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We study analytically the quantum thermalization of two coupled two-level systems (TLSs), which are
connected with either two independent heat baths (IHBs) or a common heat bath (CHB). We understand the
quantum thermalization in eigenstate and bare-state representations when the coupling between the two TLSs is
stronger and weaker than the TLS-bath couplings, respectively. In the IHB case, we find that, when the two IHBs
have the same temperatures, the two coupled TLSs in eigenstate representation can be thermalized with the same
temperature as those of the IHBs. However, in the case of two IHBs at different temperatures, just when the energy
detuning between the two TLSs satisfies a special condition, the two coupled TLSs in eigenstate representation
can be thermalized with an immediate temperature between those of the two IHBs. In bare-state representation,
we find a counterintuitive phenomenon that, under some conditions, the temperature of the TLS connected with
the high-temperature bath is lower than that of the other TLS, which is connected with the low-temperature bath.
In the CHB case, the coupled TLSs in eigenstate representation can be thermalized with the same temperature as
that of the CHB in nonresonant cases. In bare-state representation, the TLS with a larger energy separation can
be thermalized to a thermal equilibrium with a lower temperature. In the resonant case, we find a phenomenon
of antithermalization. We also study the steady-state entanglement between the two TLSs in both the IHB and
CHB cases.
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I. INTRODUCTION

Conventional quantum thermalization [1,2] is understood
as an irreversibly dynamic process under which a quantum
system immersed in a heat bath approaches a thermal
equilibrium state with the same temperature as that of the
bath. The thermal equilibrium state [3] of the thermalized
system reads as ρth(T ) = Z−1

S exp[−HS/(kBT )], which is
merely determined by the Hamiltonian HS of the thermalized
system and the temperature T of its environment, where
ZS = TrS{exp[−HS/(kBT )]} is the partition function of the
thermalized system, with kB being the Bolztmann constant.
During the course of a quantum thermalization, all of the
initial information of the thermalized system is totally erased
by its environment. Recently, much attention has been paid
to quantum thermalization (e.g., Refs. [4–12]). Specifically,
a new kind of thermalization, called canonical thermalization
(e.g., Refs. [13–17]), has been proposed.

The conventional quantum thermalization works for the
situations wherein one quantum system is connected with just
one environment at thermal equilibrium. When we consider
a composite quantum system, which is constructed with
many subsystems and connected with many environments,
the conventional quantum thermalization is no longer valid.
Therefore, the density operator of the composite quantum
system at thermal equilibrium can not be written as ρth(T ). In
fact, quantum thermalization of a composite quantum system
is a very complex problem. On one hand, from the viewpoint
of the environments, the composite quantum system could be
connected with many independent environments or a common

environment. At the same time, the temperatures of these
environments could be the same or different. On the other hand,
the coupling strengths among these subsystems can affect the
physical picture to describe the quantum thermalization of
the composite quantum system. When the coupling strengths
among these subsystems are stronger than the system-bath
couplings, the composite quantum system can be regarded
as a single system, while it is regarded as many individual
subsystems when the couplings among them are weaker than
the system-bath couplings.

The above-mentioned situations have come true in recent
years since quantum systems can be manufactured to be
more and more complicated and small, based on the great
advances in physics, chemistry, and biology [18]. Therefore,
the research on thermodynamics of small systems becomes
very interesting. In particular, quantum thermalization of
composite quantum systems becomes an important topic since
many important results in this field, such as nonequilibrium
work relations and fluctuation theorem (e.g., Refs. [19–23]),
are based on the thermal equilibrium state of the composite
quantum systems. As composite quantum systems are com-
posed of many subsystems, they could be connected either
with many independent environments at different temper-
atures or a common environment. Therefore, it is natural
to ask the following questions: (i) How do the couplings
among the subsystems affect the quantum thermalization of
a composite quantum system? (ii) What are the steady-state
properties of a composite quantum system when it is connected
with either many independent environments or a common
environment?

052110-11050-2947/2011/83(5)/052110(13) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.052110


JIE-QIAO LIAO, JIN-FENG HUANG, AND LE-MAN KUANG PHYSICAL REVIEW A 83, 052110 (2011)

With these questions, in this paper, we study the quantum
thermalization of two coupled two-level systems (TLSs) that
are immersed in either two independent heat baths (IHBs)
or a common heat bath (CHB). Simple as this model is,
it is illustrative. When the coupling between the two TLSs
is stronger than the TLS-bath couplings, the two TLSs
can be considered as an effective composite system, i.e.,
a four-level system, and then we understand the quantum
thermalization in eigenstate representation of the composite
system. In addition, when the coupling between the two TLSs
is weaker than the TLS-bath couplings, we understand the
quantum thermalization from the viewpoint of each individual
TLS. However, due to the TLS-TLS coupling, the effective
temperatures of the two TLSs should be different from those
for the decoupling case.

As for the environments, there are two kinds of different
situations: the IHB case and the CHB case. In the IHB case,
we find that, when the two IHBs have the same temperatures,
the two coupled TLSs in the eigenstate representation can
be thermalized with the same temperature as those of the
IHBs. However, in the case where the two IHBs have different
temperatures, just when the energy detuning between the
two TLSs satisfies a special condition, the two coupled
TLSs in eigenstate representation can be thermalized with
an immediate temperature between those of the two IHBs.
In the bare-state representation, we find a counterintuitive
phenomenon that, under some conditions, the temperature
of the TLS connected with the high-temperature heat bath
is lower than that of the other TLS, which is connected with
the low-temperature heat bath.

