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We investigate the effect of a nonuniform deformation applied to one-dimensional (1D) quantum systems,
where the local energy scale is proportional to gj = [sin(jπ/N )]m determined by a positive integer m, site
index 1 � j � N − 1, and system size N . This deformation introduces a smooth boundary to systems with
open-boundary conditions. When m � 2, the leading 1/N correction to the ground-state energy per bond e

(N)
0

vanishes and one is left with a 1/N2 correction, the same as with periodic boundary conditions. In particular,
when m = 2, the value of e

(N)
0 obtained from the deformed open-boundary system coincides with the uniform

system with periodic boundary conditions. We confirm the fact numerically for correlated systems, such as the
extended Hubbard model, in addition to 1D free-fermion models.

DOI: 10.1103/PhysRevA.83.052118 PACS number(s): 03.65.Aa, 05.30.Fk, 71.10.Fd

I. INTRODUCTION

Periodic boundary conditions (PBCs) are often more
convenient than open-boundary conditions (OBCs), when
asymptotic properties of one-dimensional (1D) quantum sys-
tems are studied in the thermodynamic limit. This is partially
because boundary energy corrections exist under OBCs, where
eigenstates are not translationally invariant. Systems with
PBCs normally contain smaller finite-size effects, and this
property of PBCs is appropriate for accurate determination of
bulk properties by means of finite-size scaling [1–3].

In numerical studies of lattice models, OBCs are often
chosen for technical reasons. In particular, the majority of
practical numerical analyses by the density-matrix renormal-
ization group (DMRG) method [4–6] are performed under
OBCs. Concerning finite-size systems with PBCs, the crucial
point in DMRG is the ring-shaped geometry, which reduces
the decay rate of singular values [7]. Although recent progress
in DMRG and tensor product formalisms made it possible
to include the PBCs in a natural manner [7–10], numerical
implementation requires additional computational resources
as compared with conventional DMRG analyses.

A way of suppressing the boundary energy corrections
induced by OBCs is to introduce smooth boundary conditions
(SBCs) [11,12]. Recently we proposed a variant of the SBCs,
where the local energy scale of N -site systems is proportional
to the deformation function [sin(jπ/N )]2 specified by the site
index 1 � j � N − 1 [13,14]. This sine-squared deformation
(SSD) [15] completely suppresses the boundary effects when
the ground-state energy of a free-fermion model on a 1D lattice
is considered. In this paper we generalize the deformation
function, which is given by gj = [sin(jπ/N )]m, where m is a
positive integer [16]. In the next section, we examine the effect
of this sinusoidal deformation by gj up to m = 5 when it is
applied to the 1D free-fermion model. It is shown that the case
m = 2, the SSD, is the most efficient for the suppression of
the boundary effect.

Another trial in this paper is the application of SSD to
correlated systems. As typical examples of correlated systems,

we choose the spinless-fermion model with nearest-neighbor
interaction and the extended Hubbard model; we report the
numerical result obtained by DMRG in Sec. III. When the
interaction is present, the determination of the chemical
potential is nontrivial. We present a systematic way of solving
this problem in Sec. IV. We summarize results in the last
section.

II. SINUSOIDAL DEFORMATION

We start from the sinusoidal deformation applied to the
free-fermion model on the 1D lattice. Consider a tight-binding
model represented by the Hamiltonian

H(N) = −t

N−1∑
j=1

(c†j cj+1 + c
†
j+1cj ) − αt(c†Nc1 + c

†
1cN ), (1)

where N is the system size, and t is the hopping energy.
Operators c

†
j and cj represent the creation and annihilation of

fermions, respectively. The parameter α specifies the boundary
condition, where OBCs and PBCs correspond to α = 0 and
α = 1, respectively. (The choice α = −1 is known as the
antiperiodic boundary conditions, which we do not treat in this
paper.) For each boundary condition, the one-particle energy
is expressed as

