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Commutator-based entropic uncertainty relations in multidimensional position and momentum spaces are
derived, twofold generalizing previous entropic uncertainty relations for one-mode states. They provide optimal
lower bounds and imply the multidimensional variance-based uncertainty principle. The article concludes with

an open conjecture.
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I. INTRODUCTION

Without a classical analog, uncertainty relations are one of
the most fundamental ideas of quantum mechanics, underlying
many conceptual differences between classical and quantum
theories. They reveal by rigorous inequalities that incompatible
observables cannot be measured to arbitrarily high precision
simultaneously. They are applied widely in areas both related
and unrelated to quantum mechanics, such as entanglement
detection [1-7] quantum cryptography [8-10], and signal
processing [11,12].

We associate a random variable A with an operator A.
The possible values of A are the eigenvalues of A, and the
probability (density) that A takes the value a is the probability
(density) that we get a when we measure the operator A with
respect to a quantum state |W). The variance of A, denoted AA,
is the variance of A, and the (differential) Shannon entropy of
A, denoted H(A,|W)), or H(A), or H(P(a)), where P(a) is
the distribution of A, is defined as the (differential) Shannon
entropy of A.

The famous commutator-based Heisenberg uncertainty
principle is formulated by Robertson [13] for observables:

AAAB > H(WI[A,B]|W)[*. (1

We seth = 1 throughout this article. Denote the n-dimensional
position and momentum space H,. For the position and the
momentum operators X, p on Hj, Eq. (1) reduces to

ARAD > 1. (2)

Equation (2) is generalized to multidimensional spaces. The
n-dimensional position and momentum space H, is described
by 2n operators R= (%1, P1,%2, - . . ,Xn, Pn), which satisfy the
canonical commutation relations [R j,Rk] =1iQj, for jk =
1,2,...,2n, where

N/ 0 1
a-®(" ) )
j=1

For an n-mode density operator p, define the covariance matrix
y as

vit = 2t{p[R; — w(pR)I[R, — r(p RO} — iRy (@)

y isreal and symmetric. The multidimensional variance-based
uncertainty relation [14] is given by

y +i2=0. ®)
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Reference [15] provides much more detailed backgrounds.
There are some other types of uncertainty relations for
multimode states (e.g., [6]).

A different approach is to formulate uncertainty relations
based on the Shannon entropy, rather than the variance. In the
continuous variable case, Refs. [16,17] prove

iqu}g{H(J?) +H(p)}=1+Inn (6)

for H;. Equation (6) implies Eq. (2) [16,17], showing the
advantages of entropic uncertainty relations. Lots of entropic
uncertainty relations in the discrete variable case are proposed
(e.g., [18]). Reference [9] is a recent survey on this topic.
The main contribution of the present work is to twofold
generalize Eq. (6). The commutator-based entropic uncertainty
relation Eq. (7) holds for more general operators on multidi-
mensional position and momentum spaces. Equation (7) im-
plies the multidimensional variance-based uncertainty relation
Eq. (5), so every time we use Eq. (5) in applications, we might
think of using Eq. (7) instead to produce better results.
Theorem. We have entropic uncertainty relations in H,;:

ilgg{H(A) +H(B) =1+In7 +1n|[A,B], (7)

where

B =Y (biti +bjp) (8

i=1

n
A= (aiki +ajpy).
i=1

are linear combinations of the components of R (a;,a},b;,b.
are real coefficients). Equivalently and more precisely,

inf { H (X i H bix; + b, p;
llg){ (;(ax +a,P))+ (Z( X +b; ))}

i=1

|:Z(Clifi +a; p;), Z(bifi + b,{ﬁi):| ‘

i=1 i=l

i(aib,/’ — bia;)

i=I

1+Inm +1In

l+In7 +1n . 9)

Letting n =a; =b| =1, a} =b; =0, Eq. (7) obviously
reduces to Eq. (6). Equation (7) strengthens the importance
of commutation relations and supports the intuitive idea that
commutators quantify the extent of incompatibility of two
operators.

