Note that the state of qubit 1 is identical in the above two wave
functions (pull out a factor e−2πi/3 in U2|�1〉).

Next, the operator U1,

U1 = e−iθσ
(1)
x /2e−iπσ

(1)
z /4e−iπσ

(1)
z σ

(2)
z /4

×eiθσ
(1)
x /2eiπσ

(1)
z /12 (A12)

=

⎛
⎜⎜⎜⎜⎝

√
1
3e−i5π/12 0

√
2
3e−iπ/12 0

0 eiπ/12 0 0√
2
3e−i11π/12 0

√
1
3ei5π/12 0

0 0 0 e−iπ/12

⎞
⎟⎟⎟⎟⎠ ,

where θ = arctan(
√

2), takes the remaining two entangled
states U2|�0〉 and U2|�1〉 into product states,

U1U2|�0〉 = e−i5π/12 |↑〉1(|↑〉2 − |↓〉2)√
2

,

(A13)

U1U2|�1〉 = ei11π/12 |↑〉1(|↑〉2 + |↓〉2)√
2

,

while leaving the product states in product states,

U1U2|�2〉 = ei3π/4|↓〉1|↑〉2,
(A14)

U1U2|�3〉 = eiπ/4|↓〉1|↓〉2.

The action of the (conditional) rotations in U1 leading to the
disentanglement of |�0〉 and |�1〉 is shown in Fig. 15.

Finally, the operator U0,

U0 = e−iπσ
(2)
x /4eiπσ

(2)
z /8eiπσ

(1)
z σ

(2)
z /8eiπσ

(2)
x /4

= 1√
2

⎛
⎜⎜⎝

1 −1 0 0
1 1 0 0
0 0

√
2 0

0 0 0
√

2

⎞
⎟⎟⎠ , (A15)

acts as a Hadamard operation on qubit 2 if qubit 1 is
in the |↑〉1 state and leaves qubit 2 unchanged if qubit 1
is in the state |↓〉1; hence, U0 is a controlled Hadamard.
The combined action M of the operators U2, U1, and U0

finally takes the counting states into the computational basis
states,

M|�0〉 = e−i 5π/12|0〉,
M|�1〉 = ei 11π/12|1〉,

(A16)
M|�2〉 = ei 3π/4|2〉,
M|�3〉 = ei π/4|3〉,

which is nothing more than the desired inverse Fourier
transformation (up to phases).
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