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We analyze two recently proposed measures of non-Markovianity: one based on the concept of divisibility of
the dynamical map and the other one based on distinguishability of quantum states. We provide a model to show
that these two measures need not agree. In addition, we discuss possible generalizations and intricate relations
between these measures.
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I. INTRODUCTION

The dynamics of open quantum systems are now attracting
increasing attention [1–3]. It is relevant not only for better
understanding of quantum theory but also it is fundamental
in various modern applications of quantum mechanics. Since
the system-environment interaction causes dissipation, decay,
and decoherence, it is clear that dynamics of open systems
is fundamental in modern quantum technologies, such as
quantum communication, cryptography, and computation [4].
The usual approach to the dynamics of an open quantum
system consists in applying an appropriate Born-Markov
approximation, leading to the celebrated quantum Markov
semigroup [5,6], which neglects all memory effects. However,
recent theoretical studies and technological progress call for a
more refined approach based on non-Markovian evolution.

Non-Markovian systems appear in many branches of
physics, such as quantum optics [1,7], solid-state physics [8],
quantum chemistry [9], and quantum information processing
[10]. Since non-Markovian dynamics modifies monotonic
decay of quantum coherence, it turns out that when applied
to composite systems it may protect quantum entanglement
for longer times than standard Markovian evolution [11].
In particular, it may protect the system against the sudden
death of entanglement [12]. It is therefore not surprising
that non-Markovian dynamics has been intensively studied
recently [13].

Surprisingly, it turns out the concept of (non)Markovianity
is not uniquely defined. One approach is based on the idea of
the composition law, which is essentially equivalent to the
idea of divisibility [14]. This approach was used recently
by Rivas, Huelga, and Plenio (RHP) [15] to construct the
corresponding measure of non-Markovianity, that is, RHP
measured the deviation from divisibility. A different approach
is advocated by Breuer, Laine, and Piilo (BLP) in Ref. [16].
BLP defined non-Markovian dynamics as a time evolution
for the open system characterized by a temporary flow of
information from the environment back into the system and
manifests itself as an increase in the distinguishability of pairs
of evolving quantum states. It is clear that RHP characterized a
mathematical property of the dynamical map whereas the idea
of BLP is based on physical features of the system-reservoir
interaction, rather than the mathematical properties of the
dynamical map of the open system. In a recent paper [17],
Haikka, Cresser, and Maniscalco performed detailed analysis

of these approaches, studying the dynamics of the driven
qubit in a structured environment. It is indicated [17] that
the concepts of RHP and BLP need not agree, as was also
conjectured in [18] and checked in [19]. The BLP measure
was recently analyzed for the dynamics of a qubit coupled to a
spin environment via an energy-exchange mechanism [20].
In the present paper, we perform further analysis of this
problem. In particular, we provide a simple model showing
that Markovian evolution à la BLP may be indivisible and
hence non-Markovian according to RHP. Actually, one may
feel the relation of BLP versus RHP analogous to the relation
between separable and positive partial transpose (PPT) states in
entanglement theory, where separable states define the proper
subset of PPT states. States which are PPT but entangled are
bound entangled. Using this analogy, one may call Markovian
evolution à la BLP indivisible (non-Markovian according to
RHP): “bound non-Markovian.” Finally, we discuss possible
generalizations of BLP using tensor product structures and
show that a slight modification of BLP reduces their concept of
Markovianity to divisibility (the bound non-Markovianity can
be washed out). The main aims of this paper are to expose the
relation between two different concepts on a simple example
and to present the way to unify them, which we hope will
clarify the issue.

