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We study the effect of Dzyaloshinskii-Moriya (DM) interaction on pairwise quantum discord, entanglement,
and classical correlation in the anisotropic XY spin-half chain. Analytical expressions for both quantum and
classical correlations are obtained from the spin-spin correlation functions. These pairwise quantities exhibit
interesting behaviors in relation to the relative strengths of the physical parameters. For the infinite chain,
we show that the quantum discord can be useful to highlight the quantum phase transition, especially for the
long-distance spins, where entanglement decays rapidly. We observe nonanalyticities of the derivatives of both
quantum and classical correlations with respect to the magnetic intensity at the critical point; interestingly, the
DM interaction weakens the critical behavior in the derivatives of these correlations. While the DM interaction
suppresses the standard behaviors of the XY model, it enhances surprisingly the pairwise entanglement for the
third nearest neighbor spins.
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I. INTRODUCTION

Entanglement, at the heart of quantum reality, has received
great attention in various branches of quantum physics [1,2],
mostly because of its promising features exhibited in quan-
tum information processing. While interest remains strong,
recent research has explored nonclassical correlations other
than entanglement, which may be employed as alternative
resources for quantum technology [3–6]. Among the quantum
correlations, the quantum discord introduced by Ollivier and
Zurek [4] has been studied relatively comprehensively and is
supposed to characterize all of the nonclassical correlations
in a bipartite state, including entanglement. While in pure
states it coincides with the entanglement entropy, the quantum
discord does not vanish in mixed separable states, even if
entanglement is absent. This unique feature suggests that
quantum correlations, in particular quantum discord, may have
significant applications in revealing the advantage of certain
quantum tasks and may be a more comprehensive resource than
entanglement [7–21], as demonstrated, for example, by their
behaviors in quantum critical phenomena. It was interesting to
note that quantum discord, in contrast to entanglement, is able
to signal the Kosterlitz-Thouless quantum phase transitions
[22,23]. Moreover, study on pairwise quantum discord in
the thermodynamic limit of theXY chain shows that quantum
discord for spin pairs farther than second neighbors could
still signal a quantum phase transition (QPT), while the
corresponding pairwise entanglement vanishes [24].

This paper studies the behaviors of both quantum
and classical correlations in the anisotropic XY spin-half
chain with Dzyaloshinskii-Moriya (DM) interaction [25]∑

〈ij〉 �Dij (�Si × �Sj ), which arises from the spin-orbit coupling.
Despite being small, this interaction can generate interesting

*Corresponding author: sbin610@bit.edu.cn

effects [26,27] and is crucial to the description of many
antiferromagnetic systems, such as Cu(C6D5COO)2 · 3D2O
[28], Yb4As3 [29], BaCu2Si2O7 [30], and K2V3O8 [31]. It also
plays a significant role in quantum dots [32] and in performing
universal quantum computation [33,34]. The behaviors of
entanglement in spin chains [35,36] with DM interaction
were studied extensively. The influence of DM interaction on
quantum phase interference of spins was discussed [37]. The
entanglement transfer in a spin chain with DM interaction was
examined [38,39]. Now, we study the role of the important
interaction in the behaviors of the quantum discord.

This paper is arranged as follows. Section II introduces the
anisotropic XY spin chain with DM interaction and describes
briefly the techniques of correlation functions used to obtain
our results. We analyze the behaviors of quantum and classical
correlations under the influence of the DM interaction in
Sec. III. We conclude our work in Sec. IV.

II. QUANTUM AND CLASSICAL CORRELATIONS
IN THE XY CHAIN WITH DM INTERACTION

Consider the anisotropic XY spin-half chain with DM
interaction in the z direction,

H =
N∑

j=1

{
J
[
(1 + γ )Sx

j Sx
j+1 + (1 − γ )Sy

j S
y

j+1

+D
(
Sx

j S
y

j+1 − S
y

j Sx
j+1

)] − Sz
j

}
, (1)

where Sα
j (α = x,y,z) are the spin-half operators at the j th

lattice site, N is the total number of spins, and the periodic
boundary conditions (Sα

