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Sensitivity of the isotopologues of hydronium to variation of the electron-to-proton mass ratio
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We study the sensitivity of the microwave and submillimeter transitions of the isotopologues of hydronium
to the variation of the electron-to-proton mass ratio µ. These sensitivities are enhanced for the low-frequency
mixed inversion-rotational transitions. The lowest frequency transition (6.6 GHz) takes place for isotopologue
H2DO+ and the respective sensitivity to µ variation is close to 200. This is about two orders of magnitude larger
than the sensitivity of the inversion transition in ammonia, which is currently used for the search of µ variation
in astrophysics.
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I. INTRODUCTION

The search for the possible variation of fundamental
constants is a poor man’s way to look for physics beyond
the standard model. There are two main approaches to such
studies. The first is to make laboratory measurements with
different atomic and molecular clocks in order to look for
local variations on the time scale of the order of a year.
The second is to compare laboratory measurements with
astrophysical observations, where one can study variations on
a much bigger space and time scale up to 10 billion years. An
advantage of the first approach is in unprecedented accuracy of
experiments with atomic clocks. On the other hand, the second
approach allows the exploration of bigger scales and different
environments. For example, the local matter density in the
laboratory experiments and in interstellar molecular clouds
differ by more than 10 orders of magnitude. We can conclude
that these two approaches are complementary to each other [1].
In this paper we do not discuss laboratory experiments and
focus on astrophysical applications.

In astrophysics all frequency shifts with respect to the
laboratory values are conventionally interpreted as Doppler
shifts, �ω/ω = V/c, where V is the line of sight velocity of
the object and c is the speed of light. However, if we observe
several lines from the same object, we can study (small)
velocity offsets between them. In the search for the variation
of fundamental constants we look for the correlation between
these offsets and sensitivities of the observed transitions to the
variation to fundamental constants.

It is now well known that the tunneling transition in am-
monia is highly sensitive to the electron-to-proton mass ratio
µ = me/mp [2]. This transition is often observed from the
interstellar dark molecular clouds in our galaxy. Comparison
of the apparent Doppler shift for this transition with those
of rotational transitions of other molecules provides a very
sensitive test for the dependence of the mass ratio µ on the
local matter density [3–5]. Moreover, ammonia was detected
in two high redshift objects with z = 0.68 and z = 0.89. That
allows the placement of the most stringent present limits on µ

variation on a cosmological time scale [6–9].
Because all observed ammonia transitions have the same

sensitivity to the variation of the fundamental constants, one
has to use rotational transitions in other molecules as a
reference. This can lead to the systematic effects caused by

different spatial distribution of the molecules in gas clouds
(so-called Doppler noise) [10]. Therefore, it is desirable to find
molecules where one can simultaneously observe several lines
with high and different sensitivities to µ variation. In this case
the Doppler noise is minimized because all lines are observed
from the same gas. By now we know of several such molecules,
including OH [11,12] and CH [13], partly deuterated ammonia
[14], hydronium ion (H3O+) [15], and methanol (CH3OH)
[16,17]. These molecules often have higher sensitivity than
ammonia and can be used as independent source of information
on variations of fundamental constants.

In this paper we consider the hydronium isotopologues
H3O+, H2DO+, HD2O+, and D3O+. Like ammonia, hy-
dronium also has a double minimum vibrational potential.
The inversion transitions occur when the oxygen nucleus
tunnels through the plane of the hydrogen and deuterium
nuclei. This leads to an inversion splitting of the rotational
levels. The splitting in H3O+ is very large, about 55 cm−1,
as compared to the 0.8 cm−1 splitting in NH3. Because
of that the inversion transition is effectively mixed with
rotational transitions and the inversion-rotational spectrum
of hydronium is observed in the submillimeter-wave region.
Here we show that all hydronium isotopologues have mixed
transitions with high sensitivity to µ variation, and we also
give an improved estimate of the sensitivity coefficients for
the main isotopologue H3O+.

