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Geometric phases in the presence of a composite environment
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We compute the geometric phase for a spin-1/2 particle under the presence of a composite environment,
composed of an external bath (modeled by an infinite set of harmonic oscillators) and another spin-1/2 particle.
We consider both cases: an initial entanglement between the spin-1/2 particles and an initial product state in
order to see if the initial entanglement has an enhancement effect on the geometric phase of one of the spins.
We follow the nonunitary evolution of the reduced density matrix and evaluate the geometric phase for a single
two-level system. We also show that the initial entanglement enhances the sturdiness of the geometric phase
under the presence of an external composite environment.
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I. INTRODUCTION

It is widely known that a system can retain the information
of its motion when it undergoes a cyclic evolution, in the
form of a geometric phase (GP). This was first put forward
by Pancharatnam in optics [1] and later studied explicitly
by Berry in a general quantal system [2]. Since then, great
progress has been achieved in this field as it became clear that
geometric phases had important consequences for quantum
systems. The original notion of Berry phase has been extended
to the case of nonadiabatic evolutions [3]. As an important
evolvement, the application of the geometric phase has been
proposed in many fields, such as the geometric quantum
computation. Due to its global properties, the GP is propitious
to construct fault tolerant quantum gates. The study of the
GP was soon extended to open quantum systems. In this
context, many authors have analyzed the correction to the GP
under the influence of an external environment using different
approaches [4–11]. The interest on geometric phases has lately
reached composite systems such as bipartite systems. In a
previous article [12], we have computed the GP for the bipartite
system under the influence of a nonunitary evolution, induced
by a bosonic or fermionic environment. There, we have shown
that entanglement plays an important role in the robustness of
the GP for open systems. In [13], it was shown a particular
situation in which an initial separable state remains separable
so that the GP of the system is always equal to the sum of the
geometric phases of its subsystems under an unitary evolution.

The presence of an environment can destroy all the traces
of the quantumness of a system. All real world quantum
systems interact with their surrounding environment to a
greater or lesser extent. As the quantum system is in interaction
with an environment defined as any degrees of freedom
coupled to the system which can entangle its states, a
degradation of pure states into mixtures takes place. No
matter how weak the coupling that prevents the system from
being isolated, the evolution of an open quantum system is
eventually plagued by nonunitary features like decoherence
and dissipation. Decoherence, in particular, is a quantum
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effect whereby the system loses its ability to exhibit coherent
behavior. Nowadays, decoherence stands as a serious obstacle
in quantum information processing.

In this context, there are many efforts to find a GP that
“survives” the presence of the environment. What is more, the
GP for a state under nonunitary evolution has not yet been
directly measured. Recently, using a tomographic approach,
the GP was measured for a qubit coupled to a critical
environment using a nuclear magnetic resonance (NMR)
quantum simulator [14].

In this paper, we study the geometric phase (GP) of a qubit
(spin 1) in a noisy “composite” environment. That means, we
start with a two-qubit state (spin 1 and spin 2) coupled to an
external reservoir and then, we focus on only one qubit (by
tracing out the other spin 2) in order to study the geometric
phase (GP) of the resulting spin 1 (our subsystem). In the end,
the model is different to other preexisting models, such as, for
example, two qubits in a noisy environment and/or a solely spin
in a noisy environment. The reason for choosing this model is
twofold. On one side, it is the natural sequel to other previous
studies of the GP in open quantum systems and has interesting
features that differentiate this model from the others studied
previously. On the other side, by taking into account new
results about the existence of an environmentally induced GP
for quantum states [15], we present a new insight on the effect
that the degree of entanglement has on the geometric phase of
a particle of spin 1/2 and, a possible way to measure it using
NMR quantum simulators. Following this line, we shall start
by describing the model and computing the geometric phase
for a general environment in Sec. II. In Sec. III, we shall focus
on a bosonic environment writing explicitly the decoherence
factors involved. We shall consider different situations for the
initial state of the bipartite: either entangled (Sec. III A) or
a product state (Sec. III B). Further, in Sec. III C we shall
study the differences that arise in the former computations if
one of the spin-1/2 particles is not coupled to the external
environment. Finally, we conclude our results in Sec. IV.