In the CHB case, we also study the quantum thermalization
in eigenstate and bare-state representations. In the eigenstate

representation, the present case reduces to the conventional
quantum thermalization [i.e., one quantum system (an effective
four-level system formed by the two coupled TLSs) is thermal-
ized by one environment (the common heat bath) in thermal
equilibrium]. In addition, we also investigate the effective
temperatures of the two TLSs in bare-state representation.
It is found that the TLS with a larger energy separation
can be thermalized with a lower temperature. In particular,
in the resonant case, we find a quantum phenomenon of
antithermalization when the two TLSs are connected with a
common heat bath.

This paper is organized as follows: In Sec. II, we present the
physical models and their Hamiltonians. In Sec. III, we study
the quantum thermalization of the two coupled TLSs immersed
in two IHBs. In Sec. IV, we consider the case wherein the
two TLSs are immersed in a CHB. We conclude this work in
Sec. V. Finally, we give two appendices, A and B, for detailed
derivations of quantum master equations and transition rates
for the IHB and CHB cases, respectively.

II. PHYSICAL MODELS AND HAMILTONIANS

Let us start with introducing the physical models [as
illustrated in Figs. 1(a) and 1(b)]: two TLSs, denoted by TLS1
and TLS2 with respective energy separations ω1 and ω2, couple
with each other via a dipole-dipole interaction of strength ξ .
At the same time, the two TLSs couple inevitably with the
environments surrounding them. Specifically, in this paper,
we consider two kinds of different cases: the IHB case and the
CHB case. In the former case, the two TLSs are immersed in
two IHBs, while, in the latter case, the two TLSs are immersed
in a CHB.
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FIG. 1. (Color online) Schematic diagram of
the physical models under consideration. Two
coupled two-level systems, denoted by TLS1 and
TLS2 with respective energy separations ω1 and
ω2, are connected with either (a) two IHBs at
temperatures T1 and T2 or (b) a CHB at temper-
ature T . Between the two TLSs, there exists a
dipole-dipole interaction of strength ξ . (c) The
levels of the four bare states |ηi〉 (i = 1,2,3,4)
of the two free TLSs. (d) The levels of the four
eigenstates |λi〉 (i = 1,2,3,4) of Hamiltonian (2)
for the two coupled TLSs. In the presence of
the baths, there exist bath-induced exciting and
damping processes among the four eigenstates.
The effective transition rates from states |λi〉 to
|λj 〉 are denoted by �ij . Other cross-dephasing
processes are not denoted explicitly.
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The Hamiltonian of the total system, including the two
TLSs and their environments, is composed of three parts:

H = HTLSs + HB + HI , (1)

where HTLSs is the Hamiltonian of the two coupled TLSs,
HB is the Hamiltonian of the heat baths, and HI describes the
interaction Hamiltonian between the two TLSs and their baths.

The Hamiltonian HTLSs (with h̄ = 1) reads as

HTLSs = ω1

2
σ z

1 + ω2

2
σ z

2 + ξ (σ+
1 σ−

2 + σ−
1 σ+

2 ). (2)

The first two terms in Eq. (2) are free Hamiltonians of the two
TLSs, which are described by the operators σ+

l = (σ−
l )† =

|e〉ll〈g| and σ z
l = |e〉ll〈e| − |g〉ll〈g| (l = 1,2), where |g〉l and

|e〉l are, respectively, the ground and excited states of the lth
TLS (i.e., TLSl). The last term in Eq. (2) describes a dipole-
dipole interaction of strength ξ between the two TLSs. We note
that the Hamiltonian given in Eq. (2) has been widely studied
in various physical problems, such as quantum logic gates
[24], coherent excitation energy transfer [25], decoherence
dynamics [26–28], and nonequilibrium thermal entanglement
[29,30].

The Hilbert space of the two TLSs may be spanned
by the following four bare states: |η1〉 = |ee〉, |η2〉 = |eg〉,
|η3〉 = |ge〉, and |η4〉 = |gg〉 [as shown in Fig. 1(c)], which
are eigenstates of the free Hamiltonian (ω1σ

z
1 + ω2σ

z
2 )/2

of the two TLSs, with the corresponding eigenenergies
Eη1 = −Eη4 = ωm and Eη2 = −Eη3 = �ω/2. Here, we have
introduced the mean energy separation ωm = (ω1 + ω2)/2 and
the energy detuning �ω = ω1 − ω2.

