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Multipartite entanglement in quantum algorithms
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We investigate the entanglement features of the quantum states employed in quantum algorithms. In particular,
we analyze the multipartite entanglement properties in the Deutsch-Jozsa, Grover, and Simon algorithms. Our
results show that for these algorithms most instances involve multipartite entanglement.
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I. INTRODUCTION

Entanglement is a major resource in quantum information
processing. However, its role in achieving the quantum compu-
tational speedup in the currently known quantum algorithms is
not yet completely clear and has been a highly debated question
since the advent of quantum computation. In particular,
the role of genuine multipartite entanglement has not been
elucidated thoroughly. It was shown that in Shor’s algorithm
multipartite entanglement is needed to achieve exponential
computational speedup with quantum resources [1]. In this
work we analyze other known quantum algorithms, namely,
those of Deutsch-Jozsa, Grover, and Simon, and assess the
multipartite entanglement properties of the pure quantum
states employed.

In the Deutsch-Jozsa [2] and Grover [3] algorithms,
following the formulation given in [4], the n-qubit states that
occur are of the form

|ψf 〉 ≡ 1√
2n

2n−1∑

x=0

(−1)f (x)|x〉 , (1)

where |x〉 represent the computational basis states of n qubits
and f (x) is the {0,1}n → {0,1} Boolean function that needs
to be evaluated. Notice that (−1)f (x) = ±1 is just a real phase
factor.

The above states are achieved by starting from the equally
weighted superposition of all possible 2n states in the compu-
tational basis, namely, the state

|ψ0〉 ≡ 1√
2n

2n−1∑

x=0

|x〉 , (2)

and then applying a unitary transformation Uf , which involves
an additional qubit (a target qubit) and acts as follows:

Uf |x〉|y〉 = |x〉|f (x) ⊕ y〉 . (3)

In the above expression |y〉 is the state of the target qubit
and ⊕ denotes addition modulo 2. The target qubit is initially
prepared in the state |−〉 ≡ (|0〉 − |1〉)/√2. In this way the
target state is left unchanged by the action of Uf and the state
of the n-qubit register takes the form (1). The above states
will be referred to as multiqubit “real equally weighted states”
|ψf 〉.

The paper is organized as follows. In Sec. II we will
concentrate on the Deutsch-Jozsa algorithm and discuss the
entanglement properties of the corresponding multiqubit real

equally weighted states. In Sec. III we will consider the Grover
algorithm and analyze the corresponding states for different
values of the number of solutions. In Sec. IV we will study
the case of the Simon algorithm, and we will summarize the
results in Sec. V.

II. THE DEUTSCH-JOZSA ALGORITHM

In the Deutsch-Jozsa algorithm, the function f to be
evaluated is promised to be either constant or balanced
(balanced means that it takes output 0 for half of the inputs
and output 1 for the others). The state (1), where a minus sign
is present in front of half of the computational basis states
and will therefore be called a balanced state, can be either
separable or entangled. The state (1) is separable if and only
if it can be expressed in the form

|ψsep〉 ≡ 1√
2n

2n−1∑

x=0

(−1)ax |x〉 , (4)

where a is an n-bit string and ax ≡ a1x1 ⊕ a2x2 ⊕ · · · anxn.
Therefore, apart from global phase factors, the number of
distinct separable states of the form (1) is 2n. If the function
f is constant the state |ψf 〉 is clearly separable, and apart
from a global phase factor, it is the state |ψ0〉 [in this case the
string a in the form (4) has all bits 0]. Notice that the above
state in Eq. (4) corresponds exactly to the state computed
in the Bernstein-Vazirani problem [5], where the function is
promised to be of the form fa(x) = ax and the question is to
find a. Therefore, for the Bernstein-Vazirani problem, which
can be solved as the Deutsch-Jozsa problem restricted to the
particular class of functions of the form fa , the qubits involved
are never entangled. This has already been observed in [6].