II. DECOHERENCE INDUCED ON ONE TWO-LEVEL
SYSTEM DUE TO A COMPOSITE ENVIRONMENT

We shall consider a bipartite system (as in [12]), that
is to say, two interacting two-level systems, both coupled
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to an external reservoir. We shall study a model where the
Hamiltonians that describe the complete evolution are given
by H = HS + HI + HB where the system’s and interaction
Hamiltonians are, respectively, defined as

HS = h̄�1

2
σ 1

z + h̄�2

2
σ 2

z + χσ 1
z ⊗ σ 2

z , (1)

HI = σ 1
z ⊗

N∑
n=1

λ1nqn + σ 2
z ⊗

N∑
n=1

λ2nqn. (2)

The environment’s Hamiltonian HB will be left without
definition until we are faced with a particular example.

One approach to know the nonunitary features induced by
the environment in the bipartite subsystem is by tracing out
the degrees of freedom of the environment as suggested in
Ref. [16]. For a general arbitrary two-qubit initial state,

|�(0)〉 = α|00〉 + β|01〉 + ζ |10〉 + δ|11〉, (3)

the reduced density matrix takes the form,

ρr(t) =

⎛
⎜⎜⎜⎝

|α|2 αβ∗e−i(2χ+�2)tF12 αζ ∗e−i(2χ+�1)tF13 αδ∗e−i(�1+�2)tF14

βα∗ei(2χ+�2)tF ∗
12 |β|2 βζ ∗e−i(�1−�2)tF23 βδ∗e−i(�1−2χ)tF24

ζα∗ei(2χ+�1)tF ∗
13 ζβ∗ei(�1−�2)tF ∗

23 |ζ |2 ζ δ∗e−i(�2−2χ)tF34

δα∗ei(�1+�2)tF ∗
14 δβ∗ei(�1−2χ)tF ∗

24 δζ ∗ei(�2−2χ)tF ∗
34 |δ|2

⎞
⎟⎟⎟⎠ . (4)

By Fi , with i = 12,13,14,23,24,34, we are implying the
decoherence and dissipation factors that appear due to the
presence of the environment in the reduced density matrix.
These factors are obtained from noise and dissipation kernels
similarly as in the familiar spin-boson treatment. The master
equation for the reduced density matrix of a bipartite system
coupled to a bosonic environment Eq. (4) and the calculation
of these terms can be read in the Appendix A of [12]. However,
we are not interested in the explicit form of these coefficients
right now, since we want to focus on the geometric phase
acquired by only one spin of the bipartite subsystem. For this,
we need to know the dynamics of this only spin ruled by its own
Hamiltonian and the presence of the composite environment:
the reservoir plus the other spin-1/2 particle of the subsystem.
It is important to note that both spin-1/2 particles interact
by the coupling constant χ defined in HS and each of them
interact as well with the external environment by the coupling
constants λ1n and λ2n, respectively. We could further define
the coefficients of the initial bipartite state so as to be able to
interpret the results in terms of the known Bloch ball [we have
not done so before because of the difficulty of writing Eq. (4)].
Therefore, we can assume that

α =
√

λ0 cos(θ0/2),

β = −
√

λ1 sin(θ0/2),
(5)

ζ =
√

λ0 sin(θ0/2),

δ =
√

λ1 cos(θ0/2).

The normalization of this state implies λ1 = 1 − λ0. The con-
currence of this state is C = 2

√
λ0λ1. Hence, we see that when

λ0 = λ1 = 1/2 we have a maximally entangled state (MES).
The angle θ0 has here a geometric interpretation: coordinates
X = (1 − 2λ0) sin(θ0), Y = 0, and Z = (2λ0 − 1) cos(θ0) of
the state vector in the Bloch ball are given, using the results
obtained in [17]. The radius of the Bloch ball is R = |2λ0 − 1|
and all states lying on its surface have the same degree of purity
(and come from two-qubit states having the same amount of
entanglement). The angle θ0 is the one that makes the density
matrix vector with the z axis.

In order to know the dynamics of only one spin we need to
trace out the degrees of freedom corresponding to the spin 2.
After doing so, in this familiar notation, the reduced density
matrix ρ̃r(t) for the dynamics of spin 1 is

ρ̃r(t) =
(

(λ0 − 1/2) cos θ0 + 1/2 1/2 sin θ0e
−i�1t�(t)

1/2 sin θ0e
i�1t�(t)∗ (1/2 − λ0) cos θ0 + 1/2

)
.

(6)

It is important to note that the �(t) factor includes a
real decaying decoherence factor as well as an imaginary
dissipation term, both induced by the external parties to our
subsystem spin 1. Therefore, we can write this coefficient
as �(t) = r(t) exp[iϑ(t)], where r(t) is the modulus of the
complex number and ϑ(t) its argument.