Due to the dipole-dipole interaction, a stationary single-
excitation state should be delocalized and composed of a
combination of the single-excitation states in the two TLSs.
According to Hamiltonian (2), we can solve the eigenequation
HTLSs|λn〉 = Eλn

|λn〉 (n = 1,2,3,4) to obtain the following
four eigenstates [as shown in Fig. 1(d)]:

|λ1〉 = |η1〉, |λ2〉 = cos(θ/2)|η2〉 + sin(θ/2)|η3〉,
(3)

|λ3〉 = − sin(θ/2)|η2〉 + cos(θ/2)|η3〉, |λ4〉 = |η4〉,
with the corresponding eigenenergies Eλ1 = −Eλ4 = ωm and
Eλ2 = −Eλ3 =

√
�ω2/4 + ξ 2. Here, we have introduced a

mixing angle θ (0 < θ < π ) by tan θ = 2ξ/�ω. For a pos-
itive ξ , when ω1 > ω2, namely, �ω > 0, we choose θ =
arctan(2ξ/�ω). When ω1 < ω2, that is, �ω < 0, we choose
θ = π + arctan(2ξ/�ω). The dipole-dipole interaction mixes
the two bare states |η2〉 and |η3〉 with one excitation, and does
not change the bare states |η1〉 with two excitations and |η4〉
with zero excitation.

Aside from the dipole-dipole interaction between the two
TLSs, there exist couplings between the TLSs and their
environments. In general, when the couplings of a system
with its environment are weak, it is universal to model the
environment as a harmonic-oscillator heat bath and choose
a linear coupling between the system and its environment
[31]. In this paper, we consider this situation and model the
environments as harmonic-oscillator heat baths. As mentioned
above, we will consider two kinds of different cases: one is the
IHB case and the other is the CHB case.

In the IHB case, as shown in Fig. 1(a), the two
TLSs are immersed in two IHBs described by the
Hamiltonian

H
(IHB)
B = H

(a)
B + H

(b)
B ,

H
(a)
B =

∑
j

ωaja
†
j aj , H

(b)
B =

∑
k

ωbkb
†
kbk. (4)

Here, H
(a)
B and H

(b)
B are, respectively, the Hamiltonians of

the baths for TLS1 and TLS2. The creation and annihilation
operators a

†
j (b†k) and aj (bk) describe the j th (kth) harmonic

oscillator with frequency ωaj (ωbk). The interaction Hamilto-
nian of the two TLSs with the two IHBs reads as

H
(IHB)
I =

∑
j

g1j (a†
j σ

−
1 + σ+

1 aj ) +
∑

k

g2k(b†kσ
−
2 + σ+

2 bk).

(5)

On the other hand, in the CHB case, as shown in
Fig. 1(b), the two TLSs are immersed in a CHB with the
Hamiltonian

H
(CHB)
B =

∑
j

ωaja
†
j aj , (6)

where a
†
j and aj are, respectively, the creation and annihilation

operators of the j th harmonic oscillator with frequency ωaj .
The interaction Hamiltonian between the two TLSs and the
CHB reads as

H
(CHB)
I =

∑
j

g1j (a†
j σ

−
1 + σ+

1 aj ) +
∑

j

g2j (a†
j σ

−
2 + σ+

2 aj ).

(7)

For simplicity, we have assumed that the TLS-bath coupling
strengths g1j , g2j , and g2k are real numbers.

III. QUANTUM THERMALIZATION OF TWO COUPLED
TLSs IMMERSED IN TWO IHBs

In this section, we study the quantum thermalization of the
two coupled TLSs that are immersed in two IHBs. We depict
the evolution of the two TLSs in terms of a quantum master
equation. By solving the equations of motion of the density
matrix elements to obtain steady-state solution, we study the
steady-state properties of the two coupled TLSs.

A. Equations of motion and steady-state solutions

We consider the situation wherein the environments of
the two TLSs are memoryless and the couplings between
the TLSs and the environments are weak. Then, we may
adopt the usual Born-Markov approximation in derivation of
quantum master equation. At the same time, we derive the
master equation in eigenstate representation of the two coupled
TLSs so that we can safely make the secular approximation
(equivalent to the rotating-wave approximation) to obtain a
time-independent quantum master equation by neglecting the
rapidly oscillating terms [1]. Therefore, our discussions are
under the Born-Markov framework.
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In the case of two IHBs, the evolution of the two coupled
TLSs is governed by the following Born-Markov master
equation in the Schrödinger picture:

ρ̇S = i[ρS,HTLSs] +
∑
(i,j )

[�ji(2τijρSτji − τjjρS − ρSτjj )

+�ij (2τjiρSτij − τiiρS − ρSτii)]

+ 2�1(τ42ρSτ13 + τ31ρSτ24)

+ 2�2(τ21ρSτ34 + τ43ρSτ12) (8)

+ 2�3(τ24ρSτ31 + τ13ρSτ42)

+ 2�4(τ12ρSτ43 + τ34ρSτ21),

which will be derived in detail in Appendix A. In Eq. (8), ρS is
the reduced density operator of the two TLSs. The operators τij

are defined by τij = |λi〉〈λj | in the eigenstate representation
of the two coupled TLSs. The summation parameters (i,j ) in
the second line of Eq. (8) can take (i,j ) = (4,2),(3,1),(2,1),
and (4,3). In the present model, the effective rates in Eq. (8)
are defined as �13 = �24 = �1, �31 = �42 = �2, �12 = �34 =
�3, and �21 = �43 = �4, with

�1 = cos2(θ/2)A1(ε1) + sin2(θ/2)B1(ε1),

�2 = cos2(θ/2)A2(ε1) + sin2(θ/2)B2(ε1),

�3 = sin2(θ/2)A1(ε2) + cos2(θ/2)B1(ε2),

�4 = sin2(θ/2)A2(ε2) + cos2(θ/2)B2(ε2),

�1 = cos2(θ/2)A1(ε1) − sin2(θ/2)B1(ε1), (9)