II. DIVISIBILITY VERSUS BACKFLOW OF
INFORMATION

The measure for non-Markovianity proposed by RHP
[15] is based on a notion of divisibility: a trace-preserving
completely positive map �(t,0) is divisible if it can be written
as

�(t + τ,0) = �(t + τ,t)�(t,0), (1)

and �(t + τ,t) is completely positive for any t,τ > 0. RHP
defined a map to be Markovian exactly when it is divisible.
Note that

�(t + τ,t) = �(t + τ,0)�−1(t,0) (2)

satisfies composition law

�(s,t) = �(s,u)�(u,t) (3)
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for any s � u � t , which is usually attributed for Markovian
evolution. It is shown [15] that the quantity

g(t) = lim
ε→0+

||1ld ⊗ �(t + ε,t)P +
d ||1 − 1

ε
(4)

enjoys g(t) > 0 if and only if the original map �(t,0) is
indivisible (|| · ||1 is a trace norm). As usual, 1ld denotes
an identity map in Md (C), and P +

d denotes the maximally
entangled state in Cd ⊗Cd (we consider the evolution of a
d-level system). Now, using the fact that any divisible (and
differentiable) completely positive map satisfies a local in the
time master equation,

d

dt
�(t,0) = L(t)�(t,0), �(0,0) = 1ld, (5)

where the local generator L(t) is a legitimate Markovian
generator for any t � 0. The formula (4) may be equivalently
rewritten in terms of L(t):

g(t) = lim
ε→0+

||{1ld ⊗ [1ld + εL(t)]}P +
d ||1 − 1

ε
. (6)

A second criterion of non-Markovianity was proposed by
BLP in Ref. [16]. The BLP criterion identifies non-Markovian
dynamics with certain physical features of the system-reservoir
interaction. They defined non-Markovian dynamics as a time
evolution for the open system characterized by a temporary
flow of information from the environment back into the
system. This backflow of information may manifest itself as an
increase in the distinguishability of pairs of evolving quantum
states. Hence, according to BLP, the dynamical map �(t,0) is
non-Markovian if there exists a pair of initial states ρ1 and ρ2

such that for some time t > 0 the distinguishability of ρ1 and
ρ2 increases; that is,

σ (ρ1,ρ2; t) = d

dt
D[ρ1(t),ρ2(t)], (7)

where D(ρ1,ρ2) = 1
2 ||ρ1 − ρ2||1 is the distinguishability of ρ1

and ρ2, and ρk(t) = �(t,0)ρk .
Using these two criteria, one easily defines the correspond-

ing non-Markovianity measures of the dynamical map �:

NRHP(�) = I
I + 1

, (8)

where I = ∫ ∞
0 g(t)dt . Similarly, one has

NBLP(�) = sup
ρ1,ρ2

∫
σ>0

σ (ρ1,ρ2; t)dt. (9)

It is clear [16] that NRHP(�) = 0 implies NBLP(�) = 0.
Hence, all divisible maps are Markovian according to BLP. In
general, the converse is not true. This problem was carefully
analyzed in [19] for phenomenological integro-differential
master equations and in [17], where the authors have studied
the non-Markovian character of a driven qubit in a structured
reservoir in different dynamical regime using NRHP(�) and
NBLP(�).

III. MODEL: CLASSICAL STOCHASTIC DYNAMICS

It should be clear that the above discussion applies for a clas-
sical stochastic systems as well. Consider stochastic dynamics

of d-state classical system described by the probability vector
p = (p1, . . . ,pd ). Its evolution p(0) −→ p(t) = �(t) · p(0) is
defined by the family of stochastic matrices �(t); that is,
�ij (t) � 0 for all i,j = 1, . . . ,d and

d∑
i=1

�ij (t) = 1, (10)

for each j = 1, . . . ,d and t � 0. These conditions guarantee
that p(t) is a legitimate probability vector for all t � 0. The
corresponding local-in-time master equation

ṗi(t) =
d∑

j=1

Lij (t) pj (t) (11)

is defined in terms of the local generator L(t), which is defined
in by the classical dynamical map �(t) as follows:

L(t) = �̇(t) · �−1(t). (12)