The paper is organized as follows. Section II provides the
detailed proof of the main theorem, which is arranged in
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lemmas to help you get the whole picture. Section III proves
that Eq. (7) implies the variance-based uncertainty principle
Eq. (5). Section IV concludes with an open conjecture.

II. PROOF OF THE MAIN THEOREM

We begin our discussion in H;. .
The fractional Fourier transform [19] ®(w) = F(0)W¥(x)
plays an important role in the proof. It is defined as

P(w) =

exp (i6 — %i) exp( iw? )

27 sinf 2tan 6
/“’o iwx N ix? W (10)
X exp| — .
oo P sinf  2tanf e

Naturally, £(0) is the identity map I, and

N AV Y A
F<2>_}", F( 2>_}" , (11)

where F and F~! are the Fourier transform and the inverse
Fourier transform, respectively. F satisfies [19]

FO1+6,) = F@) o F6,)=F@®)oF©O). (12)

The eigenvector of the operator

d
ﬁcos@+ﬁsin9=£cos@—isin6d— (13)
X
|
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corresponding to the eigenvalue w is

exp(%i.—ié) exp iw? N i.a)x o ix? a4
27 sin6 2tan6 sinf  2tan6

Let W(x) be the position wave function of a quantum
state |W). Following from the definition of the fractional
Fourier transform, the wave function in the X cos8; + p sin6;
representation is W; = F (6;)¥(x) for i = 1,2, which implies
W, = F(6, — 0;)¥; from Eq. (12). Therefore, wave functions
of the same quantum state in different representations are
related by the fractional Fourier transform.
Lemma 1. For ¢ € R,

H(cA) = H(A)+ In|c| (15)

(see Ref. [20]).
Lemma 2.

iqullf{H()? cos ) + psinby) + H(X cosbh, + psind,)}
= 1+ Inm + In|sin(6;, — 6)|, (16)
which can be rephrased as
Inf(H(W(OP) + H(®@))} = 1 +In7 +Insind],
a7

where W(x) runs through all legitimate wave functions and
P (w) = F(O)Y(x) (see Ref. [12]).

Theorem 1 (Theorem in Hy).

inf{H(@if +ap) + Hbik +bap)h =1+ +Inllad +ap.bif +bapll = 1+ Inm +Injab, —abi| - (18)

Proof. Using Lemma 1 and then Lemma 2, we have

i‘gf{H(al)E +axp) + H(b1X + b2 p)}

i

b b
:igf{H( SR PR ﬁ)+1n,/a%+a§+H< L i+ —2 ﬁ>+ln‘/bf+b§}
MUNJa+ad a RN

=1+Inm +Inja1by —ayb)| =1+ 1Inzx + Inl|la1X + a2 p,b1 X + by p]I. (19)

We have completed our discussion in H;. Let us move on

to H,. Define
cosf) —sind
Ro=|". . (20)
sinf  cosf

Lemma 3.

(a) Invariance of infimum under local rotations.

We apply local rotations (£,p;)" — Ry, (#1,p)T and
(%, p2)T — Rg, (%2, p2)T. Under this transform, a state |¥),
whose position wave function is W(x,x,), should become a
new state denoted as F ) ® F (6,)| V), whose position wave
function is [F(6)) ® F(62)]W(x,,x»). Thus,

ifu}f{H ((al ) (;1) + (a3 as) (Z) ,|\v>) +H ((bl b) (;‘]) + (b3 by) (Z) M)}

2
[v) 1 2

— inf {H (<a1 )Ry, <;‘ ) + (a3 a)Ry, (; ) FO)® ﬁ(@zn\m)
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2 N

+H ((bl b2)Ry, ( ! ) + (b3 ba)Ry, (fz) NACHY: ﬁ(92)|W>) ]
D1 D2

—inr{# (@ amo (31) +@anre (52 )0w) + 1 (@0 (51 )+ @rvome (52 ) a) | e

We pass from the third line to the fourth by using the fact that F0) ® F(6,)|V) isa legitimate quantum state if and only if |\¥)
is a legitimate quantum state. The commutator is preserved, which can be verified by direct computation:

X1 X X1 X
[(Cll az)( . >+(Cl3a4)(A ),(b1 bz)(A )+(b3b4)< . )}
P1 P2 P1 P2
X1 X X1 X
= |:(611 ax) Ry, ( R ) + (a3 as) Ry, < . > (b1 b2)Ry, ( R ) =+ (b3 bs) Ry, ( . >:| . (22)
P1 p2 P1 p2

(b) Invariance of infimum under global rotations.
For simplicity, the position wave function is denoted W[(x; ,x)7]. By change of variables, (x; ,x2)T — Ry(x1,x2)T, which
naturally yields (£;,%2)7 — Ro(%1,%2)7 and (p1, p2)T — Re(p1,p2)T, we pass from the first line to the second in the following.

inf{H ((m ) (fl) + (a3 as) (‘:’1> R (”)) +H (<b1 by) (’fl> + (b by) (’:’1) R (x‘))}
W) X2 )23 X2 X2 D2 X2
— inf :H ((a1 a)Ry (’?) + (as as)Ry (l:”> R |:R9 (x‘ )D
|¥) X2 2 X2
X Di X1
+H((bl bz)Re(A )+(b3 b4)R9(A >,‘~I’ [R9< )]) }
X2 D2 X2
= inf {H ((a1 )R <’fl> + (a3 as)Ry (?1) R (xl )) +H ((b1 by)Ry (’fl) + (b3 by)Ry (‘:’1) R (’” ))} .
W) X2 P2 X2 X2 )23 X2

(23)

We pass from the third line to the fourth by using the fact that W[(x;,x;)7] is a legitimate wave function if and only if
W[Ry(x;,x2) ]is a legitimate wave function. The commutator is preserved, which can be verified by direct computation:

|:(a1 az) <f1> + (a3 a4) (lil> (b1 by) (fl) + (b3 bs) (lfl )]
X2 P2 X2 P2
£ p1 X P
= [(al ar)Ry <A > + (a3 as)Ry < . > (b1 b2)Rg <A ) + (b3 by)Ry < . )] . 24)
X2 )23 X2 P2

Both local and global rotations are symplectic transformations, which preserve commutation relations (Ref. [15] provides detailed
relevant backgrounds). This is an alternative argument for the validity of Egs. (22) and (24).
Lemma 4.

ilg’g{H()Gl) + H(XycosO + pysinf)} =1+ Inw 4+ In|sinb|. (25)

Proof. We first show that the right-hand side is a valid lower bound and then prove its optimality. Let W(x;,x;) be the
position wave function of the quantum state W) aAﬂd ®(w,x;,) be the wave function of the same state in the representation
(%1 cosb + p; sin6,x,). Thus, ®(w,x;) = [F(O) ® []¥(x;,x,). Define

—+o00
P(xy) = / WGP dxr, 26)
—00
which satisfies
“+o00
f P(xn)dxy = 1. @7)
—00

According to the definition of H (%) and due to the concavity of the Shannon entropy,

+00 +00 +oo +00 +00 2
H(E) = — / (/ |w<x1,x2)|2dxz) <1n / |W<x1,x2>|2dxz)dx1=— / </ P(n)%dxz)

+00 2 +00 +0oo 2 2
X (ln/ P(xz)%dxz) dx| > —/ P(x3) </ |‘~I"§f(1;€)2€§)| In |\Ijg(1)’c:)2)| dxl) dx,. (28)
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Similarly,
+o00 +o00 o , 2 d , 2
H(%, cos6 + py sin6) > —/_Oo P(x2) <f_oo | ;f;;:?' In ;‘”(XS” dw) dxs, (29)
where
P(w.x) = [FO0) ® W (x1.00) —> 2222 _ g Y1X2) (30)
A P(x2) ~ P(x2)

In the last equation, ¥ and & are regarded as functions only of x; and w, respectively. Finally, applying Lemma 2,