The GP for a state under nonunitary evolution has been
defined in [7] as

�g = arg

{∑
k

√
εk(0)εk(τ )〈�k(0)|�k(τ )〉e− ∫ τ

0 dt〈�k | ∂
∂t

|�k〉
}

,

(7)

where εk(t) are the eigenvalues and |�k〉 the eigenstates of
the reduced density matrix ρ̃r, and τ is a time (τ > 0) at
which we study our system. Since we are working under the
weak coupling limit, it is useful to consider a quasicyclic path
P : tε[0,τ ], with τ = 2π/�1 (�1 is the system’s characteristic
frequency). As we can see from the GP definition, in order to
compute the phase gained by the system, it is crucial to know
the system’s dynamics at all times. This is why this is known
as the kinematic approach in contrast to other approaches
for GP in open quantum systems [4–6]. The central result of
Eq. (7) is to extract from the global phase gain acquired during
the evolution, by a proper choice of the “parallel transport
condition,” the purification independent part which can be
termed a geometric phase because it is gauge invariant and
reduces to the known results in the limit of an unitary evolution.

052121-2



GEOMETRIC PHASES IN THE PRESENCE OF A . . . PHYSICAL REVIEW A 83, 052121 (2011)

The eigenvectors and eigenvalues of Eq. (6) are easily
computed as

ε± = ±1

2

√
cos2 θ0 + r2 sin2 θ0 + 4λ0(λ0 − 1) cos2 θ0 + 1

2
,

|υ±〉 = e−i�1t+iϑ(t)r(t) sin θ0√
r2 sin2 θ0 + [(2ε± − 1) + (1 − 2λ0) cos θ0]2

|0〉

+ [(2ε± − 1) + (1 − 2λ0)]√
r2 sin2 θ0 + [(2ε± − 1) + (1 − 2λ0) cos θ0]2

|1〉.

Unfamiliarly to all examples done before, this time, for an
arbitrary initial state, we see that ε+(0) �= 1 and ε−(0) �= 0.
Then, there is contribution to the GP coming from both eigen-
values. The only real factors in Eq. (7) are α = √

ε+(0)ε+(τ )
and β = √

ε−(0)ε−(τ ). After some algebra, we obtain the
geometric phase gained by spin 1 under this nonunitary
evolution in a time τ ,

�g = arg(αr+(τ )eiϕ+eiϕ + βr−(τ )eiϕ−eiϕ̃), (8)

where we have defined

r+(τ )eiϕ+ = 〈υ+(0)|υ+(τ )〉, (9)

r−(τ )eiϕ− = 〈υ−(0)|υ−(τ )〉, (10)

ϕ =
∫ τ

0

(
�1 + dϑ

dt

)
cos2 θ+(t) dt, (11)

ϕ̃ =
∫ τ

0

(
�1 + dϑ

dt

)
cos2 θ−(t) dt. (12)

We have also used

cos θ±(t) = r(t) sin θ0√
r2 sin2 θ0 + [(2ε± − 1) + (1 − 2λ0) cos θ0]2

,

so as to be able to write the eigenvector in an easier way:

|υ±〉 = e−i�1t+iϑ(t) cos θ±(t)|0〉 + sin θ±(t)|1〉. (13)

III. BOSONIC ENVIRONMENT

In this section, we investigate the effect of a bosonic
environment coupled to the composite system of two spin-1/2
particles, whose Hamiltonian is defined as

HB =
N∑

n=1

h̄ωna
†
nan. (14)

One assumption we shall make is that the spectral density of
the bosonic environment J (ω) is a reasonably smooth function
of ω, and that is of the form ωn up to some cutoff frequency �

that may be large compared to �1 and �2. The spectral density
function can be written as J (ω) = γ0/4ωn�n−1e−ω/�, where
dimensionless γ01 ∼ λ2

1 and γ02 ∼ λ2
2 [18]. We can consider an

ohmic spectral density for such an environment, particularly
one that goes as J (ω) ∼ ω. In that case, the �(t) factor that
appears due to the tracing out of the degrees of freedom of the
environment and the degrees of freedom of the spin 2, is

�(t) = e−2γ0ln(1+�2t2)[(2λ0 − 1) cos �Rt − i sin �Rt], (15)

with �R = (2χ − γ0�). We have so far considered γ01 =
γ02 = γ0 for the sake of simplicity.
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FIG. 1. (Color online) Geometric phase �E as a function of the
concurrence C and the angle θ0 for the uncoupled case χ = 0 and
γ0 = 0. The phase is measured in units of π .