ε� =
{

−2t cos
(

π�
N+1

)
for OBC (α = 0),

−2t cos
(

2π�
N

)
for PBC (α = 1),

(2)

where the energy index � runs from 1 to N . The ground-state
energy E

(N)
0 at half filling is obtained as the sum of ε� below

the Fermi energy εF = 0.
Throughout this paper we focus on the system size

dependence on the energy per site E
(N)
0 /N or the energy per

bond, which is E
(N)
0 /N under PBCs and is E

(N)
0 /(N − 1) under

OBCs. After a short algebra, one obtains

E
(N)
0

N
= −2t

π
+ t

N

(
1 − 2

π

)
+ O

(
1

N2

)
(3)
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with OBCs, where the leading order of the finite-size correction
is proportional to N−1. The correction of the same order also
exists for the energy per bond. With PBCs, one finds

E
(N)
0

N
= −2t

π
+ 2πt

3N2
+ O

(
1

N3

)
, (4)

where the leading correction is of the order of N−2. The
difference between Eqs. (3) and (4) chiefly comes from the
presence of the boundary energy which exists only when OBCs
are imposed.

The sinusoidal deformation introduces a position-
dependent energy scale gj = [sin(jπ/N )]m to each bond of
the system with OBCs, where m is the positive integer [13,14].
Deforming H(N) in Eq. (1), we obtain the corresponding
free-fermionic Hamiltonian

H(N)
sine = −t

N−1∑
j=1

[
sin

(
jπ

N

)]m

(c†j cj+1 + c
†
j+1cj ). (5)

We have not obtained an analytical solution for the one-particle
spectrum of H(N)

sine so far, except for the zero-energy state. Thus
we perform numerical analyses in the following investigations
on the ground state.

Since we are interested in the ground-state energy per site
(or per bond), we introduce the normalization factor

B(N) =
N−1∑
j=1

[
sin

(
jπ

N

)]m

=
N−1∑
j=1

gj , (6)

which is the sum of the deformation factors over the entire
system. When m is an odd positive integer, we have

B(N) =
(m−1)/2∑

�=0

(−1)�

(2�)m−1

(
m

�

)
cot

[
(m − 2�)π

2N

]
, (7)

and when m is an even positive integer, we have

B(N) = N

2m

(
m

m/2

)
. (8)

We represent the ground-state energy of H(N)
sine at half filling by

the notation E
(N)
0 . It is expected that the normalized energy

e
(N)
0 = E

(N)
0

B(N)
(9)

converges to −2t/π in the large N limit in analogy to Eqs. (3)
and (4). We refer to e

(N)
0 in Eq. (9) as the energy per bond

in the following. As a convention, we set B(N) = N − 1 for
the system with OBCs, and B(N) = N with PBCs, where these
values just represent the number of bonds. Using this extended
definition of B(N), we can represent the energy per bond by
Eq. (9) regardless of the boundary condition or the presence
of deformation.
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FIG. 1. (Color online) Convergence of e
(N)
0 in Eq. (9) with respect

to N at half filling. We choose t as the unit of the energy. Data with
OBCs, PBCs, and the deformed cases with m = 1–5 are shown.

We regard t as the unit of the energy in the numerical
analyses. Figure 1 shows the N dependence of e

(N)
0 in Eq. (9)

for the undeformed systems with OBCs, PBCs, and the
deformed systems from m = 1 to 5. When the PBCs are
imposed, the convergence of e

(N)
0 with respect to N−2 is linear,

and there is an even-odd oscillation with respect to the particle
number N/2. Similarly, the linear N−2 dependence is observed
when m � 2 under the sinusoidal deformation. In the case
m = 1, there is an additional logarithmic correction, as will be
shown later. It should be noted that when the particle number
N/2 is odd, e

(N)
0 obtained with the sinusoidal deformation

for m = 2 coincides with e
(N)
0 obtained with PBCs [17]. This

complete agreement is checked down to the smallest digit in
numerical precision. Throughout this paper we use the exact
diagonalization in order to reduce any numerical errors to
minimum.

In order to confirm the N−2 dependence of e
(N)
0 with the

sinusoidal deformation under m � 2, we plot the difference
between e

(N)
0 obtained with PBCs (when N/2 is even) and e

(N)
0

with the sinusoidal deformation. To avoid any confusion, let
E

(N)
PBC and E(N)

sine denote the ground-state energy obtained with
PBCs and with the sinusoidal deformation, respectively. We
also use similar notation for the normalization factors B

(N)
PBC =

N and B(N)
sine for the normalization factor defined in Eq. (6).