II. GENERAL FORMALISM

A. Sensitivity coefficients

The dimensionless sensitivity coefficients to the variation
of fundamental constants can be defined as [14]

δω

ω
= Qα

δα

α
+ Qµ

δµ

µ
+ Qg

δgn

gn

. (1)

Here α ≈ 1/137.036 is the fine-structure constant, µ =
me/mp ≈ 1/1836.15, gn is the nuclear g factor, and Qα , Qµ,
and Qg are the corresponding sensitivity coefficients. Note
that gn is not a fundamental constant, but it weakly depends on
the quark masses [18] and has to be considered an independent
parameter whenever magnetic hyperfine structure is involved.

It is known that tunneling and rotational transitions in
molecules, built from light elements, are mostly sensitive to
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µ variation: Qµ >∼ 1, while Qα � 1 and Qg � 1. In the fol-
lowing we disregard coefficients Qα and Qg and concentrate
on calculating the dominant sensitivity coefficient Qµ. In the
next two sections we consider purely inversion transitions.
Note that for the asymmetric isotopologues H2DO+ and
HD2O+ such transitions are not observable; they occur only
in combination with rotational transitions ωr [14]. We will
discuss mixed inversion-rotational transitions in Sec. II D.

B. Inversion potential and reduced mass

As explained above, we can link the variation of the
inversion transition δωinv/ωinv to the variation of the single
fundamental constant µ:

δωinv

ωinv
= Qµ,inv

δµ

µ
. (2)

We can present the Hamiltonian for the inversion process as
(if not indicated otherwise, we use atomic units throughout the
paper)

H = − 1

2M

∂2

∂x2
+ U (x), (3)

where x is the tunneling coordinate and M is the respective
reduced mass. For example, x can be the distance from oxygen
to the plane of hydrogens. Following [19] we parametrize the
potential U (x) as follows:

U (x) = 1
2kx2 + 1

2dx4 + b e−cx2
. (4)

The parameters k, b, c, and d can be found by fitting vibrational
frequencies for the molecule H3O+. As a result we obtained
k = 0.089 17, b = 0.049 77, c = 1.369 54, and d = 0.001 38.

Another way to find the parameters in Eq. (4) is to fit
the inversion frequency of the ground vibrational state and the
barrier height. The latter was accurately determined within the
“semiempirical” approach in Ref. [20] to be 652.9 cm−1. In
this case we got k = 0.089 07, b = 0.049 67, c = 1.304 29,
and d = −0.005 41. To find the barrier height �U ≡ Umax −
Umin we need to solve the equation dU (x)/dx = 0. Obviously,
Umax = U (0) = b = 109 01 cm−1. As to xmin and Umin, we
need to solve numerically the equation

k + 2d x2
min − 2b c e−cx2

min = 0 , (5)

which gives xmin = 0.5635 and Umin = 10 248 cm−1. From
this we get �U ≈ 653 cm−1 in perfect agreement with the
semiempirical result 652.9 cm−1 from Ref. [20].

Comparing two sets of parameters, we see that they are
very close with the exception of the parameter d. We have
checked that both sets of parameters for the potential U (x)
lead to very close results for the sensitivity coefficients. The
numerical results which will be discussed in the following are
obtained with the second set.

In order to find eigenvalues of the Hamiltonian (3) we need
to know the reduced masses for different isotopologues of
hydronium. For the symmetric species H3O+ and D3O+ three
protons (or deuterons) can be treated as a single particle with
the mass m = 3 mp(d). Then the reduced mass for the inversion
mode can be found within two simple models.

If we assume that the H–H distances are constant during
inversion, then the vibration involves only a change in the

distance between the plane of hydrogens and oxygen. The
reduced mass M(H3O+) can be written as

M(H3O+) = 3mpMO

3mp + MO
, (6)

where MO is the mass of the oxygen nucleus.
Alternatively, we can assume that the H–O distances are

constant. Then the inversion coordinate corresponds to the
angle and the reduced mass is given by [19]

M(H3O+) = 3mp (MO + 3mp sin2θ )

3mp + MO
. (7)

Here θ is the angle between the plane of the hydrogen atoms
and an H–O bond. Using the value of the angle, α, between two
H–O bonds α(HOH) = 111.3◦ [21] we obtain θ ≈ 17.6◦. To
find the reduced mass of the D3O+ molecule we only need to
change mp to md ≈ 2mp in Eqs. (6) and (7). Considered here,
models present two limiting cases. The difference between
them constitutes only 1.7% for H3O+ and 3.4% for D3O+.
More accurate values for reduced mass should lie between
these limits.