A. Numerical results for an initial entangled state

We shall start by considering the isolated spin, initially set
up in a bipartite state, but with no external interaction, that is
to say γ0 = 0 and χ = 0. Hence, in this uncoupled situation of
the bipartite initial state and after tracing out spin number 2,
there is a decoherence factor �(t) = (2λ0 − 1) for spin 1. This
means that the initial degree of entanglement will affect the
dynamics through the decoherence factor. It is also important
to note, that when λ0 = 1/2, we have a maximal entangled
state (MES), and the decoherence factor is � = 0, killing all
coherences in Eq. (6) as expected. In Fig. 1 we can see the
behavior of the geometric phase (that we call �E in the case
of an initially entangled state) in the case spin 1 is completely
isolated but initially belonged to an entangled bipartite state.
It is easy to see that it does not correspond to the geometric
phase of a unitary single spin [i.e., �U = π (1 − cos θ0)] due to
the initial entanglement. However, it can serve as a reference
for studying either the influence of the environment or the
entanglement of the bipartite state. One important feature to
note is the monotonic behavior of the geometric phase in this
case.

If the degree of entanglement is λ0 = 1/2, we have an MES
and the concurrence is C = 1, for all values of θ0. In Fig. 2 we
present the geometric phase for two particular initial entangled
states of different concurrences for a better understanding of
the behavior. In this figure, we present a solid red curve for
maximum entanglement and a dashed purple one for a very
low initial entanglement. We can note that for a spin initially
set up in a MES the GP is π/2. On the other side, we can see
that for an “almost” initial separable state (C ∼ 0), the value
of the geometric phase for only one spin depends strongly on
the value of θ0 (purple dashed line in Fig. 2). In any case, an
initially separable (product) state shall be further discussed in
a following section.

Let us recall that for a bipartite state, we can no longer use
the Bloch sphere to seek a geometric representation of that
state. In [19] it has been shown that a geometric representation
of a bipartite state can be obtained by using a Bloch ball and
a SO3 sphere. Therefore, the total phase gained by a state is a
combination of not only the dynamical and geometrical phase,
but also the topological phase. Similarly to one-qubit states,
MESs also gain a total phase of π (or nπ ) under a cyclic
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FIG. 2. (Color online) Geometric phase of one spin initially set
up in an entangled bipartite state for the isolated case γ0 = 0 = χ as
a function of θ0. Red solid curve for C = 1 and purple dashed curve
for C = 0.06. The phase is measured in units of π .

evolution. However, this phase is of topological origin. It is
already known that for a qubit the total phase gained is π (or
nπ ) and it is due to a combination of the dynamical phase and
the GP. Now, we are obtaining like the “partial” phase of that
entangled state, that is, the GP of one spin-1/2 particle after
tracing out the “external” degree of freedom of the other spin,
both initially set up in an isolated bipartite state. As an MES
cannot be represented in the Bloch sphere (i.e., it is reduced to
the central point of it), the eigenvalues of the reduced density
matrix for λ0 = 1/2 are degenerate. By using the definition of
the GP for the degenerate case also proposed in [7], which in
this case reduces mainly to the same formulation multiplied
by the degeneracy of the eigenvalues, it is easy to obtain the
value of the GP for this case, namely π/2. Another case that
can be easily analyzed is when θ0 = 0. Hence, the initial state
reduces to |�(0)〉 = √

λ0|00〉 + √
1 − λ0|11〉, and it is easy

to see that the cos θ±(t) = π . Then, doing some algebra, we
obtain that the �E = π for all λ0 �= 1/2. On the other hand,
if we have θ0 = π , which is equivalent to having the initial
state |�(0)〉 = −√

1 − λ0|01〉 + √
λ0|10〉, the GP for a spin is

zero for all λ0 �= 1/2. These two initial states mentioned are
the Werner states studied in [12]. Thus, we see that the GP of
a spin initially entangled in a bipartite state, yields a similar
geometric phase to the one obtained for the whole bipartite
isolated system.

As we are focusing on the geometric phase of one spin, we
can find the path traversed in the Bloch sphere by studying
the several components of the reduced density matrix ρ̃r .
The three-dimensional coordinates in the Bloch sphere are
x = ρ̃r12 + ρ̃r21 , y = i(ρ̃r12 − ρ̃r21 ), and z = ρ̃r11 − ρ̃r22 . By the
use of Eq. (6), it is easy to generate the trajectories of Fig. 3.
Thus, we can see a point for an MES, and bigger circles
corresponding to the trajectories of the states with smaller
degrees of initial entanglement (i.e., smaller values of C, when
χ = 0 and γ0 = 0).