In particular, if L does not depend on time, �(t) defines a one-
parameter semigroup of stochastic matrices �(t) := �(t,0) =
etL. Let us recall that � is stochastic if and only if it satisfies
well-known Kolmogorov conditions:

Lij � 0, i �= j, and
d∑

i=1

Lij = 0, (13)

for each j = 1, . . . ,d. Now, a stochastic evolution �(t,0) is
divisible if it can be written as a composition of two stochastic
maps �(t + τ,t) and the original �(t,0)

�(t + τ,0) = �(t + τ,t) · �(t,0), (14)

for any τ > 0. Clearly, �(t,0) is divisible if and only if the
corresponding local generator L(t) satisfies Kolmogorov con-
ditions for any t � 0. Now, we compare two non-Markovianity
measures due to RHP and BLP.

It is clear that classical evolution may be rewritten in the
quantum framework as follows: Any probability vector p gives
rise to the diagonal density matrix ρ = ∑

k pk|k〉〈k|, and hence
the stochastic map—classical channel—� gives rise to the
following Kraus representation:

�ρ =
d∑

i,j=1

�ji |i〉〈j | ρ |j 〉〈i|. (15)

Now, to apply (4), one needs the classical analog of
(1l ⊗ �)P +. Let us define (1lcl ⊗ �)P +

cl , where the classical
identity map is defined by

1lcl ρ =
d∑

i=1

|i〉〈i| ρ |i〉〈i| (16)

and the classical analog of the maximally entangled states
reads as follows:

P +
cl = 1

d

d∑
i=1

|i〉〈i| ⊗ |i〉〈i|. (17)
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One finds therefore

(1lcl ⊗ �)P +
cl = 1

d

d∑
i,j=1

�ji |i〉〈i| ⊗ |j 〉〈j |. (18)

Now, the “classical” quantity

g(t) = lim
ε→0+

||1lcl ⊗ �(t + ε,t)P +
cl ||1 − 1

ε
(19)

is strictly positive if and only if the original stochastic
map �(t,0) is indivisible, and hence g(t) identifies non-
Markovianity of the classical stochastic process. Equivalently,
it may be rewritten using local generator L(t)

g(t) = lim
ε→0

||[1lcl ⊗ (1lcl − εL(t))]P +
cl ||1 − 1

ε
. (20)

Consider now the following model of stochastic dynamics
of a two-state system

�(t,0) =
(

1 − x0(t) x1(t)

x0(t) 1 − x1(t)

)
, (21)

where x0(t),x1(t) ∈ [0,1] for all t � 0. One finds for the local
generator

L(t) =
(−a0(t) a1(t)

a0(t) −a1(t)

)
, (22)

where

a0 = ẋ0(1 − x1) + ẋ1x0

1 − x0 − x1
, (23)

a1 = ẋ0x1 + ẋ1(1 − x0)

1 − x0 − x1
. (24)

Now, �(t,0) is divisible if and only if a0(t),a1(t) � 0 for all
t � 0. On the other hand, one easily finds

σ (t) = −2[a0(t) + a1(t)]|�0|, (25)

where �k = (p1 − p2)k . Hence, contrary to g(t), the quantity
σ (t) controls only the sum of a0 and a1. In principle, one may
have σ (t) � 0 even if a0(t) < 0 or a1(t) < 0. Indeed, let us
define

x0(t) =
∫ t

0
f0(τ )dτ , x1(t) =

∫ t

0
f1(τ )dτ (26)

such that 0 �
∫ t

0 fk(τ )dτ � 1, for all t � 0. Hence, our model
is fully controlled by functions f0 and f1. Let

f0(t) = κ sin t, t � 0 (27)

and f1(t) = 0 for t ∈ [0,π ] together with

f1(t) = −κ sin t, t � π, (28)

where 0 < κ < 1/2. One finds

a0(t) + a1(t) = κ sin t

1 − κ + κ cos t
, t ∈ [0,π ], (29)

and a0(t) + a1(t) = 0 for t � π . Note, that for t � π one has

a0(t) = −a1(t) = κ sin t, (30)

which proves that �(t,0) is not divisible. However, this map is
“classically” Markovian according to BLP [16] due to a0(t) +
a1(t) � 0 for all t � 0.