The motion of the asymmetric species H2DO+ and HD2O+
is more complex and finding reduced masses is more difficult.
We can consider it as a free parameter that can be found from
fitting the theoretical inversion frequency of the ground state
to the experimental value. Note that the inversion frequencies
of the ground states are measured with high precision for all
the molecules H3O+, H2DO+, HD2O+, and D3O+ [20].

C. Sensitivity coefficient for inversion transition

A numerical integration of the Schrödinger equation with
the potential (4) allows us to find eigenvalues of the Hamilto-
nian and, respectively, to calculate the inversion frequency.
Then we can find the sensitivity coefficients Qµ,inv by
numerical differentiation, taking into account the fact that
reduced mass M in atomic units scales as µ−1.

In Table I we present the results of the numerical cal-
culations for the ground-state inversion frequencies and the
sensitivity coefficients for the isotopologues of hydronium.
For the symmetric species H3O+ and D3O+ we present results
for three values of the reduced mass. The first and third values
correspond to Eqs. (6) and (7), correspondingly. The second
value is found by fitting the ground-state tunneling frequency.
As seen from the table the coefficients Qµ,inv are almost
insensitive to these small changes of the reduced masses. Even
for the heavier isotopologue D3O+ the differences between
calculated values of Qµ,inv do not exceed 2%.

Another way to find the sensitivity coefficients Qµ,inv is
based on the semiclassical Wentzel-Kramers-Brillouin (WKB)
approximation. A detailed description of this approach and its
application to calculations of Qµ,inv for different molecules
was repeatedly discussed earlier (see, e.g., [6,14,15,22]). For
this reason we present here only the main expressions.

Following Landau and Lifshitz [23] we can write the
inversion frequency as

ωinv ≈ 2E0

π
e−S, (8)
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TABLE I. The reduced masses M , the experimental and the-
oretical inversion frequencies ωinv, and the numerically calculated
sensitivity coefficients Qµ,inv.

ωinv (cm−1)

Molecule M (a.u.) Exper. Theor. Qµ,inv

H3O+ 4639 55.35 55.79 1.97
4657 55.35 1.98
4718 53.94 1.99

H2DO+ 5419 40.52 40.52 2.15
HD2O+ 6485 27.03 27.03 2.36
D3O+ 8012 15.36 15.92 2.65

8120 15.36 2.67
8287 14.54 2.70

where S is the action over the classically forbidden region and
E0 is the ground-state vibrational energy calculated from the
bottom of the well Umin. Harmonic approximation 2E0 = ωv

(ωv is experimentally observed vibrational frequency) is not
applicable to hydronium and E0 has to be found by solving
Eq. (3) numerically. After that, using the experimentally
known ωinv we can obtain the action S from Eq. (8).

It was shown in [6,15] that the sensitivity coefficient Qµ,inv

can be expressed through S, E0, and �U as follows:

Qµ,inv ≈ 1 + S

2
+ S E0

2(�U − E0)
. (9)

The third term in Eq. (9) was first obtained in Ref. [6]. It was
shown there that the numerical factor for this term depends on
the form of the potential barrier. (It is worth mentioning that
there is a typo in Eq. (12) of [6]: the coefficient 1/4 should
read 1/2.) The square and triangular potential barriers were
considered. For both of them the coefficients in front of the
third term were calculated and the average was taken. This
average value is reproduced in Eq. (9). Here we considered
a more realistic, parabolic form of the potential barrier and
found that the solution for this case exactly coincides with
Eq. (9).

Knowing the values of S, E0, and �U we can calculate the
sensitivity coefficients Qµ,inv in the WKB approximation. The
results are presented for all molecules in Table II. The WKB
approximation is known to work well for S � 1. As seen from
Table II, for hydronium S is close to unity. For this reason we
cannot anticipate high accuracy for the sensitivity coefficients
obtained in this approximation. Nevertheless, comparing the
results of Tables I and II, we see a reasonable agreement
between the numerical and semiclassical values of Qµ,inv.
The largest discrepancy does not exceed 5%. Based on the
comparison of all approximations considered here, we present
the recommended values of the sensitivity coefficients Qµ,inv

in Table III. We estimate the accuracy of our calculations to
be not worse than 5%.