If we consider that there is no bosonic environment
(γ0 = 0) but the two spin-1/2 particles are coupled through
the χ constant, then the decoherence factor is

�χ (t) = (2λ0 − 1) cos(2χt) − i sin(2χt),
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FIG. 3. (Color online) The evolution of the system can be
illustrated by the path traversed in the Bloch sphere in the case that
γ0 = 0 and χ = 0. Red curve for C = 1, pink curve for C = 0.95,
purple curve for C = 0.8, and black curve C = 0.43. Time is measured
in units of �1.

which explicitly shows that the coupling between both parti-
cles not only affects the dynamics through the time-dependent
decoherence complex factor but the geometric phase as well.
In all cases, except for λ0 = 1/2, the degree of entanglement
and coupling constant χ act as a source of noise and dissipation
(through its real and imaginary parts) for the system particle.
In Fig. 4 we show the behavior of the geometric phase of the
spin coupled to the other spin. One important feature that can
be noted in Fig. 4 is that the monotonic behavior is broken. The
main reason for this is the contribution of both eigenenergies
ϕ and ϕ̃ in Eqs. (11) and (12) and the presence of a dissipation
factor. Another interesting feature is that for a maximally
entangled state (i.e., λ0 = 1/2, C = 1) the geometric phase is
similar to that of the isolated case (40% bigger). The presence
of the valley is due to the intrinsic dynamics between the spin
introduced by the coupling constant χ .

As a further step in our study, we include the interaction
with the external reservoir. In Fig. 5 we can see the behavior
of the GP as a function of the degree of entanglement λ0

and the initial angle θ0 for γ0 �= 0 and χ �= 0. The presence
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FIG. 4. (Color online) Geometric phase �E as a function of the
initial degree the entanglement through C and the angle θ0 for γ0 = 0
and χ = 0.1�1. The phase is normalized by π .
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FIG. 5. (Color online) Geometric phase �E as a function of
C and θ0. The value of the geometric phase is measured in units
of π . Parameters used are as follows: χ = 0.1�1, γ0 = 0.02, and
� = 20�1. The choice of the parameters used is for graphical reasons
in order to compare with those plots of the preceding section.

of a stronger environment will contribute to the symmetry
break and nonmonotonic behavior, as can be seen in our case
for a weak environment in Fig. 5. Once again, we can note
that the “open” GP gets a higher value for maximal initial
concurrence and some particular values of θ0. It is easy to note
the nonmonotonic behavior of the geometric phase, which
exhibits a local maximum and minimum. This characteristic
feature of an energy exchanging process between system and
environment (composite in this case) coincides with that shown
in Ref. [20] for a single qubit under a dissipative interaction.
As can be seen, the stability of phase can be significantly
improved via a proper choice of the initial state determined
by θ0 which may be crucial for the effectiveness of quantum
computation. Another feature that can be noted in Fig. 5 is that,
as indicated in [21], in some cases there is “saturation” value
which is a characteristic value for a given configuration of
parameters that do not change much in time. For example, an
initial angle θ0 = π/3 ∼ 1, gives a maximum value of GP for a
quasicyclic period of time. In order to study the importance of
the initial state, we shall analyze the behavior of the geometric
phase for different initial states in the weak coupling limit.

The geometric nature is the main feature of this phase in
unitary closed systems. However, in the open quantum systems
framework, this characteristic is not that evident. There have
been many studies for one-qubit systems but none of them
has been conclusive about this topic. A nice way to see that
the change of the GP is associated with the path traversed
by the state of system is to plot the path traced by the state
in the Bloch sphere. Therefore, Figs. 6 and 7 are presented
to study the geometric nature of the GP in open quantum
systems. Both figures can be related by noting that states with
a higher value of initial concurrence, have a smaller rate of
change of the GP in time (Fig. 6) and a smaller change in the
path traversed (Fig. 7), at least for small values of θ0. This is
consistent with the geometric nature of the GP, which might
be rephrased as it depends on the path traversed by the state of
the system and not on the dynamics. The latter feature can be
seen in the Bloch sphere, as initially bigger values of λ0 imply
an initially smaller radius of the spiral trajectory and a smaller
change in time of the GP undergoing an external influence. For
example, if we compare the dotted-dashed black curve with