�2 = − sin2(θ/2)A1(ε2) + cos2(θ/2)B1(ε2),

�3 = cos2(θ/2)A2(ε1) − sin2(θ/2)B2(ε1),

�4 = − sin2(θ/2)A2(ε2) + cos2(θ/2)B2(ε2),

where we define A1(εi) = γa(εi)[n̄a(εi) + 1],
A2(εi) = γa(εi)n̄a(εi), B1(εi) = γb(εi)[n̄b(εi) + 1], and
B2(εi) = γb(εi)n̄b(εi) (i = 1,2). The energy separations ε1

and ε2 are introduced as ε1 = Eλ1 − Eλ3 = Eλ2 − Eλ4 =
ωm +

√
�ω2/4 + ξ 2 and ε2 = Eλ1 − Eλ2 = Eλ3 − Eλ4 =

ωm −
√

�ω2/4 + ξ 2. The rates γa(εi) = π�a(εi)g2
1(εi)

and γb(εi) = π�b(εi)g2
2(εi), where �a(εi) and �b(εi) are,

respectively, the densities of state at energy εi of the heat
baths for TLS1 and TLS2. In the following, we assume
γa(ε1) = γb(ε1) = γ1 and γa(ε2) = γb(ε2) = γ2. In addition,
we introduce the average thermal excitation numbers
n̄a(εi) = 1/[exp(εi/T1) − 1] (with the Boltzmann constant
kB = 1) and n̄b(εi) = 1/[exp(εi/T2) − 1] (i = 1,2) for the
heat baths of TLS1 and TLS2, at the respective temperatures
T1 and T2 [1].

Based on quantum master equation (8), it is straightforward
to obtain optical Bloch equations for the density matrix
elements of the two TLSs in the eigenstate representation. De-
noting X(t) = [〈τ11(t)〉,〈τ22(t)〉,〈τ33(t)〉,〈τ44(t)〉]T (“T ” stands
for matrix transpose), then the optical Bloch equations for the
diagonal density matrix elements in the eigenstate representa-
tion can be expressed as

Ẋ(t) = M(IHB)X(t), (10)

where the coefficient matrix M(IHB) is defined by

M(IHB) = −2

⎛
⎜⎝

�1 + �3 −�4 −�2 0
−�3 �1 + �4 0 −�2

−�1 0 �2 + �3 −�4

0 −�1 −�3 �2 + �4

⎞
⎟⎠ . (11)

From Eq. (10), we can see that the evolution of the diagonal
density matrix elements decouples with off-diagonal elements.

The transient solutions of optical Bloch equation (10) can
be obtained with the Laplace transform method. To study
quantum thermalization, however, it is sufficient to obtain the
steady-state solutions

〈τ11〉SS = �2�4

(�1 + �2)(�3 + �4)
,

〈τ22〉SS = �2�3

(�1 + �2)(�3 + �4)
,

(12)
〈τ33〉SS = �1�4

(�1 + �2)(�3 + �4)
,

〈τ44〉SS = �1�3

(�1 + �2)(�3 + �4)
,

where the subscript SS means steady-state solutions.
According to Eq. (8), we can also obtain the equations of

motion for these off-diagonal density matrix elements of the
two TLSs as follows:

〈τ̇21(t)〉 = −(2�1 + �3 + �4 − iε2)〈τ21(t)〉 + 2�3〈τ43(t)〉,
〈τ̇31(t)〉 = −(�1 + �2 + 2�3 − iε1)〈τ31(t)〉 + 2�4〈τ42(t)〉,

〈τ̇41(t)〉 = −(�1 + �2 + �3 + �4 − iε1 − iε2)〈τ41(t)〉,
〈τ̇32(t)〉 = −(�1 + �2 + �3 + �4 − iε1 + iε2)〈τ32(t)〉,

〈τ̇42(t)〉 = −(�1 + �2 + 2�4 − iε1)〈τ42(t)〉 + 2�2〈τ31(t)〉,
〈τ̇43(t)〉 = −(2�2 + �3 + �4 − iε2)〈τ43(t)〉 + 2�1〈τ21(t)〉.

(13)

Other off-diagonal elements can be obtained via 〈τij (t)〉∗ =
〈τji(t)〉. It can be found that the steady-state solutions of the
equations of motion for these off-diagonal elements are zero,
i.e.,

〈τij 〉SS = 0, i �= j. (14)

Based on the steady-state solutions for these density matrix
elements, we can analyze the steady-state properties of the
two coupled TLSs.

B. Quantum thermalization in eigenstate representation

For the present system with two IHBs, when the coupling
between the two TLSs is stronger than the TLS-bath couplings,
the two coupled TLSs can be regarded as an effective four-
level system connected with two IHBs. Therefore, in the
eigenstate representation, the dynamic evolution process of the
two-coupled TLSs approaching their steady state of thermal
equilibrium can be understood as a nonequilibrium quantum
thermalization: thermalization of a quantum system connected
with many IHBs at different temperatures [32–39].