The coefficient Qµ,inv for H3O+ calculated in this work
differs by approximately 20% from that in [15]. In Ref. [15]
this coefficient was found in two ways: in the semiclassical
approximation and from the plot where the inversion frequency
was presented as a function of the reduced mass of hydronium

TABLE II. The reduced masses M , the ground-state vibrational
energy E0, the action over classically forbidden region S, and the
sensitivity coefficients Qµ,inv obtained in the WKB approximation.

Molecule M (a.u.) E0 (cm−1) S Qµ,inv

H3O+ 4639 339 1.36 1.92
4657 339 1.36 1.91
4718 337 1.36 1.90

H2DO+ 5419 322 1.62 2.10
HD2O+ 6485 302 1.96 2.33
D3O+ 8012 279 2.45 2.64

8120 278 2.44 2.63
8287 276 2.44 2.61

isotopologues. The reduced masses were estimated on the basis
of Ref. [20].

We already mentioned above that the accuracy of the
semiclassical approach for H3O+ is not very high as the action
S ∼ 1. In addition, the answer strongly depends on the value
of E0 in Eq. (9). Here we found E0 solving an eigenvalue
problem for Eq. (3), while in Ref. [15] E0 was extracted from
Ref. [20] to be approximately equal to 400 cm−1. The second,
graphical method used in [15] strongly depends on the values
of the reduced masses, which were approximately determined
from Ref. [20]. These approximations caused overestimation
of the Q factor.

Here, in order to improve the accuracy, we have done
numerical calculations within the simple one-dimensional
model described above. Optimizing parameters of the potential
U (x) we were able to reproduce the experimental low-lying
energy levels (the first set of the parameters) and the transition
frequency and the barrier height (the second set of the
parameters) with an accuracy better than 1%. However, we
still estimate the accuracy of this simple model for the Q

factors to be about 5%.

D. Sensitivity coefficients for mixed transitions

Sensitivity coefficients for mixed inversion-rotational tran-
sitions in H3O+ were considered in [15]. Here we extend this
discussion to all four isotopologues of hydronium. Rotational
motion is described by the Hamiltonian of the nonrigid asym-
metric top. We write it in the basis set |J,K,s〉 of the oblate
symmetric top (K ≡ KC). The additional quantum number
s corresponds to the symmetric (s = +) and asymmetric
(s = −) inversion state. Rotational parameters As , Bs , and Cs

depend on the quantum number s. This dependence contributes
to the inversion transition + ↔ − and can be considered as
centrifugal corrections to the inversion frequency F .

The effective inversion-rotational Hamiltonian is diagonal
in quantum numbers J and s and mixes states with K and

TABLE III. The recommended values of the sensitivity coeffi-
cients Qµ,inv. The uncertainties are given in parentheses.

H3O+ H2DO+ HD2O+ D3O+

Qµ,inv 2.0(1) 2.2(1) 2.4(1) 2.7(1)
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K ± 2. Matrix elements diagonal in K have the form

HK,K = − s

2
F + 1

2
(As + Bs)[J (J + 1) − K2] + CsK2

+�J [J (J + 1)]2 − �KJ J (J + 1)K2 − �KK4,

(10)

where the last three terms describe centrifugal corrections to
rigid rotor. Matrix elements nondiagonal in K are given by

HK,K+2 = 1
4 (As − Bs)[J (J + 1) − K(K + 1)]1/2

× [J (J + 1) − (K + 1)(K + 2)]1/2 . (11)

The effective Hamiltonian (10) has ten parameters, which
have to be fitted to the experimental spectrum. For the
symmetric species we require that As = Bs and �KJ = 0,
leaving seven free parameters. Such fits were done for H3O+
in Ref. [24], for H2DO+ in [20,25,26], for HD2O+ in [27,28],
and for D3O+ in [29]. In the cited literature the centrifugal
terms �i in (10) are also assumed to depend on s. These
s-dependent corrections appear to be much smaller than all
other parameters of the effective Hamiltonian, and here we
reduce the number of free parameters by neglecting them.