00 00 N , 2 N7, , 2 o) o , 2 ) , 2
HE) + H(Ry cosf + py sind) > _/ P(xz)(/ [ (x1,x2)] ln| (x1,x2)] dx1+/ |®(w,x7)] ln| (w,x7)] da)dxz
—00 — 0
o

P(x3) P(x2) o P(x2) P(x3)

> / P(x)(1 +Inm 4+ In|sinf|)dx, =1+ 1Inmw + In|sinf|. a3n

The lower bound in Eq. (17) can be attained. Suppose it is attained for ¥ (x) and ¢(w) satisfying ¢(w) = F(O)y(x). Let
W(xy,x2) = Y(xe(x2), @(w,x) = ¢p(w)p(xa), (32)

where ¢ is an arbitrary one-dimensional legitimate wave function. In this case, it is easy to verify that the lower bound in Eq. (25)
is attained, proving its optimality.
Lemma 5.

i‘r\g{H(il 4+ ax;) + H(xXycosO + p;sinf)} =1+ Inx + In|sinb|. (33)

Proof. Let W(x},x;) be the position wave function of the quantum state |¥) and ®(w,x;) be the wave function of the same
state in the representation (£; cos 8 + p; sin6,%,):

. . exp (i6 — %i) iw? +oo iwx) ix?
D(w,x2) = [F(O) ® [1V(x1,x2) = exp exp | — + W(xy,x2)dx

27 sin 6 2tanf 00 sinf  2tanf

exp (iQ — %1) iw? [+°° io(x] —axy)  i(x; —axy)?
= — W(x; — ,X2)d 34
27 sin 6 xp 2tan6 J J_o xp sin 6 + 2tan6 (1 = axz.x2) dxy 34

implies
@ (w,x2) exp _ia.a)xg S s (ie,_ 3/) exp i /+OO exp —i%oxl + ixi exp “Haxin +iay
sin 6 27 sin 6 2tan6 / J_ sinf  2tan6 2tan6

N . —2iax|xy + ia2x§

X W(x) —axy,x2)dx; = [F(0) ® ] |exp Stand W(x; —axy,xn)|. 35)
an

Finally, applying Lemma 4,

}I\S{H(]ﬁ + axy) + H(X;cos6 + p;sinf)} = }gf {H </ |<D(a),x2)|2dx2> + H (/ |W(x; — axz,x2)|2dx2>}

o0 )
* ] 2 o0 ; - 2.2 2
-2
= inf{ H / (@, %) exp _la.a)X2 dv |+ H /' ox iax|x; +iaxj ix,
) - sin ¢ —o0 2tan6

=14+Inmw + In|sinb|. (36)

) W(x; — axy,x2)

Similarly,
i‘r‘llllj{H(fl) 4+ H(X;cosO + pysinf +axy)} =1+ 1Inm +In|sind)|. 37
Theorem 2 (Theorem in H,).
ilgf{H(aN?l + axp1 + azXy + asp2) + H(b1 Xy + bap1 + b3Xz + bapa)}
=1+Inw +In|[a1%) + ap1 + az3Xy + as pr,b1 X1 + bap1 + bk + baprll. (38)

Proof. The idea is to reduce the most general case to more and more simpler cases by using lemmas proved previously. Assume
b, = by = 0 without loss of generality. Otherwise, we apply local rotations [Lemma 3(a)], which preserve the commutator. We
only need to prove

ilr\g{H(alfl tapr +asky +aspr) + Hb1X + b3fr)} =1+ Inmw +1In|[a1X) + axpr +asky + aspo,b1 X1 + b3k2]l.  (39)
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Applying global rotations [Lemma 3(b)], which preserve the commutator, we assume b3 = 0. We only need to prove

ilgf{H(alfl +axp1 + a3k +aspr) + Hb1X1)} = 1 +Inm + In|[a1 X1 + a2 p1 + asXz + as p2,b151]]. (40)

Assume a4 = 0 by applying local rotations. It suffices to show

ilgl)c{H(Chfl +ayp +asxy) + Hb X))} =1+ Inmw +In|la1 X + axp1 + asxz,b1 %11, 41)

which is equivalent to (due to Lemma 1)

(W)

where a; = acos@, a, = asinf. Now we see that Eq. (42) is
precisely Eq. (37).