IV. QUBIT DYNAMICS

Consider now the following dynamics of a qubit:

ρ00(t) = ρ00 x0(t) + ρ11 [1 − x1(t)],

ρ11(t) = ρ00 [1 − x0(t)] + ρ11 x1(t), (31)

ρ01(t) = ρ01 γ (t),

where x0(t),x1(t) ∈ [0,1], and

|γ (t)|2 � x0(t)x1(t). (32)

The above conditions for xk(t) and γ (t) guarantee that the
dynamics is completely positive. One easily finds for the
corresponding local generator

Lρ = −i



2
[σz,ρ] +

1∑
k=0

akLkρ + �

2
Lzρ, (33)

where

L0ρ = σ+ρσ− − 1
2 {σ−σ+,ρ},

L1ρ = σ−ρσ+ − 1
2 {σ+σ−,ρ}, (34)

Lzρ = σzρσz − ρ.

The time-dependent coefficients a0 and a1 are defined in (23)
and (24), whereas �(t) and 
(t) read as follows:

�(t) = −a0(t) + a1(t)

2
− Re

γ̇ (t)

γ (t)
, (35)


(t) = Im
γ̇ (t)

γ (t)
. (36)

The corresponding dynamical map �(t,0) is divisible if and
only if ak(t),�(t) � 0 for all t � 0. On the other hand, one
finds the following formula:

σ (t) = −2A(t)�2
00 + [A(t) + 4�(t)]|�01|2√

�2
00 + |�01|2

, (37)

where A(t) = a0(t) + a1(t), and a 2 × 2 matrix � reads

� = ρ1(0) − ρ2(0). (38)

It is therefore clear that using the same arguments as in the
classical model we may have σ (t) � 0 but the dynamical map
is not divisible.

V. HOW TO RECONCILE TWO MEASURES

We have studied so far the non-Markovian character of
simple classical and quantum models and compared two
non-Markovianity measures due to RHP and BLP. We per-
formed explicit construction showing that in general these two
measures do not agree, supporting [17–19].

Now, we show how these two measures may be reconciled.
Let us observe that the approach of BLP requires only that
�(t,0) is a positive map for all t � 0, that is, it maps a density
operator at t = 0 into a density operator at time t . We stress that
a concept of complete positivity does not enter the definition of
σ (ρ1,ρ2,t). On the other hand, the notion of complete positivity
is crucial for RHP. Hence, to reconcile these measures one has
to incorporate complete positivity into BLP approach. It is
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clear that if �(t,0) is completely positive then 1ld ⊗ �(t,0) is
positive, and one may introduce

σ̃ (ρ̃1,ρ̃2; t) = d

dt
D[ρ̃1(t),ρ̃2(t)], (39)

where

ρ̃k(t) = [1ld ⊗ �(t,0)]ρ̃k, k = 1,2. (40)

It is clear that if σ̃ (ρ̃1,ρ̃2; t) � 0 for all initial states ρ̃k , then
σ (ρ1,ρ2; t) � 0 for all initial states ρk . Note, however, that the
converse needs not be true. Again, one may show that there
exists indivisible maps �(t,0) for which σ̃ (ρ̃1,ρ̃2; t) � 0 for
all initial states ρ̃k . Note that condition σ̃ (ρ̃1,ρ̃2; t) � 0 may
be reformulated as