In order to calculate sensitivity coefficients for mixed
transitions we need to specify how parameters of the effective
Hamiltonian depend on µ. The inversion transition energy
is given by the parameter F , whose dependence on µ was
discussed in Sec. II C. Averaged rotational constants A, B,
and C depend on the respective moments of inertia and
are, therefore, proportional to µ [A = (A+ + A−)/2, etc.].
Centrifugal parameters �i appear in the second order of
adiabatic perturbation theory and are quadratic in µ.

It is more difficult to determine the µ dependence of the
differences A+ − A−, B+ − B−, and C+ − C−, which present
centrifugal corrections to the inversion transition energy F .
All of them must have the same dependence on µ, so we will
consider only WK ≡ C+ − C−.

Clearly, the rotational constant C generally depends on the
inversion coordinate: C = C0 + C1x

2 + · · ·. This generates
a correction to the inversion potential (4), U (x) → U (x) +
C1x

2K2. To a first approximation we can substitute x with
its equilibrium value xmin. Consequently, Umin → Umin +
C1x

2
minK

2. We can now use Eq. (8) to estimate the respective
change in inversion frequency ωinv → ωinv + WKK2. After
some algebra we arrive at

WK = ωinv
S

�U − E0
C1x

2
min. (12)

Differentiating this expression in respect to µ we get

δWK

WK

=
(

Qµ,inv + 1

2

)
δµ

µ
. (13)

We conclude that centrifugal corrections to inversion fre-
quency scale as µQµ,inv+1/2, which is sufficiently close to the
estimate [6].

Since we determined how the parameters of the effective
Hamiltonian depended on µ, we can find the sensitivity
of the mixed transitions by numerical differentiation of the
eigenvalues of the effective Hamiltonian. Results of these
calculations are listed in Tables IV and V. Note that if
we neglect all centrifugal corrections, we can write the

TABLE IV. Sensitivities of the low-frequency mixed inversion-
rotational transitions in symmetric isotopologues of hydronium.
Molecular states are labeled with quantum numbers J s

K . Error bars
for sensitivity coefficients Qµ correspond to the errors for inversion
transitions in Table III.

Transition Frequency (MHz)

Upper Lower Theory Exper. Qµ

H3O+

1−
1 2+

1 307 072 307 192.4 6.4(5)
3+

2 2−
2 365 046 364 797.4 −3.5(5)

3+
1 2−

1 389 160 388 458.6 −3.1(4)
3+

0 2−
0 397 198 396 272.4 −3.0(4)

0−
0 1+

0 984 690 984 711.9 2.7(2)
4+

3 3−
3 103 1664 103 1293.7 −0.6(2)

4+
2 3−

2 107 1154 106 9826.6 −0.5(2)
3−

2 3+
2 162 1326 162 1739.0 2.0(1)

2−
1 2+

1 163 1880 163 2091.0 2.0(1)
1−

1 1+
1 165 5832 165 5833.9 2.0(1)

D3O+

3−
1 3+

1 450 608 450 709.7 2.7(1)
3−

2 3+
2 454 910 454 940.3 2.7(1)

2−
1 2+

1 456 194 456 211.4 2.7(1)
1−

1 1+
1 459 918 459 917.7 2.7(1)

2−
2 2+

2 460 496 460 493.1 2.7(1)
3−

3 3+
3 462 080 462 074.6 2.7(1)

0−
0 1+

0 120 117 7.5(4)
2+

1 1−
1 220 408 −2.5(2)

2+
0 1−

0 221 782 −2.5(2)

approximate expressions for the frequency and the sensitivity
of the mixed inversion-rotational transition [14]:

ωmix = ωr ± ωinv , (14a)

Qµ,mix = ωr

ωmix
± Qµ,inv

ωinv

ωmix
. (14b)

For small values of the quantum numbers J and K

considered here the centrifugal corrections are small and
approximation (14) is rather good.

III. DISCUSSION

Our final results for sensitivity coefficients for inversion-
rotational transitions between low-lying states of all hydro-
nium isotopologues are listed in Tables IV and V. There we
also give calculated frequencies and experimental frequencies,
where known (see Refs. [25,28–30]). The errors for the
Q factors correspond to the uncertainties in Table III. For
low-frequency mixed transitions the errors are increased due to
cancellations between rotational and tunneling contributions in
Eq. (14b). For the experimentally observed transitions we use
experimental frequencies to calculate Q factors. For unknown
transitions we have to use predicted values. The accuracy of our
model with limited number of centrifugal corrections decrease
with increasing rotational energy. For given J the latter is
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TABLE V. Sensitivities of the low-frequency mixed inversion-
rotational transitions in asymmetric isotopologues of hydronium.
Molecular states are labeled with quantum numbers J s

KA,KC
.