In general, if the function f is balanced, the state (1) can
then be either separable or entangled. We will now evaluate
the number of separable vs entangled states. The number of
possible balanced functions is given by Nbal = B(2n,2n−1),
where B denotes the binomial coefficient. The number of
balanced functions corresponding to separable states, which
are then necessarily of the form (4), is Nbal,sep = 2(2n − 1).
This value is obtained by noticing that two different balanced
functions correspond to each a (they would correspond to
states |ψs〉 and −|ψs〉, which differ just in a global phase
factor), while the case of vanishing a does not correspond
to a balanced function and therefore must be subtracted. The
fraction of balanced functions that involve separable states
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with respect to the total is therefore given by Nbal,sep/Nbal =
2(2n − 1)(2n−1!)2/2n!. Using the Stirling approximation, i.e.,
limx→∞ x! ≈ √

2πxxxe−x , we arrive at the asymptotic limit
limn→∞ Nbal,sep/Nbal ≈ √

2π (2n − 1)2
n
2 /22n

. Thus, for large
numbers of qubits the fraction of separable balanced states
becomes doubly exponentially small, i.e., for most balanced
functions the Deutsch-Jozsa algorithm employs entangled
states.

In the following we will denote by Sq the set of pure
q-separable states, i.e., states that can be written as tensor
products of pure states of q subsystems [7]. So far we have
evaluated the fraction of fully separable states (i.e., ∈ Sn).
We can also evaluate the fraction of states that are not fully
separable but contain entanglement only between two qubits
(i.e., ∈ Sn−1\Sn). Actually, these kinds of states are of the
form |ψsep,n−2〉 ⊗ |ψent,2〉. There are 2(2n−2 − 1) ∗ 8 distinct
balanced functions that correspond to states of this form:
the factor 2(2n−2 − 1) is the number of balanced functions
corresponding to fully separable states of n − 2 qubits, while
8 is the number of entangled real equally weighted states of two
qubits (four states with just a minus sign in the superposition
and four states with three minus signs). States of this type can
occur for B(n,2) different partitions of the n qubits; therefore,
the total number of balanced functions corresponding to states
in Sn−1\Sn is 2(2n−2 − 1) ∗ 8 ∗ B(n,2). By taking the limit of
large n we can see that the fraction of these functions over the
total number Nbal is still exponentially small.

Rather than evaluating all possible classes of states we
will answer the question of whether most states in the
Deutsch-Jozsa algorithm (in the limit n → ∞) are genuinely
multipartite entangled. To this end, we count the number of
biseparable balanced states, i.e., states in S2 corresponding to
balanced functions that are of the form

|ψbisep〉 = |ψk〉 ⊗ |ψn−k〉, (5)

and their fraction within all balanced states. Here, it does
not matter whether the constituting states are entangled or
separable, because any pure state that cannot be written in
a biseparable form is fully entangled. Before counting the
number of biseparable balanced states, we will establish when
a biseparable state is balanced.

Lemma: For a pure real equally weighted state of n qubits
that is q-separable, i.e.,

|ψq−sep〉 = |ψk1〉 ⊗ |ψk2〉 ⊗ · · · |ψkp
〉, with

q∑

i=1

ki = n; q > 1 , (6)

where each |ψki
〉 is real equally weighted, the state |ψq−sep〉 is

balanced if and only if at least one |ψki
〉 is balanced.

Proof: Denote by N
(k)
+(−) the number of plus (minus) signs

of a real equally weighted state with k qubits.
“⇒”: For a balanced n-qubit state we have N

(n)
+ = N

(n)
− .

For each partition with ki qubits in one subsystem, and n − ki

in the other subsystem, we thus have N
(ki )+ · N

(n−ki )+ + N
(ki )− ·

N
(n−ki )− = N

(ki )+ · N
(n−ki )− + N

(ki )− · N
(n−ki )+ or N

(n−ki )+ (N (ki )− −
N

(ki )+ ) = N
(n−ki )− (N (ki )− − N

(ki )+ ). The solution of this equation
is either N

(n−ki )+ = N
(n−ki )− or N

(ki )+ = N
(ki )− , i.e., at least one of

the two subsystems is in a balanced state. This argument holds
for all possible partitions.