σ̃ (�; t) = d

dt
||�(t)||1 � 0, (41)

where �(t) = [1ld ⊗ �(t,0)]�, and �† = �, together with
Tr� = 0, which follows from � = (ρ̃1 − ρ̃2)/2 and ρ̃k , are
true states. It should be stressed that condition Tr� = 0 is
very restrictive. Let us recall that if � is trace preserving then
� is positive if and only if [21]

||�a||1 � ||a||1 (42)

for all a† = a. Note, however, that if one is restricted to a en-
joying Tra = 0, then ||�a||1 � ||a||1 does not imply positivity
of �. If we relax Tr� = 0, then the condition σ̃ (�; t) � 0 for
all Hermitian � implies that �(t,0) is (completely) divisible
and hence the definition of Markovianity due to BLP reduces
to divisibility. More explicitly, this fact can be formulated as

Theorem. For a bijective evolution �(t,0), σ̃ (�; t) � 0 for
all �† = �, if and only if it is divisible.

Proof. The “if” part is straightforward because the trace
norm is monotonically decreasing given the complete positiv-
ity of the �(t + τ,t),

‖�(t + τ )‖1 = ‖[1ld ⊗ �(t + τ,t)]�(t)‖1 � ‖�(t)‖1,

for every t and τ > 0. Conversely, if the evolution �(t,0) is
bijective, the partitions �(t + τ,t) = �(t + τ,0)�−1(t,0) are
well defined. Then σ̃ (�; t) > 0 for some t implies that for
some small τ

‖�(t + τ )‖1 = ‖[1ld ⊗ �(t + τ,t)]�(t)‖1 > ‖�(t)‖1.

So there exists some partition �(t + τ,t) which is not
completely positive, and therefore the dynamics is not
divisible. �

VI. OPERATIONAL MEANING OF σ̃ (�; t)

One may think that by relaxing the condition Tr� = 0 the
interpretation of an increase of σ̃ (�; t) in terms of backflow
of information from environment to system is lost; however,
that is not the case. To explain this more carefully, we have
to recall here some results from quantum hypothesis testing,
particularly the one-shot, two-state discrimination problem
[22].

Consider a quantum system whose state is represented
by the density matrix ρ1 with probability p and ρ2 with
probability (1 − p). We want to determine the density matrix

that describes the true state of the quantum system by
performing a measurement. If we consider some general
positive operator valued measure (POVM) {Mj }, where j ∈ 


is the set of possible outcomes, we may split this set in two
cases. If the outcome of the measurement is inside of some
subset A ⊂ 
, then we say that the state is ρ1. Conversely, if
the result of the measurement belongs to the complementary
set Ac such that A ∪ Ac = 
, we say that the state is ρ2. Let us
group the results of this measurement in another POVM given
by the couple {T ,I − T }, with T = ∑

j∈A Mj .
Thus, when the true state is ρ1 (which happens with

probability p), we erroneously conclude that the state is ρ2

with probability

(1 − p)
∑
j∈Ac

Tr[ρ1Mj ] = (1 − p)Tr

[
ρ1

( ∑
j∈Ac

Mj

)]

= (1 − p)Tr[ρ1(I − T )].

On the other hand, when the true state is ρ2, we erroneously
conclude that the state is ρ1 with probability

p
∑
j∈A

Tr[ρ2Mj ] = pTr

[
ρ2

( ∑
j∈A

Mj

)]
= pTr[ρ2T ].

Note that when p = 0 or p = 1 we immediately obtain
zero probability to identify wrongly the true state. The
problem in one-shot, two-state discrimination is to examine
the tradeoff between the two error probabilities pTr[ρ2T ] and
(1 − p)Tr[ρ1(I − T )]. Thus, consider the best choice of T that
minimizes the total error probability

min
0�T �I

{pTr[ρ2T ] + (1 − p)Tr[ρ1(I − T )]}
= min

0�T �I
{(1 − p) + Tr[pρ2T − (1 − p)ρ1T ]}

= (1 − p) − max
0�T �I

[Tr(�T )],

where � = (1 − p)ρ1 − pρ2 is a self-adjoint operator (some-
times called a Helstrom matrix [23]) with trace Tr� = 1 − 2p,
which vanishes only for the unbiased case p = 1/2. By using
the same arguments as for p = 1/2 (see [4,22]) the result of
the optimization process turns out to be

min
0�T �I

{pTr[ρ2T ] + (1 − p)Tr[ρ1(I − T )]} = 1 − ‖�‖1

2
.