Transition Frequency (MHz)

Upper Lower Theory Exper. Qµ

H2DO+

3+
1,2 2−

0,2 210 994 211 108.8 −5.9(6)
1−

0,1 2+
1,1 250 920 250 914.1 6.8(5)

3+
2,1 2−

1,1 312 737 312 831.8 −3.6(4)
3+

2,2 2−
1,2 412 156 412 130.2 −2.5(3)

3+
3,0 2−

2,0 632 799 632 901.7 −1.2(2)
3+

3,1 2−
2,1 649 742 649 653.4 −1.2(2)

0−
0,0 1+

1,0 673 229 673 257.0 3.2(2)
4+

2,2 3−
1,2 715 955 715 827.9 −1.0(2)

4+
1,3 3−

0,3 716 961 716 959.4 −1.0(2)
1−

1,1 2+
2,1 6633 219(18)

1−
1,0 2+

2,0 51 108 29(2)

HD2O+

0−
0,0 1+

1,0 380 753 380 538.0 4.0(2)
3+

2,2 2−
1,2 474 792 474 541.1 −1.4(2)

5−
2,3 5+

3,3 525 419 525 451.5 3.1(2)
3+

3,0 2−
2,0 610 712 610 573.1 −0.8(1)

3+
3,1 2−

2,1 626 907 627 069.8 −0.8(2)
6−

2,4 6+
3,4 632 532 632 776.9 1.9(1)

3−
1,2 3+

2,2 634 305 633 793.2 2.8(1)
4−

1,3 4+
2,3 707 925 707 552.6 2.6(1)

1−
0,1 1+

1,1 728 086 728 420.2 2.6(1)
1−

0,1 2+
1,1 35 047 33(2)

2+
2,0 1−

1,0 93 734 −11(1)
2+

2,1 1−
1,1 129 633 −7.7(6)

smaller for the heaviest isotopologue. Therefore, the accuracy
of the model is highest for D3O+ (∼100 MHz) and lowest for
H3O+, where the maximum error is almost 1 GHz. However,
the errors in Q factors from the inaccuracy in frequency do

not exceed 2% and can be neglected compared to the error
associated with Qµ,inv.

It is clear from Eq. (14) that mixed transitions can have
high sensitivities only if |ωmix| � ωinv [note that (14a) allows
negative frequencies ωmix]. Thus, we are primarily interested
in transitions from the microwave range and low-frequency
submillimeter transitions. One can see from Tables IV and
V that all isotopologues have such transitions with both
positive and negative sensitivities whose absolute values are
significantly larger than unity.

The lowest frequency 6.6 GHz corresponds to the transition
1−

1,1 → 2+
2,1 in H2DO+. This frequency is 184 times smaller

than the respective inversion frequency. Consequently, the
sensitivity coefficient for this transition is close to 200. Other
frequencies are at least an order of magnitude larger and
respective sensitivities are much smaller.

As we pointed out above, our present value of Qµ,inv for
H3O+ is 20% smaller than that in Ref. [15]. Consequently,
the absolute values of our Q factors for mixed transitions are
also significantly smaller. Still, the difference �Q between
sensitivities of the 307 GHz line on the one hand and 365 GHz
and 396 GHz lines on the other hand is close to 10, or 3 times
larger, than �Q for ammonia method [6]. These three lines
have been observed from the interstellar medium (see [31] and
references therein). That makes hydronium very promising
candidate for the µ-variation search.

Submillimeter spectra of H3O+ are usually observed from
warm and dense star-forming regions, where hydronium
is one of the most abundant molecules [32]. Up to now
deuterated hydronium was not observed from the interstellar
medium. However, deuterated isotopologues of ammonia were
observed several times [33]. Thus, it is possible that hydronium
isotopologues can be found in the future. As we have showed
here, this can give additional possibilities to study µ variation.
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