N+1 = Sα
1 ) are used. The parameter γ

characterizes the degree of anisotropy, D denotes the intensity
of the DM interaction along the z direction, and J is the
strength of the inverse of the external transverse magnetic
field.
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The two-spin density matrix ρij for this system in the
computational basis (|↑ ↑〉, |↑ ↓〉, |↓ ↑〉, |↓ ↓〉) is given by
[40]

ρij =

⎛
⎜⎜⎜⎜⎝

u+
ij 0 0 yij

0 ω+
ij xij 0

0 xij ω−
ij 0

yij 0 0 u−
ij

⎞
⎟⎟⎟⎟⎠ , (2)

where matrix elements can be written in terms of one- and
two-point correlation functions,

u±
ij = 1

4
±

〈
Sz

i

〉
2

±
〈
Sz

j

〉
2

+ 〈
Sz

i S
z
j

〉
, (3)
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4
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±
〈
Sz

j

〉
2

− 〈
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z
j

〉
, (4)

xij = 〈
Sx

i Sx
j

〉 + 〈
S

y

i S
y

j

〉
, (5)

yij = 〈
Sx

i Sx
j

〉 − 〈
S

y

i S
y

j

〉
, (6)

where for this model we calculate the concrete form of the
magnetization density 〈Sz

j 〉 at site j and obtain an analytical
expression,

〈
Sz

j

〉 = − 1

N

N/2∑
p>0

tanh(β�/2)

�
[J (cos φp − 2D sin φp) − 1],

(7)

where � = √
[J (cos φp − 2D sin φp) − 1]2 + J 2γ 2 sin2 φp

with φp = 2πp/N , p = −N/2, . . . ,N/2, and β = 1/kT

where k is the Boltzmann constant and T is the absolute
temperature. When the system is translation invariant, we
obtain 〈Sz

i 〉 = 〈Sz
j 〉 (∀i,j ) such that ω+

ij = ω−
ij . By using the

method in Refs. [41] and [42], one can obtain analytical two-
point correlation functions 〈Sα

i S
β

j 〉 (α,β = x,y,z) between
sites i and j ,

〈
Sx

i Sx
j

〉 = 1
4

∣∣∣∣∣∣∣∣
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, (8)
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y
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〉 = 1
4

∣∣∣∣∣∣∣∣
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, (9)

and 〈
Sz

i S
z
j

〉 = 〈Sz〉2 − 1
4Gj−iGi−j . (10)

For our model in Eq. (1), we derive the analytical forms of
GR ,

GR =− 1

N

N/2∑
p>0

2 cos(φpR)[J (cos φp−2D sin φp)−1]

× tanh(β�/2)

�
+ γ

N

N/2∑
p>0

2J sin(φpR) sin φp

tanh(β�/2)

�
,

(11)

whereR = j − i = 1,2,3, . . . after tedious calculations. When
N → ∞, and T = 0, tanh(β�/2) = 1, and the limit values
can be obtained by replacing φp with φ and the sum with the
integral 1

2π

∫ π

0 dφ. On the basis of Eqs. (7) and (11) derived
by us, we can give the eigenvalues of the density matrix ρij ,
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We now briefly review the definition of the pairwise
quantum discord. A bipartite quantum state ρij contains both
classical and quantum correlations, and the total correlations
are measured jointly by quantum mutual information. The total
correlations between subsystems i and j are

I(ρij ) = S(ρi) + S(ρj ) − S(ρij ), (16)

where ρi(j ) = Trj (i)(ρij ) is the reduced density matrix of the
subsystem i(j ) and S(ρ) = Trρ log2 ρ is the von Neumann
entropy. The quantum discord is defined as the difference
between the total correlations and the classical correlation,

DQ(ρij ) = I(ρij ) − CC(ρij ), (17)

where the classical correlation CC(ρij ) between the subsystems
is given by [43]

CC(ρij ) = S(ρi) − min
{Pκ }

[
pκS

(
ρκ

i

)]
, (18)

where {Pκ} is a set of projects performed locally on
the subsystem j and ρκ

i = Trj [(Ii ⊗ Pκ )ρij (Ii ⊗ Pκ )]/pκ is
the quantum state of the subsystem i conditioned on the
measurement outcome labeled by κ , with probability pκ =
Tr[(Ii ⊗ Pκ )ρij (Ii ⊗ Pκ )]. Here, Ii is the identity operator for
the subsystem i. The mutual information in Eq. (16) reads