(43)

Thus, the trace norm of � = (1 − p)ρ1 − pρ2 gives our
capability to distinguish correctly between ρ1 and ρ2 in the
one-shot, two-state discrimination problem. Since that is only
a function of the information we gather by the prior probability
p and by the measurement T , ‖�‖1 is a measure of the
information we have.

Consider again a trace-preserving map � : B(H) −→
B(H). If it increases the trace norm of �, ‖�(�)‖1 >

‖�‖1, we can assume that � carries information about the
correct state of the system. Otherwise, it cannot decrease the
probability to identify wrongly the true state. For that reason, if
we process data before making a measurement, which means
applying some � over the states, we cannot increase the trace
norm of � since we cannot gain more information about
some data just by processing it. This is the so-called data
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FIG. 1. (Color online) Behavior of σ̃ (�; t) for the integro-
differential model (44). The initial Helstrom matrix is � = 0.93ρ1 −
0.07ρ2, where ρ1 and ρ2 are given in (46) and (47). There is a time
period between 100 and 150 where σ̃ (�; t) increases (the units of γ

and γ0 are [Time]−1).

processing inequality [22], and it implies that � is contractive
(i.e., positive). In addition, we can never dismiss that the states
ρ1 and ρ2 are part of the larger system “SA” in such a way
that they are the result of tracing out the ancillary systems
ρ1,2 = TrA[ρ1A,2A]. By making the same analysis as before, in
order not to gain information we then require the map 1ld ⊗ �

to be contractive (i.e., � completely contractive) and thus
completely positive.

Going back to the problem of Markovianity, one may now
realize that σ̃ (�; t) is a measure of the information gained by
the system for some initial Helstrom matrix �. This interpre-
tation puts together the two concepts of Markovianity based
upon divisibility and backflows of information. Particularly if
one ignores the potential existence of an ancilla, under the case
of unbiased discrimination problem, ‖�‖1 = 1

2‖ρ1 − ρ2‖1,
which is the definition of the trace distance between ρ1 and ρ2,
recovering the approach of BLP. Nevertheless, in principle
there is no reason to presuppose the fulfillment of these
particular assumptions.

One can define a measure of non-Markovianity as (9), with
σ̃ (�; t) in the place of σ (ρ1,ρ2; t). That will be zero if and only
if (8) is; however, (8) is easier to compute because it avoids
the complicated optimization procedure in (9) now upon every
Helstrom matrix �.

We have already proposed examples of nondivisible dynam-
ics withNBLP(�) = 0, but for completeness we have computed
σ̃ (�; t) for the phenomenological integro-differential master
equation [24]:

dρ(t)

dt
=

∫ t

0
k(t ′)Lρ(t − t ′)dt ′, (44)

where k(t) = γ e−γ t , and

Lρ = γ0(n̄ + 1)L0ρ + γ0n̄L1ρ, (45)

with γ,γ0,n̄ � 0, and L0 and L1 were given in (34). Despite
that this kind of equation is used as a simple model of non-
Markovian dynamics, it was shown in [19] that NBLP(�) = 0.
However, σ̃ (�; t) is not always decreasing for any Helstrom
matrix. For example, by taking p = 0.07 and

ρ1 =

⎛
⎜⎜⎜⎝

0.5 0 0 0.48

0 0.001 0 0

0 0 0.019 0

0.48 0 0 0.48

⎞
⎟⎟⎟⎠ , (46)

ρ2 =

⎛
⎜⎜⎜⎝

0.25 0 0 0

0 0.25 0 0

0 0 0.5 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (47)

there is a small but nonzero period where σ̃ (�; t) grows as
we have represented in Fig. 1. This denotes the existence
of a backflow of information, which was expected from the
nondivisible character of this dynamics. One may look for
larger increments of σ̃ (�; t); however, it is not easy to find
such an example. To actually solve the optimization problem
on Helstrom matrices is quite hard, as we have already pointed
out.