As the steady state of the two coupled TLSs is completely
mixed in eigenstate representation, we can introduce effective
temperatures to characterize the relation between any two
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eigenstates based on their steady-state populations. From
Eq. (12), we can find the following relations:

〈τ11〉SS

〈τ22〉SS
= 〈τ33〉SS

〈τ44〉SS
= �4

�3
,

(15)〈τ11〉SS

〈τ33〉SS
= 〈τ22〉SS

〈τ44〉SS
= �2

�1
.

Generally, it is impossible to define an effective temperature
for the effective four-level system at steady state. According
to Eq. (15), we can characterize the state of the effective
four-level system via introducing the following two effective
temperatures [40] by

〈τ11〉SS

〈τ22〉SS
= 〈τ33〉SS

〈τ44〉SS
= exp

[
− ε2

Teff(ε2)

]
,

〈τ22〉SS

〈τ33〉SS
= exp

[
− ε1 − ε2

Teff(ε1 − ε2)

]
. (16)

In terms of Eq. (15), we get

Teff(ε1) = ε1

ln (�1/�2)
, Teff(ε2) = ε2

ln (�3/�4)
. (17)

When the two IHBs have the same temperatures, namely, T1 =
T2 = T , we can show that the above two effective temperatures
are equal to those of the two IHBs, that is,

Teff(ε1) = Teff(ε2) = T . (18)

For the nonequilibrium case of T1 �= T2, the two effective
temperatures are different for the general case. We find the
following relations: min(T1,T2) � Teff(ε1) � max(T1,T2) and
min(T1,T2) � Teff(ε2) � max(T1,T2), which mean that the two
effective temperatures Teff(ε1) and Teff(ε2) will be within
the region from min(T1,T2) to max(T1,T2) [11]. Under some
special conditions, the two effective temperatures could be
equal. In this case, we consider that the effective four-level
system is thermalized by the nonequilibrium environments:
two IHBs at different temperatures.

In Fig. 2, we plot the two effective temperatures Teff(ε1)
and Teff(ε2) as a function of the mixing angle θ . It shows that
Teff(ε1) and Teff(ε2) can be equal for a special mixing angle
θ0, which is determined by ε1

ln(�1/�2) = ε2
ln(�3/�4) . That is to say,

the effective four-level system formed by the two coupled
TLSs can be thermalized with an effective temperature when

FIG. 2. (Color online) Plot of the scaled effective temperatures
Teff (ε1)/γ (solid blue line) and Teff (ε2)/γ (dashed red line) vs the
mixing angle θ . Other parameters are set as γ1 = γ2 = γ , ξ/γ = 10,
ωm/γ = 20, T1/γ = 5, and T2/γ = 10.

�ω = ξ/ tan θ0. Note that this effective temperature actually
is a nonequilibrium temperature [41]. We can also see from
Fig. 2 that the two effective temperatures Teff(ε1) and Teff(ε2)
are within the region from T1 to T2. We point out that the
mixing angle θ should be chosen to make sure that Eλ1 > Eλ2 .

C. Quantum thermalization in bare-state representation

When the coupling between the two TLSs is weaker
than the TLS-bath couplings, we understand the quantum
thermalization in bare-state representation. We can express
the bare states with the eigenstates as

|η1〉 = |λ1〉, |η2〉 = cos(θ/2)|λ2〉 − sin(θ/2)|λ3〉,
(19)

|η3〉 = sin(θ/2)|λ2〉 + cos(θ/2)|λ3〉, |η4〉 = |λ4〉.
Then, we can obtain the relations

〈σ z
l=1,2(t)〉 = 〈τ11(t)〉 − 〈τ44(t)〉

− (−1)l cos θ [〈τ22(t)〉 − 〈τ33(t)〉]
+ (−1)l sin θ [〈τ23(t)〉 + 〈τ32(t)〉]. (20)

According to Eqs. (12), (14), and (20), the steady-state solution
can be obtained as

〈
σ z

l=1,2

〉
SS = (�2�4 − �1�3) − (−1)l cos θ (�2�3 − �1�4)

(�1 + �2)(�3 + �4)
.

(21)

In addition, the off-diagonal elements of the density matrices
of the two TLSs can be expressed as

〈σ+
1 (t)〉 = sin(θ/2)[〈τ14(t)〉 − 〈τ34(t)〉]

+ cos(θ/2)[〈τ13(t)〉 + 〈τ24(t)〉], (22)

〈σ+
2 (t)〉 = sin(θ/2)[〈τ24(t)〉 − 〈τ13(t)〉]

+ cos(θ/2)[〈τ12(t)〉 + 〈τ34(t)〉].
Because of 〈τij (t)〉SS = 0 (i �= j ), we have 〈σ+

1 〉SS =
〈σ+

2 〉SS = 0, which implies that the steady states of the two
TLSs in bare-state representation are completely mixed. Based
on these, it is possible to introduce two effective temperatures
of the two TLSs as follows:

Teff(ωl) = ωl

ln

(
1−〈σ z

l 〉SS

1+〈σ z
l 〉SS

) , l = 1,2. (23)