“⇐”: Assume without loss of generality that |ψk1〉 is
balanced, i.e., N

(k1)
+ = N

(k1)
− . The number of plus signs in the

n-qubit state is N
(n)
+ = N

(k1)
+ · N

(n−k1)
+ + N

(k1)
− · N

(n−k1)
− , and

the number of total minus signs is N
(n)
− = N

(k1)
+ · N

(n−k1)
− +

N
(k1)
− · N

(n−k1)
+ . Due to N

(k1)
+ = N

(k1)
− we find N

(n)
+ = N

(n)
− . �

To count all biseparable balanced states we first fix k, and
also fix the partition in Eq. (5). The number of real equally
weighted states where at least one of the two subsystems is
balanced is Nbisep(k) = B(2k,2k−1) · 22n−k + B(2n−k,2n−k−1) ·
22k − B(2k,2k−1) · B(2n−k,2n−k−1). This expression is derived
by counting the number of balanced functions in the left term
times the number of all functions in the right, plus vice versa,
minus the terms where both parts are balanced and we have
already included it before. Next, we have to sum over all
possible bipartitions for fixed k [which leads to the binomial
B(n,k) as factor] and then have to sum over all k. The only
partition where this argument does not hold is the case of
k = n/2 for even n. Here the factor 1/2 is needed to ensure
that the partitions are not counted twice. Thus, the number of
biseparable balanced states is given by

NDJ
bisep =

(n−1)/2�∑

k=1

B(n,k)Nbisep(k) (7)

+1

2
B(n,n/2)Nbisep(n/2)δn/2−n/2�,0 .

We now want to find limn→∞ NDJ
bisep/Nbal. To this end, it is

convenient to write the above expression in the following form:

NDJ
bisep =

n−1∑

k=1

B(n,k)[B(2k,2k−1) · 22n−k

(8)

−1

2
B(2k,2k−1) · B(2n−k,2n−k−1)] .

For n → ∞ the largest term in the above equation is the one
with k = 1, and therefore we find that

lim
n→∞ NDJ

bisep � lim
n→∞ 2(n − 1)n · 22n−1

. (9)

Using this upper bound, we arrive at

lim
n→∞

NDJ
bisep

Nbal
� lim

n→∞ 2(n − 1)n · 22n−1
/B(2n,2n−1)

= lim
n→∞

√
2π · n2 · 2n/2

22n−1 . (10)

Thus, in the limit of n → ∞ the number of biseparable states
among the balanced ones goes to zero, and we conclude that for
large n the Deutsch-Jozsa algorithm typically employs genuine
multipartite entanglement.

III. THE GROVER ALGORITHM

In this section we will discuss the case of the Grover
algorithm. The state (1) is achieved after the first application of
the oracle. In this case the function f has output 1 for entries x

that correspond to solutions of the search problem and output
0 for values of x that are not solutions. Let us denote with M
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the number of solutions, which typically is much smaller than
the total number of entries 2n. The number of possible states
of the form |ψf 〉 is NM = B(2n,M).

In the case of a single solution M = 1 the state (1)
corresponds to an equally weighted superposition of all
possible computational basis states with the same relative
phases, except for a single term, which has relative phase
−1 with respect to the others. Such a state is fully entangled,
because a biseparable state would contain at least two minus
signs. Therefore, it is genuine multipartite entangled. The
number of possible states with M = 1 is clearly 2n, because
the −1 phase can be in front of any of the 2n computational
basis states.

In general, we remember that a necessary condition for the
state (1) to be fully separable [i.e., of the form (4)] is that the
output of f is constant or balanced. Therefore, for nonbalanced
or constant functions, namely, whenever M �= 0,2n−1, the state
(1) is always entangled. Moreover, in the case of odd M it is
never possible to write the state as a tensor product because
this would lead to an even number of −1 relative phases in the
state |ψf 〉. Therefore, whenever the number of solutions M is
odd, the state |ψf 〉 is fully entangled.