0 5 10 15 20 25
1t0.0

0.2

0.4

0.6

0.8

1.0
E π

FIG. 6. (Color online) The geometric phase for the entangled
initial state �E as a function of time. The dashed pink line represents
the initial state with λ0 = 0.2; the dotted-dashed purple line λ0 = 0.1,
and the black dotted-dashed line is for λ0 = 0.01, all curves for
θ0 = π/5. Parameters used are as follows: � = 20, γ0 = 0.02, and
χ = 0.1. The geometric phase is normalized with π .

the dashed pink one in Fig. 6, we can see that the latter has a
smaller rate of change in time than the former one. Likewise,
in Fig. 7 we can note that initially the black spiral radius is
bigger and hence the change of the path and in the geometric
phase is notable (during the first cycle, the black one is 25%;
meanwhile the pink trajectory has changed only 9% and the
purple one changes 16%). Therefore, we note that not only is
it important to have a proper choice of the initial value of θ0,
but the value of the initial concurrence plays a crucial role in
order to have a robust GP undergoing an external influence.

In this model we have several environmental parameters
such as γ0, �, and χ . We can investigate the effect of the
strength of the external bath, assuming a weak coupling limit,
as we show the behavior of the phase as a function of the
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FIG. 7. (Color online) The evolution of the system can be
illustrated by the path traversed in the Bloch sphere. Pink curve
for C = 0.91, purple curve for C = 0.71, black curve for C = 0.43.
Parameters used are as follows: � = 20�1, γ0 = 0.02, χ = 0.1�1,
and θ0 = π/5.
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FIG. 8. (Color online) The geometric phase, measured in units
of π , as a function of the coupling constant to the bosonic bath γ0,
and the concurrence C. Parameters used are as follows: � = 20�1,
χ = 0, θ0 = π/3, and τ = 2π/�1.

initial concurrence and the coupling constant to the external
bath. In Fig. 8, we can see how this bosonic environment
affects the different initial states of the system. It is easy to
note that initially stronger correlations seem to contribute to
the robustness of the GP in the presence of external couplings
χ and γ0. The value of χ adds oscillations to the dynamics of
the system. Once again, we can note that the stability of the
phase can be significantly improved via a proper choice of the
initial state determined in this case by the value of λ0 and θ0.
As for this figure, we can enhance our statement that initially
stronger correlated states are prone to being less influenced by
the presence of the environment and hence, the phase change
is smaller for those states. In addition, this figure serves for a
future comparison among the equivalent behavior of the phase
if the initial state is a product state as we will show in the next
section.

It is noteworthy to mention the possibility of implementing
this model in a NMR-quantum simulator, similar to the one
used in Ref. [14]. In this case, we have measured the GP
corrections over a qubit induced by another qubit emulating a
critical bath. We have obtained this correction by measuring
the nonunitary evolution of the reduced density matrix of a spin
1/2 coupled to an environment. The experiments were done
using a NMR quantum simulator, where we have emulated
qualitatively the influence of a critical environment using
just a simple one-qubit model. By adding stochastic fields
and further spins, we believe we can quantum simulate more
realistic environments and couplings to the system. With the
same idea, it is possible to experimentally test the present
model in which the entanglement parameter λ0 plays an
important role. In fact, we believe that this configuration
will raise a new possibility of measuring the GP corrections
implementing a tomography of the reduced density matrix.
However, this experimental test is out of the scope of the
present paper.

B. Numerical results for an initial product state

In this section, we shall see what happens with the
geometric phase (set as �p) of the spin-1/2 particle if the initial
state is not entangled, namely |�(0)〉 = |�1(0)〉 × |�2(0)〉,

where

|�1(0)〉 =
√

1 − p|01〉 + √
p|11〉,

(16)
|�2(0)〉 =

√
1 − q|02〉 + √

q|12〉.
In this case, it is easy to associate the new parameters
with the coefficients α,β,ζ , and δ in order to re-obtain the
corresponding new dynamical equations:

α =
√

1 − p
√

1 − q,

β =
√

1 − p
√

q,
(17)

ζ = √
p
√

1 − q,

δ = √
p
√

q.

An important consideration is to write the initial state of
the bipartite system with equal parameters as in the entangled
case, in order to be able to compare both cases. Therefore, we
can associate p to cos2(θ0/2) and write

|�1(0)〉 = cos(θ0/2)|01〉 + sin(θ0/2)|11〉,
(18)

|�2(0)〉 =
√

1 − q|02〉 + √
q|12〉.