In Fig. 3, we plot the effective temperatures Teff(ω1) and
Teff(ω2) as a function of the mixing angle θ for various temper-
ature distributions. From Fig. 3, we can see the following three
interesting results. First, when θ ≈ π/2, Teff(ω1) and Teff(ω2)
become approximately equal. Specifically, at the resonant
point θ = π/2, the two TLSs have the same temperatures no
matter whether the two bath temperatures are the same or not
(see the cross point at θ = π/2 in figures). This result can
be explained as follows. When the two TLSs are nearly in
resonance with each other, the dipole-dipole interaction can
induce population exchange between the two TLSs such that
their temperatures are approximately equal. When θ = π/2
(ω1 = ω2), Eq. (21) reduces to

〈
σ z

1

〉
SS = 〈

σ z
2

〉
SS = �2�4 − �1�3

(�1 + �2)(�3 + �4)
, (24)
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FIG. 3. (Color online) Plot of the scaled effective temperatures
Teff (ω1)/γ (solid blue line) and Teff (ω2)/γ (dashed red line) vs
the mixing angle θ for various temperature distributions (shown in
figures). Other parameters are set as γ1 = γ2 = γ , ξ/γ = 0.1, and
ωm/γ = 20.

then we have Teff(ω1) = Teff(ω2).
Second, when θ is near to 0 and π , Teff(ω1) and Teff(ω2)

approach approximately T1 and T2, respectively. This result
can be understood as follows: Near to θ ≈ 0 and π , the
energy detuning |�ω| = 2ξ/| tan θ | between the two TLSs is
very large, and the population exchange between them can be
neglected for a weak coupling strength ξ . At the same time, the
energy separation shifts of the two TLSs are neglectable [this
can be seen from the following effective Hamiltonian (25)].
Hence, the temperatures of the two TLSs should be equal to
those of their IHBs, respectively.

Third, in Fig. 3, there are some regions of θ where the
effective temperature Teff(ω1) of TLS1 could be smaller than
the temperature Teff(ω2) of TLS2 although the bath tempera-
tures T1 > T2. This is a counterintuitive result. Intuitively, in
these cases, Teff(ω2) should be smaller than Teff(ω1) because
TLS2 is connected with a low-temperature bath while TLS1 is
connected with a high-temperature bath [In Fig. 3(a), when the
two bath temperatures are the same, the effective temperatures
of the two TLSs should be equal.] Actually, the counterintuitive
result is a net effect of the energy separations of the two TLSs,
the bath temperatures, and the coupling between the two TLSs
(coupling induces population exchange and energy shifts).
From Figs. 3(a) to 3(d), the curves change gradually with the
increase of the temperature difference T1 − T2 between the
two baths. In addition, the counterintuitive region decreases
with the increase of the temperature difference T1 − T2.

In the following, we present a microscopic explanation
for Fig. 3 as a physical insight of the counterintuitive
phenomenon. When the values of θ are far from the resonant
point (not near to 0 and π ), the two TLSs will have
large detuning from each other. Under the large detuning
condition ξ � �ω, the real population exchange between the
two TLSs is compressed and the dipole-dipole interaction
induces energy shift to the two TLSs. In this case, we can
derive an effective Hamiltonian to describe the two TLSs
with the Fröhlich-Nakajima transformation approach [42,43].
Starting from the Hamiltonian HTLSs = H ′

0 + H ′
I with H ′

0 =

(ω1σ
z
1 + ω2σ

z
2 )/2 and H ′

I = ξ (σ+
1 σ−

2 + σ−
1 σ+

2 ), we introduce
an operator S = −ξ (σ+

1 σ−
2 − σ−

1 σ+
2 )/�ω, which meets the

condition H ′
I + [H ′

0,S] = 0. Then, the effective Hamiltonian
reads as

Heff ≡ H ′
0 + 1

2 [H ′
I ,S] = 1

2 ω̄1σ
z
1 + 1

2 ω̄2σ
z
2 , (25)

where the shifted energy separations are defined by ω̄1 = ω1 +
ξ 2/�ω and ω̄2 = ω2 − ξ 2/�ω.

We can see from Eq. (25) that, under the large detuning
condition, there is no effective coupling between the two
TLSs. The dipole-dipole interaction between the two TLSs
shifts their energy separations slightly. Hence, when the two
TLSs (with the shifted energy separation) are thermalized to
thermal equilibrium with their baths, we have the relation
exp(−ω̄l/Tl) = p(l)

e /p(l)
g (l = 1,2) for the TLSl (with shifted

energy separation ω̄l , excited- and ground-state populations
p(l)

e and p(l)
g ) in thermal equilibrium at temperature Tl , and

then the effective temperatures defined in Eq. (23) should be

Teff(ωl) = ωl

ln
(
p

(l)
g /p

(l)
e

) = ωl

ω̄l

Tl. (26)

From Eq. (25), we can see that, for a positive ξ , when 0 < θ <

π/2, we have �ω > 0, then ω̄1 > ω1 and ω̄2 < ω2. Hence, the
effective temperatures Teff(ω1) < T1 and Teff(ω2) > T2. On the
other hand, when π/2 < θ < π , we have �ω < 0, then ω̄1 <

ω1 and ω̄2 > ω2. Hence, the effective temperatures Teff(ω1) >

T1 and Teff(ω2) < T2.
According to the above analysis, we can see that, when

T1 = T2 [Fig. 3(a)], there will exist a counterintuitive region.
At the same time, when θ is near to 0 and π , the shifted energy
separation ξ 2/�ω approaches zero, then Teff(ωl) ≈ Tl . Hence,
with the increase of the bath-temperature difference T1 − T2,
the difference between the two effective temperatures also
increases, which leads to the counterintuitive region decreases.
These results can be seen from Fig. 3.