Let us now consider the case M = 2. Here the state (1)
can be either biseparable or entangled. Actually, the only
possibility of writing it as tensor product would be in the
form

|ψbisep〉 ≡ 1√
2

(|0〉 + |1〉) ⊗ |ψent,n−1〉 , (11)

where |ψent,n−1〉 represents a fully entangled state of n − 1
qubits, of the form (1) and with just one relative phase −1 in the
superposition, and the partition is arbitrary. If the state cannot
be written in this form in any partition, then it is fully entangled.
As mentioned above, the total number of possible states with
M = 2 is B(2n,2), while the number of biseparable states
among these is n2n−1. Therefore, the fraction of biseparable
states for M = 2 is exponentially small in the asymptotic limit.
In other words, for large n and M = 2 the Grover algorithm
typically employs genuine multipartite entanglement.

Let us now consider the case M = 4. The state |ψf 〉 in this
case is biseparable, triseparable, or fully entangled. Actually,
it could be factorized in the triseparable form,

|ψ3−sep〉 ≡ 1
2 (|0〉 + |1〉)⊗2 ⊗ |ψent,n−2〉 , (12)

where |ψent,n−2〉 represents a fully entangled state of n − 2
qubits, of the form (1) and with just one relative phase −1
in the superposition, and the partition is again arbitrary. The
number of possible triseparable states of the above form is
2n−2B(n,2). The only other possibility of factoring it is in
the biseparable form (11), where |ψent,n−1〉 represents a fully
entangled state of n − 1 qubits, of the form (1) and with two
components with −1 relative phases in the superposition. If
the state cannot be written in the above biseparable form or
in the triseparable form (12) for any partition, then it is fully
entangled.

The total number of biseparable states for M = 4 [written
as tensor product either in the triseparable form (12) or in the

form (11)] is NG
bisep = nB(2n−1,2). The fraction of biseparable

states is then given by

lim
n→∞

NG
bisep

NM=4
= lim

n→∞
nB(2n−1,2)

B(2n,4)
� 0 , (13)

namely, the states employed are typically genuine multipartite
entangled.

The above argument can be generalized to values of M

that are powers of 2: for M = 2k , the initial state |ψf 〉 can
be biseparable, triseparable, . . . ,(k + 1)-separable, or fully
entangled. When the state is k + 1-separable it has to be of
the form

|ψk+1−sep〉 ≡ 1

2k/2
(|0〉 + |1〉)⊗k ⊗ |ψent,n−k〉 , (14)

where |ψent,n−k〉 is a fully entangled state of n − k qubits with
a single term in the superposition having relative phase −1.
The reason for this structure is as follows: assume that the
k parties would contain entanglement; then the number M of
solutions, according to the lemma, would be at least M � 2n/2,
while we require M � 2n. The number of states of the form
(14) is 2n−kB(n,k).

When the state is k-separable it has to be of the form

|ψk−sep〉 ≡ 1

2(k−1)/2
(|0〉 + |1〉)⊗k−1 ⊗ |ψent,n−k+1〉 , (15)

where now |ψent,n−k+1〉 is a fully entangled state of n − k +
1 qubits with two components having −1 relative phase. In
general, for M = 2k , the state |ψf 〉 can be j -separable, with
j � k + 1, or fully entangled.

For a generic even M = 2q(2p + 1), the state |ψf 〉 can be
always biseparable or fully entangled. In particular, the state
can then be j -separable, with all values of j ranging from 2
to q + 1, or fully entangled. The number of biseparable states
for even M is in general given by NG

bisep(M) = nB(2n−1,M/2).
Therefore, the fraction of biseparable states is given by

lim
n→∞

NG
bisep(M)

NM

= lim
n→∞

nB(2n−1,M/2)

B(2n,M)
� 0 , (16)

where we consider q and p finite and fixed. We can then
conclude that for any M � N (as mentioned above, in our
analysis it is sufficient that M < 2n/2) the states are typically
multipartite entangled.