I(ρi : ρj ) = 2(−η1 log η1 − η2 log η2) +
4∑

υ=1

λυ log λυ, (19)

where η1,2 = 1/2 ± 〈Sz
i 〉 and λυ (υ = 1,2,3,4) correspond

to eigenvalues of the reduced density matrices ρi and ρij ,
respectively. The condition S(ρi) = S(ρj ) is satisfied such
that the measurement of classical correlation assumes equal
values, irrespective of whether the measurement is performed
on site i or j . Here, we consider the complete set of
orthogonal projectors {Pκ (θ,φ) = I ⊗ |κ〉〈κ|} (κ = 1,2) for
a local measurement performed on sitej , where the two
projectors are defined by the spin states

|1〉 = cos θ |↑〉 + eiφ sin θ |↑〉, (20)

|2〉 = sin θ |↑〉 − eiφ cos θ |↓〉. (21)

It is straightforward to calculate the quantum discord [19]

DQ(ρij ) = min{DQ1,DQ2}, (22)
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where

DQ1 = S(ρi) − S(ρij ) − u+
ij log

(
u+

ij

u+
ij + ωij

)

−ωij log

(
ωij
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ij + ωij

)
− u−

ij log

(
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u−
ij + ωij

)

−ωij log

(
ωij
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)
(23)

and

DQ2 = S(ρi) − S(ρij ) − 1 + �

2
log

1 + �

2

− 1 − �

2
log

1 − �

2
, (24)

with � =
√

(u+
ij − u−

ij )2 + 4(|xij | + |yij |)2.

The quantum discord is a measure of nonclassical correla-
tions. It may include but is independent of entanglement. For
pure states and a mixture of Bell states, the quantum discord is
equivalent to the entanglement entropy. However, for general

FIG. 1. (Color online) Quantum discord (a) and (b), entanglement (c) and (d), and classical correlation (e) and (f) for the nearest-neighbor
spins in the XY spin chain as a function of anisotropy γ and magnetic intensity J at zero temperature for different values of DM interaction.
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two-qubit mixed states, the correspondence between them is
much more complicated. The following work will focus on
the quantum discord, entanglement, and classical correlation
in the anisotropic XY spin-half chain with DM interaction. We
use concurrence as the measure of entanglement [44], defined
by

C(ρij ) = max{ς1 − ς2 − ς3 − ς4,0}, (25)

where ςµ (µ = 1,2,3,4) are the square roots of the eigenvalues
in descending order of the operator Rij = ρij ρ̃ij , ρ̃ij =
(σy

i ⊗ σ
y

j )ρ∗
ij (σy

i ⊗ σ
y

j ), with ρ∗
ij being the conjugate of ρij

and σ
y

i(j ) being the y component of the Pauli matrix for site i

or j . The concurrence of the density matrix in Eq. (2) is

C(ρij ) = 2 max{0,|xij | −
√

u+
ij u

−
ij ,|yij | − ωij }. (26)

In the thermodynamic limit, we plot the pairwise quantum
discord, entanglement, and classical correlation in the XY

chain for different values of DM interaction in Figs. 1(a)–
1(f), respectively. Figures 1(a) and 1(b) show that there
is a clear difference in quantum discord between the two
regions J ∈ [0,1] and J ∈ [1,2]. The quantum phase transition
occurs at the critical point J = 1. When J � 1, the quantum
discord increases with anisotropy and reaches its maximum
at the point γ = 1. When J > 1, the quantum discord decays
monotonously with anisotropy.

We now turn our attention to the effect of the DM interaction
on quantum discord. It seems that the quantum discord is
suppressed by the DM interaction. Furthermore, in the absence
of anisotropy, quantum discord is insensitive to the DM
interaction.