In fact, the above intuitive result is based on the phenomeno-
logical master equation

ρ̇S = i[ρS,HTLSs] + L1[ρS] + L2[ρS], (27)

with

Ll=1,2[ρS] = γl

2
(n̄l + 1)(2σ−

l ρσ+
l − σ+

l σ−
l ρ − ρσ+

l σ−
l )

+γl

2
n̄l(2σ+

l ρσ−
l − σ−

l σ+
l ρ − ρσ−

l σ+
l ). (28)

The superoperator Ll[ρS] describes the dissipation of a TLSl

(l = 1,2) immersed in a heat bath at temperature Tl {n̄l =
1/[exp(ωl/Tl) − 1]}. Therefore, Eq. (27) is not valid in the
case of two coupled TLSs, especially when the coupling
between the two TLSs is stronger than the TLS-bath couplings.
In addition, in Eq. (27), the effects on the TLSs from the two
baths are different: one is direct and the other is indirect.
For example, the bath of TLS1 affects TLS1 directly, while
the bath of TLS2 affects TLS1 indirectly through TLS2.
On the contrary, our results given in Eq. (23) are based on
quantum master equation (8), which is rigorously derived in
the eigenrepresentation of the two coupled TLSs. Hence, the
dissipation is depicted in the eigenrepresentation of the two
coupled TLSs. In other words, the two TLSs play equivalent
roles and the two baths directly affect the TLSs. The resonant
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case is a clear example for the equivalent role of the two TLSs.
In the resonant case θ = π/2, we obtain Teff(ω1) = Teff(ω2)
in terms of quantum master equation (8), while we get
Teff(ω1) > Teff(ω2) from Eq. (27) when T1 > T2.

D. Steady-state entanglement between the two TLSs

In the IHB case, there exists a dipole-dipole interaction
between the two TLSs. Therefore, a natural question is what the
quantum entanglement is between the two TLSs after they are
thermalized. As we know, during the thermalization processes
(not antithermalization), all of the initial information of the two
coupled TLSs is totally erased, and the steady state of the two
TLSs is determined by the decay rates and bath temperatures.
Hence, we need to know the steady-state entanglement in the
two TLSs. We note that entanglement dynamics in similar
systems has been studied [44]. In the following, we apply the
concurrence to quantify the steady-state entanglement in the
two TLSs.

For a 2 × 2 quantum system (two TLSs) with a density
matrix ρ expressed in the bare-state representation, its concur-
rence [45] is defined as

C(ρ) = max{0,
√

s1 − √
s2 − √

s3 − √
s4}, (29)

where si (i = 1,2,3,4) are the eigenvalues (s1 being the largest
one) of the matrix ρρ̃. The operator ρ̃ is defined as

ρ̃ = (
σ

y

1 ⊗ σ
y

2

)
ρ∗(σy

1 ⊗ σ
y

2

)
, (30)

where ρ∗ is the complex conjugate of ρ and σ
y

l is the Pauli
matrix of TLSl. For the 2 × 2 system, C = 0 and C = 1 mean,
respectively, the density matrix ρ is an unentangled state and
a maximally entangled state. In particular, for the so-called X-
class state with the density matrix (expressed in the bare-state
representation)

ρ =

⎛
⎜⎝

ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

⎞
⎟⎠ , (31)

the concurrence is [46]

C(ρ) = 2 max{0,|ρ23| − √
ρ11ρ44,|ρ14| − √

ρ22ρ33}. (32)

Now, for the present system, its density matrix elements
in bare-state representation can be expressed as 〈ηj |ρ|ηi〉 =
Tr[|ηi〉〈ηj |ρ] = Tr[µijρ] = 〈µij 〉 with the transition operator
µij = |ηi〉〈ηj |. The density matrix elements in the eigenstate
representation are expressed by 〈λj |ρ|λi〉 = Tr[|λi〉〈λj |ρ] =
Tr[τijρ] = 〈τij (t)〉 with τij = |λi〉〈λj |. Since the concurrence
is defined in the bare-state representation, the evolution of
the system is expressed in the eigenstate representation.
Therefore, we need to obtain the transformation between the
two representations as follows:

〈µ11(t)〉 = 〈τ11(t)〉, 〈µ44(t)〉 = 〈τ44(t)〉,
〈µ22(t)〉 = cos2(θ/2)〈τ22(t)〉 + sin2(θ/2)〈τ33(t)〉 (33)

− 1
2 sin θ [〈τ23(t)〉 + 〈τ32(t)〉],

〈µ33(t)〉 = sin2(θ/2)〈τ22(t)〉 + cos2(θ/2)〈τ33(t)〉,
+ 1

2 sin θ [〈τ23(t)〉 + 〈τ32(t)〉]

FIG. 4. (Color online) Plot of the steady-state concurrence C(ρSS)
vs the scaled bath temperature T/γ for various values of ξ/γ .
Other parameters are set as γ1 = γ2 = γ , θ = π/2, T1 = T2 = T ,
and ωm/γ = 20.