In this way, we can describe the initial state of the system as
a function of an angular and radial coordinates. As before,
we can start by considering the case in which the bipartite
system is isolated, that is to say γ0 = χ = 0. In such a case,
we note that the geometric phase obtained is similar to that of a
spin under unitary evolution �

p
g = 2π (1 − p), or equivalently

�U
g = 2π sin2(θ0/2), with mod(2π ), as shown in Fig. 9.
The next step in complexity is to consider that both spin-1/2

particles are coupled to each other through the χ constant
and/or to the external bath through the coupling constant γ0.
In such cases, the decoherence factor for the spin 1 (after
tracing out spin 2) is

�p(t) = e−2γ0ln(1+�2t2)[cos(�Rt) + i(2q − 1) sin(�Rt)]. (19)

In this case, there are also two eigenvalues, but only one con-
tributes since ε−(t = 0) = 0. So, the only contribution comes
from the eigenvalue ε+. As the decoherence factor is complex
once again, namely �p(t) = r(t)eiϑp(t), the computation of the
geometric phase is different from the unitary one, namely,

�p = arg{
√

ε
p
+(τ )〈υp

+(0)|υp
+(τ )〉eiϕp(t)}, (20)
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FIG. 9. (Color online) Geometric phase for the product initial
state �p as a function of q (λ0) and θ0, for � = 20�1, χ = 0, and
γ0 = 0.
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FIG. 10. (Color online) Geometric phase as a function of time for
different initial states. Dashed lines (superposed) represent different
values of q and θ0 = π/5 and the solid line is for q = 0.05 and
θ0 = π/3. Parameters used are as follows: χ = 0.1�1, � = 20�1,
γ0 = 0.02. The choice of the parameters used is for graphical reasons
in order to compare with those plots of the preceding section.

and

|υp
+〉 = cos θ

p
+(t)e−i�1t eiϑp(t)|0〉 + sin θ

p
+(t), (21)

with

ϕp(t) =
∫ τ

0

(
�1 − ∂ϑ

dt

)
cos2 θ

p
+(t) dt,

cos θ
p
+(t) =

√
p(1 − p)rp(t)√

p(1 − p)rp(t)2 + p2
, (22)

sin θ
p
+(t) =

√
p√

p(1 − p)rp(t)2 + p2
.

In order to analyze the importance of the initial state in the
robustness of the GP in open quantum systems, we shall make
the same analysis than in the preceding section. In Fig. 10 we
present the GP as a function of the time for different initial
states in the limit of weak coupling with the environment. It is
easy to see that the real crucial parameter is the initial value of
θ0 which sets up the initial state of |�1(0)〉. The same behavior
can be seen in Fig. 11 for the path traversed in the Bloch
sphere. Let us recall that in the preceding section there was a
hierarchy imposed by the value of the initial concurrence.

Finally, in Fig. 12 we present the GP for different initial
states (the same ones considered before) as a function of the
coupling constant γ0, for χ = 0 and χ �= 0. We can see that
the presence of the internal dynamics introduced by χ reduces
considerably the value of the GP in the cases considered.

C. The second spin is not coupled to the environment

There is another situation that we can study which may be
interesting. It is the case where the spin 2 is not coupled to
the external environment; that means that the spin 1 is coupled
to an external environment through the λ1n constant and to
spin 2 through the χ constant. This leads to a redefinition
of the decoherence factors that appear in the reduced density
matrix Eq. (4). For example, F12 = F34 = 1 and F13 = F14 =
F23 = F24 = �1 where �1 = e−2γ0ln(1+�2t2) is the decoherence
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y
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0.5

1.0

z

FIG. 11. (Color online) Trajectories in the Bloch sphere for the
same initial states of Fig. 7. Parameters used are as follows: χ =
0.1�1, � = 20�1, γ0 = 0.02.

factor obtained after tracing out the degrees of the environment,
namely,

�C(t) = e−2γ0ln(1+�2t2)[(2λ0 − 1) cos(2χt) − i sin(2χt)].

After tracing out the second spin, we get the reduced density
matrix for the dynamics of spin 1, for the case where the initial
state is initially entangled.

ρ̃r(t)

=
(

(λ0 − 1/2) cos(θ0) + 1/2 1/2 sin(θ0)e−i�1t�C(t)

1/2 sin(θ0)ei�1t�C∗(t) (1/2 − λ0) cos(θ0) + 1/2

)
.