Figure 2 depicts the magnified difference

N2
[
e

(N)
PBC − e(N)

sine

] ≡ N2

[
E

(N)
PBC

B
(N)
PBC

− E(N)
sine

B
(N)
sine

]
(10)

when N is even. It is shown that the logarithmic cor-
rection N−2 log N is present when m = 1, and is absent
when m � 2.

Figure 3 shows the spatial distribution of the bond correla-
tion function 〈c†j cj+1 + c

†
j+1cj 〉 at half filling when N = 1000.

The Friedel oscillations induced by the boundary are clearly
observed when OBCs are imposed (the asterisks), and weaker
oscillations are observed with the sinusoidal deformation when
m = 1. Only when m = 2, there are no oscillations at all; we
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FIG. 2. (Color online) Asymptotic behavior of e
(N)
0 for the

deformed chains when 1 � m � 5 with respect to e
(N)
0 of the system

with PBCs. We choose t as the unit of the energy. A logarithmic
correction is present when m = 1.

checked the uniformity (the translation invariance) of the bond
correlation function down to 16 digits in numerical precision.
When m � 3, the boundary effects appear again. In this case
the bond correlation function toward the system boundary
does not oscillate, and decreases in monotonic manner. Such
behaviors for each m might be related to the suppression of
the boundary corrections in e

(N)
0 .

We compare the efficiency of SSD (m = 2) with the SBCs
proposed in Refs. [11] and [12]. Figure 4 shows the bond
correlation function for both cases at half filling, where the
length of the boundary area in the SBC is chosen as M = 10
and 30 when the system size is N = 1000. Although bulk
property is well captured by the SBC already for M = 30,
boundary fluctuations are still present. On the other hand,
the bond correlation function is almost uniform away of the
boundary.
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FIG. 3. (Color online) Expectation value of the bond correlation
function 〈c†j cj+1 + c

†
j+1cj 〉 with respect to j under sinusoidal defor-

mation.
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FIG. 4. (Color online) Comparison of the expectation value of
the bond correlation function at half filling under SSD (m = 2) and
a SBC in Refs. [11] and [12]. The number M in the case of the SBC
specifies the length of area where the interactions are modified near
the system boundary. The bottom graph shows the numerical details
when M = 30 (SBC) with respect to SSD.

Now we discuss the way of treating the deformed system
away from half filling. For the undeformed systems with OBCs
or PBCs, it is sufficient to include the chemical potential
term −µ

∑N
j=1 nj in Eq. (1), where nj = c

†
j cj is the number

operator. The value of µ adjusts the Fermi energy to zero, and
is given by

µ(f ) = −2t cos(πf ), (11)

where f is the filling factor,

f = 1

N

N∑
j=1

〈nj 〉. (12)

A natural way of introducing µ(f ) under the sinusoidal
deformation is to write down the Hamiltonian as a sum of
the local terms,

H(N)
sine =

N−1∑
j=1

[
sin

(
jπ

N

)]m

hj,j+1 =
N−1∑
j=1

gjhj,j+1, (13)

where µ(f ) is included in the bond operator,

hj,j+1 = −t(c†j cj+1 + c
†
j+1cj ) − µ

2
(nj + nj+1). (14)

In order to confirm the validity of these constructions in
Eqs. (11)–(14), we carried out numerical calculations for
the selected fillings f = 1/4 and f = 1/8. Figure 5 shows
the N−2 dependence of e

(N)
0 = E

(N)
0 /B(N), where E

(N)
0 is the

ground-state energy for each filling. We plot the data only when
the particle number p ≡ f N is even. Analogous to half filling,
the bond energy e

(N)
0 with PBCs coincides with that obtained
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FIG. 5. (Color online) Convergence of e
(N)
0 with respect to N−2

at 1/4 filling and 1/8 filling. We choose t as the unit of the energy.

with a SSD (m = 2) when p is odd [17]. The logarithmic
corrections are again present when m = 1.