Before the numerical details are explored, it is interesting
to note that there is a family of Hamiltonians containing the
DM interaction, which leads to the same entanglement and
discord [34]. In this family, the Hamiltonians are subject to
single-spin unitary transformations,

W =
N∏

j=1

exp
[−i

(
αjS

x
j + βjS

y

j + δjS
z
j

)]
, (27)

such that H ′ = WHW †, where αj , βj , and δj are independent
angles. For instance, if W = ∏

j=2,4,6,... exp[−iπ/2Sz
j ] where

j is even, the Hamiltonian in Eq. (1) can be rewritten as

H ′ =
N∑

j=1

{
J
[ − (1 + γ )Sx

j S
y

j+1 + (1 − γ )Sy

j Sx
j+1

+D
(
Sx

j Sx
j+1 + S

y

j S
y

j+1

)] − Sz
j

}
. (28)

The DM interaction plays a special role in the isotropic XY

model when γ = 0. On the basis of the following relations,

exp
(−iϑSz

j

)
Sx

j exp
(
iϑSz

j

) = Sx
j cos ϑ + S

y

j sin ϑ, (29)

exp
(−iϑSz

j

)
S

y

j exp
(
iϑSz

j

) = −Sx
j sin ϑ + S

y

j cos ϑ, (30)

the transformation W = ∏
j=2,4,6,... exp[iϑSz

j ] transfers the
isotropic XY chain into

H ′ =
N∑

j=1

{
J ′[Sx

j Sx
j+1 + S

y

j S
y

j+1

+D′(Sx
j S

y

j+1 − S
y

j Sx
j+1

)] − Sz
j

}
, (31)

where J ′ = J cos ϑ and D′ = tan ϑ . It implies that the DM
force in the isotropic case is given by single-spin transfor-
mation and does not make a significant contribution to the
entanglement and quantum discord.

The pairwise entanglement for the general Hamiltonian in
Eq. (1) is displayed in Figs. 1(c) and 1(d). As shown in the
figures, the influence of the anisotropy γ on the entanglement
is different between the J < 1 region and the J > 1 region.
The DM interaction in the XY spin chain suppresses the
pairwise entanglement and the pairwise quantum discord. In
contrast to the quantum discord and entanglement, the classical
correlation always increases with anisotropy as shown in the
last subfigures of Fig. 1.

Figure 2 displays the quantum discord (dotted line),
entanglement (dashed line), and classical correlation (solid
line) as a function of J for the nearest-neighbor spins in
the transverse Ising model (γ = 1) with different values of
the DM interaction. It is clear that, in this particular case,
both classical and quantum correlations are suppressed by
the DM interaction. While the concurrence is initially larger
than the quantum discord and classical correlation and then
decreases, the quantum discord is always less than the classical

FIG. 2. (Color online) Quantum discord (dotted line), entanglement (dashed line), and classical correlation (solid line) as a function of J

for the nearest-neighbor spins in the transverse Ising chain. (a) D = 0.0 and (b) D = 1.0 with T = 0.
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FIG. 3. (Color online) Quantum discord (a) and entanglement (b) for the nearest-neighbor spins as a function of J for different DM
interaction, when γ = 1.0 and T = 0. (c) (d) Cases of the pairwise quantum correlations for the third nearest neighbor spins, when γ = 0.5.

correlation. Therefore, it is reasonable to conclude that the
quantum discord is a measure independent of entanglement
and the three correlations are substantially different qualita-
tively and quantitatively, as also noticed in a recent paper [12].

In order to better understand the DM interaction, we plot
pairwise quantum discord and entanglement versus J , with
different DM interaction in Fig. 3. The pairwise quantum
discord shows distinct behaviors when the parameter D

varies. In the region J ∈ (0,1], the quantum discord can be

suppressed by the DM interaction. As the DM interaction
increases, quantum discord decreases. In the region J ∈ [1,2],
the pairwise quantum discord without the DM interaction
decays monotonously. However, when the DM interaction is
present, the situation becomes more complicated, as shown in
this figure.

The entanglement for nearest-neighbor spins is presented
in Fig. 3(b). The concurrence always has its maximum around
the critical point J = 1, regardless of the DM interaction.