IV. THE SIMON ALGORITHM

In this section we will consider the Simon algorithm [8].
In this case the function to be evaluated is promised to be a
{0,1}n → {0,1}n periodic 2 → 1 function, and the task is to
evaluate the period r (r is an n-bit string, with r �= 0) with
the smallest number of evaluations. In other words, in Simon’s
case f (x) = f (y) if and only if x = y ⊕ r . The first register,
as in the previous cases, is composed of n qubits prepared in
state |ψ0〉, while the target register is now composed of another
set of n qubits, which are all prepared in state |0〉.

After the function evaluation step (3), the global state of the
two registers takes the form

∣∣ψ (2)
Simon

〉 ≡ 1√
2n−1

2n−1∑

i=1

(|xi〉 + |xi + r〉)|f (xi)〉 , (17)
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where xi is the set of 2n−1 input values leading to different
outputs. Notice that the above state is always entangled
between the two registers. The next step is a measurement
on the second register, after which the state of the first register
takes the simple form

|ψSimon〉 ≡ 1√
2

(|x̄〉 + |x̄ + r〉) , (18)

where x̄ is now a random value among the xi’s. We will now
study the entanglement properties of the states of the form (18).
Notice that, by keeping r fixed and changing x̄ in the above
form, the entanglement properties of the state do not change
because by applying just local operations (of the type σx) we
can reach all the states of the above form (with different x̄ and
same r). We can then for simplicity analyze the properties of
these states by choosing the particular value x̄ = 0, namely,

|ψSimon,0〉 ≡ 1√
2

(|0〉 + |r〉) . (19)

Notice that the number of possible different states of the
above form, corresponding to all the possible nonvanishing
values of r , is 2n − 1. If r contains a single value 1, i.e., wt(r) =
1 [wt(r) is the weight of the binary string r , namely, the number
of 1’s that it contains] then the state |ψSimon,0〉 is fully separable
(∈ Sn), because it is of the form 1/

√
2(|0〉 + |1〉)|0〉 · · · |0〉.

There are n possible states of this type, corresponding to the
different strings of length n with weight 1.

If wt(r) = 2, then the state (19) contains two-qubit entan-
glement (∈ Sn−1). The number of states of this form is B(n,2).
This simple counting argument can be generalized to the case
of an arbitrary weight for r: if wt(r) = k the state (19) belongs
to Sn−k+1 and there are B(n,k) of them. The case of maximum
weight is wt(k) = n and then the state is n-partite entangled,
of the GHZ form. Notice that the most populated class of states
corresponds to values of the period r with wt(r) = n/2�, i.e.,
typically half of the qubits are entangled with each other.

V. CONCLUSIONS

In this paper we have elucidated the role of multipartite
entanglement in the quantum algorithms of Deutsch-Jozsa,
Grover, and Simon by studying the properties of the family
of “real equally weighted states.” For the Deutsch-Jozsa
algorithm, multipartite entanglement within the first register
is needed to accommodate all possible (balanced) functions.
We have shown that the fraction of balanced functions
corresponding to biseparable states decreases exponentially
with the number of qubits. In this sense most balanced
functions involve genuine multipartite entanglement. In the
Grover algorithm, we have shown that the entanglement
properties of the initial state of the first register depend on
the number of solutions, and we have demonstrated that such a
state is also typically multipartite entangled, when a small
number of items is searched for. In the Simon algorithm
the situation is slightly different: in general the first register
and the target register are entangled. Moreover, the kind of
entanglement within the first register after the measurement of
the target register depends on the weight of the period r: for
increasing weight it involves an increasing number of qubits.
For large n, the states employed typically involve entanglement
among half of the constituent qubits. We have thus shown
that multipartite entanglement is an important property in the
considered quantum algorithms.

We point out that in this analysis we have not performed
any quantitative estimate of the multipartite entanglement oc-
curring in the considered algorithms, or of their simulatability
features [9]. These are interesting open questions, which will
be the object of future investigations.
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