The uniformity of the ground state obtained with the sinu-
soidal deformation is checked by calculating the occupancy
〈nj 〉 = 〈c†j cj 〉 at f = 1/2, 1/4, and 1/8. Figure 6 shows 〈nj 〉
when m = 1, 2, and 3. At half filling, f = 1/2, 〈nj 〉 is always
equal to 1/2 by the particle-hole symmetry. Even away from
the half filling, this uniformity is kept when m = 2. There are
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FIG. 6. (Color online) Position dependence of the occupation
number 〈nj 〉 = 〈c†j cj 〉 at f = 1/2, 1/4, and 1/8 when m = 1, 2, and
3 (upper graph). The left-hand and right-hand lower graphs display
the occupancy at f = 1/4 close to the boundaries.

small fluctuations near the system boundary when m = 1 and
3. In this way, the construction of Hamiltonian in Eqs. (13)
and (14) away from half filling is justified, especially for the
SSD.

III. CORRELATED SYSTEMS

It is expected that the SSD reduces the boundary effect
even when interactions are present between particles. In order
to check this conjecture, we apply the sinusoidal deformation
to correlated systems by means of the Hamiltonian Eq. (13)
written in the linear combination of bond operators. We study
the system size dependence of the ground-state energy E

(N)
0

and the uniformity of the system.

A. Spinless fermions

As an example, let us consider spinless fermions on the
1D lattice, whose behavior is described by the uniform
Hamiltonian,

H(N)
PBC = −t

N∑
j=1

(c†j cj+1 + c
†
j+1cj )

+V

N∑
j=1

(
c
†
j cj − 1

2

)(
c
†
j+1cj+1 − 1

2

)
(15)

with PBCs, where the system contains the repulsive Coulomb
interaction V > 0 between neighboring sites, in addition to
the hopping amplitude t . In this section we restrict ourselves
to the half-filled case only, therefore the chemical potential µ

is zero [18]. The construction of the Hamiltonian with OBCs
and its sinusoidal deformation is analogous to what we have
done in the previous section. The deformed Hamiltonian can
be defined by putting the bond operator as

hj,j+1 = −t(c†j cj+1 + c
†
j+1cj )

+V
(
c
†
j cj − 1

2

)(
c
†
j+1cj+1 − 1

2

)
(16)
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FIG. 7. (Color online) Energy per bond e
(N)
0 of the spinless

fermion model at V = 1 up to N = 16. We choose t as the unit
of the energy.
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FIG. 8. (Color online) Occupation number 〈nj 〉 and the bond
correlation 〈c†j cj+1 + c

†
j+1cj 〉 when V = 1 at half filling.

and substituting it into Eq. (14). We calculate the ground state
and the corresponding energy E

(N)
0 at half filling up to N = 16.

Figure 7 shows e
(N)
0 with respect to N−2. When the

sinusoidal deformation is applied, we observe the same
N−2 dependence as was seen for the noninteracting case.
In particular, when N/2 is odd, e

(N)
0 obtained for m = 2

shows good agreement with the result from the PBC. The
coincidence, however, becomes less accurate with increasing
V , and there is a deviation ∼0.2% in e

(N)
0 when V = 5.

Figure 8 shows the occupation number 〈nj 〉 and the bond
correlation 〈c†j cj+1 + c

†
j+1cj 〉 when V = 1 at half filling. A

clear uniformity is observed when m = 2 as shown in the
noninteracting cases.

B. Extended Hubbard model

Now we consider the extended Hubbard model, which con-
tains the on-site Coulomb interaction U and the neighboring
interaction V . In this case there is a spin degree of freedom
(σ = ↑,↓), and therefore creation and annihilation operators,
respectively, are represented as c

†
jσ and cjσ . The bond operator

of the extended Hubbard model is represented as

hj,j+1 = −t
∑

σ=↑,↓
(c†jσ cj+1σ + c

†
j+1σ cjσ )

+ U

2

[(
nj↑ − 1

2

) (
nj↓ − 1

2

)

+
(

nj+1↑ − 1

2

) (
nj+1↓ − 1

2

)]
+V (nj↑ + nj↓ − 1)(nj+1↑ + nj+1↓ − 1). (17)

To avoid the complexity of determining the chemical potential
µ, we consider the half-filled case where µ = 0 is guaranteed
by the particle-hole symmetry. Figure 9 shows the N−2
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FIG. 9. (Color online) System size dependence of e
(N)
0 of the

extended Hubbard model at half filling. We choose t as the unit of
the energy. The full and the dashed lines connect the energies e

(N)
0

obtained by the PBC and SSD, respectively.

dependence of e
(N)
0 for various combinations of U and V . The

coincidence between the PBC and SSD at half filling occurs
when the total number of both up- and down-spin fermions are
odd.