(23)

This expression is very similar to that obtained for the case
when the spin 2 is coupled to the environment in Sec. III A.
However, if we look at the �C(t) factor of Eq. (15) we see

0.005 0.010 0.015 0.020
γ0

0.005

0.010

0.015

0.020

0.025
P π

FIG. 12. (Color online) The geometric phase, measured in units
of π , for different initial states as a function of the dimensionless
coupling constant to the bosonic bath γ0. Pink lines for q = 0.4,
θ = π/3; black lines for q = 0.01, θ = π/3. Dotted and dashed lines
imply that χ = 0.1�1 while solid lines imply χ = 0. Parameters used
are as follows: � = 20�1 and τ = 2π/�1.
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that in the former case there was dissipation introduced by
the coupling of the spin 2 and the environment, while in this
case there is not. This is a somewhat reasonable result since
if the spin 2 is effectively coupled to the environment, when
we ignore those degrees of freedom (by tracing them out), we
expect to have a loss of energy. On the other side, just by tracing
out the degrees of freedom of one spin, we do not expect to
have a significant loss of energy. It is important to note that we
have chosen to trace out the spin 2 but it is irrelevant whether
we trace spin 1 or spin 2. The results are similar if we study the
reduced density matrix for spin 2 by tracing out the degrees of
freedom of spin 1.

IV. CONCLUSIONS

In this article, we have continued with the analysis of the
geometric phase in the framework of a quantum open system,
as a natural sequel to some previous works done in the field.
In particular, we have analyzed the geometric phase of a spin
1/2 coupled to a noisy composite environment. Initially we
have started with a bipartite state coupled to an external bath
and traced out the degrees of freedom of one of the spins in
order to focus on the GP of only one spin. The richness of
the model lies in the fact that the initial bipartite state could
be entangled or not, by introducing the initial entanglement as
another free parameter of the model. We consider it as a major
goal to understand the role that the degree of entanglement
plays in the dynamics of the coupled system, as well as in the
correction to the geometric phase.

We have calculated the decoherence factor for different
initial states of our system of interest and, consequently,
we have analyzed the geometric phase corrections from the
nonunitary evolution. We have mainly considered two major
groups: initial entangled bipartite states and initial product
bipartite states, in order to study the role of the entanglement
in the changes suffered by the geometric phase. In each
case, we have computed the different decoherence factors and
numerically obtained the open geometric phase for different
physical situations. With the help of the study of the geometric
nature of the GP, we have shown that the entanglement
enhances the sturdiness of the geometric phase under the
presence of an external environment for small values of θ0.
States with smaller values of initial entanglement seem to
be less robust than others. This is related to the fact that
the radius of the path traversed is bigger and its curvature is
hence more affected by changes originated by the presence of
the environment. Another important feature shown is that MES
states still remain “special” or privileged as we have proved in
Ref. [12] due to the topological nature of the phase of these

states. As shown, in order to implement a measurement of the
noise-induced corrections to the GP, the choice of the initial
state is crucial. However, we have shown so far that not only is
a proper choice of the initial value of θ0 important, but the value
of the initial concurrence also plays a crucial role in order to
have a robust GP undergoing an external influence. In addition,
it is important to state that by considering the case in which the
temperature T is finite, the main properties of the geometric
phase remain similar. However, it can be expected that the
values of the maximum diminish with increasing temperature.

Furthermore, by comparison between the entangled state
and the product initial bipartite state, we have seen that having
an initial entangled bipartite state yields a bigger geometric
phase than in the case of an initial product bipartite state. In the
particular case in which the central spin (system of interest) is
completely isolated, it is easy to see that the GP of the initially
entangled state does not correspond to the geometric phase of a
unitarily evolving single spin, that is, �U

g = π (1 − cos θ0) (due
to the initial entanglement). However, for an initial product
state, we have found that the GP, for the uncoupled bipartite
system, is similar to that of a spin 1/2 under a unitary evolution.
This suggests that the degree of entanglement works as an
effective coupling between the two particles in the system,
even though one of them is traced out.

Finally, we have noted that the stability of geometric
phase with respect to decoherence and dissipation is crucial
for effectiveness of holonomic quantum computation. It is
evident that the stability of phase can be significantly improved
via a proper choice of the initial state determined by the
parameters of the initial state (whether λ0 for the entangled
state and θ0 for the product state). Thus, we consider the
better choice an initial entangled bipartite state as opposed
to a product initial state and with the feasible higher value of
concurrence.

All in all, we are reporting about a possible scenario where
the phase measuring in an open system is feasible. We claim
that the best choice in order to measure the open system GP
must take into account the degree of entanglement of the initial
state. Our model admits the possibility of preparing a MES,
which is the best option to ensure a measure. This conclusion
is a byproduct of having this type of model, in which one can
prepare a two-particle initial state, but using just one qubit to
perform the experiment.
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