FIG. 4. (Color online) Quantum discord for the nearest-neighbor spins in the XY spin chain as a function of the DM interaction with
different values of anisotropy, T = 0. (a) J = 0.5. (b) J = 1.5.
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FIG. 5. (Color online) First derivative of the quantum discord for
the nearest-neighbor spins with respect to J (a) for different values of
DM interaction with γ = 0.8 and T = 0 and (b) for different values
of anisotropy with D = 0.5.

When J < 1, the DM interaction restraints the growth of
entanglement, while it rarely changes the decay rate of
entanglement in the J > 1 region.

The quantum correlations decrease expectedly as the site
distance increases. We plot the quantum discord and entan-
glement for third nearest neighbor spins with the anisotropy
parameter γ = 0.5 in Figs. 3(c) and 3(d). The pairwise
entanglement is tiny (Cmax ≈ 0.04) or disappears completely
for most of values of γ . In contrast, the quantum discord
remains nonzero even for farther site distances. This may
make quantum discord more promising in many aspects of
quantum physics, such as being an indicator to a quantum
phase transition [24]. Moreover, we observe that without the
DM interaction the entanglement is zero, except in the vicinity
of the critical point, as depicted in Fig. 3(d). It is interesting to
note that the DM interaction enhances the concurrence greatly,
which may imply that the DM interaction is able to promote
long-distance entanglement.

Figure 4 shows the quantum discord versus the DM
interaction for different values of J and anisotropy γ . When
J < 1, the quantum discord as a function of D decays
monotonously. WhenJ > 1, curves of quantum discord have
peaks at D ≈ 0.25. This again supports the argument that

FIG. 6. (Color online) First derivative of the quantum discord
with respect to the DM interaction for different values of J with
γ = 1 and T = 0. Here, no singularity occurs.

the quantum discord is enhanced in the J ∈ (0,1] region but
reduced in the J > 1 region as anisotropy increases.

There exists a known second-order quantum phase transi-
tion at J = 1 in the model in Eq. (1). In Fig. 5, we plot the
first derivative of the nearest-neighbor quantum discord with
respect to J for different strengths of the DM interaction and
anisotropy around the critical point. As expected, the non-
analyticities of dDQ/dJ indicate a quantum phase transition
at the critical point J = 1 for different values of both DM
interaction and anisotropy. It is interesting to note that the
DM interaction weakens the discontinuities in the derivative
of quantum discord. However, the anisotropy may sharpen the
singularities to some degree. As known in Ref. [35], the DM
interaction does not change the universal class of the quantum
phase transition of the present model.

Figure 6 plots dDQ/dD as a function of the DM interaction.
While no nonanalyticity is expected, as shown previously in
Ref. [35], the derivative of quantum discord with respect to
the DM interaction, dDQ/dD, shows distinct behaviors for
different regions of J . Specifically, it has minima when J is
around the critical point, while it is monotonic elsewhere.

III. CONCLUSIONS

We have studied the pairwise quantum discord, entangle-
ment, and classical correlation for the anisotropy XY spin-half
chain with DM interaction. The quantum correlations increase
monotonously with anisotropy in the J < 1 region, while
in the J > 1 region the quantum correlations may decrease
as anisotropy increases. In contrast, the pairwise classical
correlation always increases with anisotropy. For the infinite
chain, the quantum discord for the third nearest neighbor spins
can still detect the QPT, whereas pairwise entanglement cannot
achieve the same feat.

The DM interaction is the central topic of this paper. Our
analysis shows that while the DM interaction suppresses the
standard behaviors of the anisotropic XY model, it enhances
the values of long-distance entanglement surprisingly. When
the anisotropy parameter is very small, the quantum correlation
is not significantly affected by the DM interaction, as shown
generally in our family of Hamiltonians. The role of the
DM interaction can also be understood by analyzing the
derivative of quantum discord with respect to J and the DM
interaction, respectively. While the singularities in dDQ/dJ at
the critical point J = 1 indicate the quantum phase transition,
they are weakened and smoothened by the DM interaction.
The derivatives of entanglement dC/dJ and the classical
correlation dCC/dJ have similar behaviors.
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