The occupancy 〈nj 〉 = 〈nj↑ + nj↓〉 and the bond corre-
lation function

∑
σ 〈c†jσ cj+1σ + c

†
jσ cj+1σ 〉 at half filling are

shown in Fig. 10. The occupancy 〈nj 〉 with OBC is clearly
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FIG. 10. (Color online) Occupation 〈nj↑〉 = 〈nj↓〉 and the bond
correlation

∑
σ 〈c†jσ cj+1 + c

†
j+1σ cjσ 〉 of the extended Hubbard model

at half filling.
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influenced by the system boundaries, whereas the sinusoidal
deformations (m � 1) lead to almost constant distribution.
The case with m = 2 (asterisks) realizes the minimal position
dependence. The bond correlation function is influenced by
the boundaries in all cases, and the position dependence is the
weakest when m = 2.

IV. CHEMICAL POTENTIAL

So far we have not discussed the proper value of the
chemical potential µ away from the half filling when the
interaction is present. The chemical potential term −µ

2 (nj↑ +
nj↓ + nj+1↑ + nj+1↓) has to be included to the bond operator
in Eq. (18). In the Hartree-Fock or the Fermi-liquid picture, µ

is adjusted so that the particle number p = ∑N
j=1〈nj↑ + nj↓〉

coincides with the number of negative-energy quasiparticle
states. The number of particles is independently represented
by the derivative of E

(N)
0 with respect to µ. Thus, the relation

p = −∂E
(N)
0 /∂µ must be satisfied for the targeted particle

number p. Within the sinusoidal deformation, this relation is
slightly modified as

p = − N

B(N)

∂E
(N)
0

∂µ
= −∂Ne

(N)
0

∂µ
, (18)

according to the position dependence in the energy scale.
We plot the absolute value |p − (−∂Ne

(N)
0 /∂µ)| with

respect to µ for the extended Hubbard model in Fig. 11, under
the SSD. The numerical analysis by exact diagonalization
gives µ = −4.1425 for the case N = 12, p = 4, U = 2, and
V = 1. Figure 12 shows the corresponding occupation and
the bond correlation functions. There is a slight position
dependence, since we are dealing with a relatively small
system size with a few particles. The position dependence
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FIG. 11. (Color online) The µ dependence of |p + ∂Ne
(N)
0 /∂µ|

for the two cases f ≡ p/2N = 1/4 and 1/6. We choose t and µ as
the units of the energy.

0 2 4 6 8 10 12
0.1655

0.1660

0.1665

0.1670

0.1675

0.1680

〈 n
j,σ

〉

σ = ↑
σ = ↓

0 2 4 6 8 10 12
j

-0.619

-0.618

-0.617

-0.616

-0.615

-0.614

-0.613

-0.612

∑
σ 

〈 c
† j,σ

 c
j+

1,
σ +

 c
† j+

1,
σ

c j,σ
〉

µ = -4.1425

N = 12, p = 4, S
tot

z
  = 0

U = 2, V = 1

FIG. 12. (Color online) The upper and lower graphs show the
occupancy 〈ni,σ 〉 and the bond correlation

∑
σ 〈c†jσ cj+1σ + c

†
j+1σ cjσ 〉

at f = 1/6.

becomes conspicuous if we choose either an inaccurate value
of µ or we consider the deformations with m �= 2.

V. CONCLUSION AND DISCUSSION

We have shown that the sine-squared deformation is the
optimal choice if applied to 1D quantum Hamiltonians and
it improves convergence of the ground-state energy per bond
(or per site) e

(N)
0 toward the thermodynamic limit if compared

to the uniform systems with open-boundary conditions. Such
suppression of the boundary effects is confirmed also for
interacting systems, typically for the extended Hubbard model.

We have not determined the “canonical” form of the
sinusoidal deformation in the case where there are long-range
interactions. It is reported that a small but finite residual
boundary effect appears in spin chains which includes the
next-nearest-neighbor interaction [15]. Application of the si-
nusoidal deformation to higher-dimensional quantum systems
could be a future problem.

A theoretical puzzle of the sinusoidal deformation remains
in coincidence of the ground-state energy calculated with the
PBC and SSD. The agreement is almost perfect, which strongly
suggests a hidden algebraic relation between these two cases.
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