We have completed our discussion in H,. Generally,
Theorem in H,(n > 2) can be proved similarly with only the
following minor revision (no essential new ideas included).
We should introduce R € SO(n) (n-dimensional rotation) to
replace the role of Ry (two-dimensional rotation) in Lemma
3(b), simply because the global rotation becomes an n-
dimensional rotation in H,. The n-dimensional version of
Eq. (24) can be verified by direct computation and making
use of R € SO(n), or by simply using the fact that R is a
symplectic transformation.

We have completed the proof of the main theorem. Due to
the concavity of the differential Shannon entropy, we observe
that Eq. (7) also holds for mixed states, which are probabilistic
mixtures of pure states.

III. DISCUSSIONS

Proposition. Equation (7) implies the variance-based
uncertainty principle Eq. (5). It also implies Ser-
afini’s multidimensional uncertainty principle—Eq. (8) in
[6].

Proof. We first provide an equivalent description of
Eq. (5). Let d,d’ be two 2n-dimensional real vectors: d =
(ar,a},a, ...,ay,a,)" and d' = (by,b},bs, ... b,,b,)". Ob-
viously,

y+iQ>0< d+id)(y+iQ)d+id)>0Vdd.
(43)

If we define operators A, B as Eq. (8), it is equivalent to

AA + AB > |dTQd| = = |[A,B]], (44)

i(dib; - bia))
i=1

because d”yd = 2AA and d'"yd’ = 2AB. We thus see that
Eq. (5) is simply a direct consequence of the Heisenberg
uncertainty principle. H(A) and AA are, respectively, the
differential Shannon entropy and the variance of the same
distribution. From [20], we have AA > ;L exp[2H(A) — 1],
AB > ;- exp[2H(B)—1]. By basic inequalities, we

inf {H()?l cos@ + p;sinf + @)22) + H()?l)} =1+Inm +1In|[Xcosf + p;sinf,x;]] =14+ 1Inw +1In|sinf|, (42)
a

obtain
AA+AB > 2VAAAB

> 2\/ L2 exp[2H (A) + 2H(B) — 2]
4

1 o o

> —exp(l +In7 +1In|[A,B]] — 1) = |[4, B]].
T

(45)

Finally, Eq. (7) implies Serafini’s uncertainty principle for
multimode states (Eq. (8) in [6]) because Eq. (8) in [6] is a
necessary condition of Eq. (5) [6].

IV. CONCLUSION AND OUTLOOK

I have derived the commutator-based entropic uncertainty
relation Eq. (7), which holds for more general Hermi-
tian operators on multidimensional position and momentum
spaces, twofold generalizing the previous entropic uncertainty
relation Eq. (6). The lower bound in Eq. (7) is optimal, and
Eq. (7) implies the multidimensional variance-based uncer-
tainty principle Eq. (5). Every time we use Eq. (5) in
applications, we might think of using Eq. (7) instead to produce
better results.

One might try to seek for a simplified proof of the main
theorem by using the Stone—von Neumann theorem [21].
However, the present proof at least has the advantage of being
elementary.

A fundamental and interesting problem is to study how
far we can generalize Eq. (7). We restrict A, B to be of the
form Eq. (8) in the present work, but does Eq. (7) hold for
general Hermitian operators? At least we should modify Eq. (7)
in the case that [A,B] is not a number operator. I propose
the following open conjecture, which (if holds) implies the
Heisenberg uncertainty principle Eq. (1).

Conjecture. For arbitrary Hermitian operators A,B on
multidimensional position and momentum spaces, we have

H(A,|W) + HB,|¥)) > 1 +In7 + In|(¥|[A, B]|W)|.
(46)

If the conjecture is false, then can we add some loosg
restrictions on A, B [not as strong as the restriction that A, B
should take the form of Eq. (8)] so that Eq. (46) holds?
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