VII. CONCLUSIONS

We have analyzed two concepts of Markovianity, one based
on the divisibility property of the dynamical map and the other
based upon the distinguishability of quantum states. We have
given very simple examples where these two criteria do not
coincide. Furthermore, we have proposed a way to make them
equivalent, in the sense that Markovianity would be identified
by divisibility, but keeping the interpretation in terms of flows
of information. For that we resort to the results in the one-shot,
two-state discrimination problem and point out that an increase
of the trace norm of any Hermitian matrix during the dynamics
can also be associated with a backflow of information from the
environment to the system.
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[24] S. Daffer, K. Wódkiewicz, J. D. Cresser, and J. K. McIver, Phys.
Rev. A 70, 010304(R) (2004); S. Maniscalco and F. Petruccione,
ibid. 73, 012111 (2006); S. Maniscalco, ibid. 75, 062103 (2007).

052128-6

http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1063/1.522979
http://dx.doi.org/10.1007/BF01608499
http://dx.doi.org/10.1103/PhysRevLett.96.167403
http://dx.doi.org/10.1103/PhysRevLett.96.167403
http://dx.doi.org/10.1103/RevModPhys.70.101
http://dx.doi.org/10.1103/PhysRevLett.96.050504
http://dx.doi.org/10.1103/PhysRevLett.96.050504
http://dx.doi.org/10.1103/PhysRevA.81.032101
http://dx.doi.org/10.1103/PhysRevA.81.032101
http://dx.doi.org/10.1016/j.optcom.2006.01.061
http://dx.doi.org/10.1103/PhysRevLett.97.140403
http://dx.doi.org/10.1103/PhysRevE.62.8808
http://dx.doi.org/10.1088/1751-8113/42/1/015006
http://dx.doi.org/10.1103/PhysRevA.69.042107
http://dx.doi.org/10.1103/PhysRevA.69.022115
http://dx.doi.org/10.1103/PhysRevA.70.012106
http://dx.doi.org/10.1103/PhysRevA.70.010304
http://dx.doi.org/10.1103/PhysRevA.70.010304
http://dx.doi.org/10.1103/PhysRevA.71.020101
http://dx.doi.org/10.1103/PhysRevA.72.024103
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevLett.100.180402
http://dx.doi.org/10.1103/PhysRevA.79.062112
http://dx.doi.org/10.1007/s11080-007-9051-5
http://dx.doi.org/10.1007/s11080-007-9051-5
http://dx.doi.org/10.1142/S1230161209000190
http://dx.doi.org/10.1103/PhysRevLett.101.140402
http://dx.doi.org/10.1103/PhysRevE.79.041147
http://dx.doi.org/10.1103/PhysRevE.79.041147
http://dx.doi.org/10.1103/PhysRevLett.104.070406
http://dx.doi.org/10.1103/PhysRevLett.104.070406
http://dx.doi.org/10.1007/s00220-008-0411-y
http://dx.doi.org/10.1007/s00220-008-0411-y
http://dx.doi.org/10.1103/PhysRevLett.101.150402
http://dx.doi.org/10.1103/PhysRevLett.101.150402
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.105.050403
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevA.83.012112
http://dx.doi.org/10.1103/PhysRevA.83.012112
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062120
http://dx.doi.org/10.1103/PhysRevA.83.032103
http://dx.doi.org/10.1103/PhysRevA.70.010304
http://dx.doi.org/10.1103/PhysRevA.70.010304
http://dx.doi.org/10.1103/PhysRevA.73.012111
http://dx.doi.org/10.1103/PhysRevA.75.062103