and

〈µ23(t)〉 = − sin2(θ/2)〈τ32(t)〉 + cos2(θ/2)〈τ23(t)〉
+ 1

2 sin θ [〈τ22(t)〉 − 〈τ33(t)〉],
〈µ12(t)〉 = cos(θ/2)〈τ12(t)〉 − sin(θ/2)〈τ13(t)〉,
〈µ13(t)〉 = sin(θ/2)〈τ12(t)〉 + cos(θ/2)〈τ13(t)〉,
〈µ14(t)〉 = 〈τ14(t)〉,
〈µ24(t)〉 = cos(θ/2)〈τ24(t)〉 − sin(θ/2)〈τ34(t)〉,
〈µ34(t)〉 = sin(θ/2)〈τ24(t)〉 + cos(θ/2)〈τ34(t)〉. (34)

According to the steady-state solutions given in Eqs. (12)
and (14), the steady-state density matrix of the two TLSs in the
bare-state representation can be obtained with the following
nonzero elements:

〈µ11〉SS = 〈τ11〉SS, 〈µ44〉SS = 〈τ44〉SS,

〈µ22〉SS = cos2(θ/2)〈τ22〉SS + sin2(θ/2)〈τ33〉SS,

〈µ33〉SS = sin2(θ/2)〈τ22〉SS + cos2(θ/2)〈τ33〉SS,

〈µ23〉SS = 〈µ32〉SS = 1
2 sin θ (〈τ22〉SS − 〈τ33〉SS). (35)

The concurrence of this steady state is

C(ρSS) = 2 max
{

0,|〈µ32〉SS| −
√

〈µ11〉SS〈µ44〉SS

}
. (36)

In the following, we study the steady-state concurrence of
the two coupled TLSs in the case of θ = π/2 and T1 = T2 = T .
In Fig. 4, we plot the steady-state concurrence C(ρSS) as a
function of the bath temperature T for various values of the
dipole-dipole interaction strength ξ . Figure 4 shows that a
larger steady-state concurrence can be created for a larger ξ .
We also see the sudden death of the concurrence when the
bath temperature increases up to a critical value. Notice that
the phenomenon of threshold temperature has also been found
in thermal entanglement of the spin model [29,30,47,48].

IV. QUANTUM THERMALIZATION OF TWO COUPLED
TLSs IMMERSED IN A CHB

In the previous section, we have studied the quantum
thermalization of two coupled TLSs immersed in two IHBs.
However, in some cases, the two coupled TLSs can be
considered to be placed in a CHB. In this section, we study the
quantum thermalization of two coupled TLSs immersed in a
CHB.
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A. Equations of motion and steady-state solutions

The quantum master equation describing the evolution of
the two TLSs immersed in a CHB at temperature T has the
same form as Eq. (8), but the effective rates are not the same
as those in the IHB case. In the CHB case, the rates read as

�12 = [sin(θ/2)
√

γ1(ε2) + cos(θ/2)
√

γ2(ε2)]2[n̄(ε2) + 1],

�21 = [sin(θ/2)
√

γ1(ε2) + cos(θ/2)
√

γ2(ε2)]2n̄(ε2),

�13 = [cos(θ/2)
√

γ1(ε1) − sin(θ/2)
√

γ2(ε1)]2[n̄(ε1) + 1],

�31 = [cos(θ/2)
√

γ1(ε1) − sin(θ/2)
√

γ2(ε1)]2n̄(ε1),

�24 = [cos(θ/2)
√

γ1(ε1) + sin(θ/2)
√

γ2(ε1)]2[n̄(ε1) + 1],

�42 = [cos(θ/2)
√

γ1(ε1) + sin(θ/2)
√

γ2(ε1)]2n̄(ε1),

�34 = [sin(θ/2)
√

γ1(ε2) − cos(θ/2)
√

γ2(ε2)]2[n̄(ε2) + 1],

�43 = [sin(θ/2)
√

γ1(ε2) − cos(θ/2)
√

γ2(ε2)]2n̄(ε2),

�1 = [cos2(θ/2)γ1(ε1) − sin2(θ/2)γ2(ε1)][n̄(ε1) + 1],

�2 = [− sin2(θ/2)γ1(ε2) + cos2(θ/2)γ2(ε2)][n̄(ε2) + 1],

�3 = [cos2(θ/2)γ1(ε1) − sin2(θ/2)γ2(ε1)]n̄(ε1),

�4 = [− sin2(θ/2)γ1(ε2) + cos2(θ/2)γ2(ε2)]n̄(ε2), (37)

where we introduce the rates γ1(εi) = π�(εi)g2
1(εi), γ2(εi) =

π�(εi)g2
2(εi), and the average thermal excitation number

n̄(εi) = 1/[exp(εi/T ) − 1] (i = 1,2). The detailed derivation
of these rates will be given in Appendix B. In comparison
with the rates in the IHB case, the rates in the CHB case
have correlation terms, which are induced by the CHB. In the
following discussions, we assume γ1(εi) = γ2(εi) ≡ γ (εi).

Correspondingly, the optical Bloch equation for the CHB
case has the same form as Eq. (10), but the coefficient matrix
is replaced by M(CHB) with the following expression:

M(CHB)

= −2

⎛
⎜⎝

�12 + �13 −�21 −�31 0
−�12 �21 + �24 0 −�42

−�13 0 �31 + �34 −�43

0 −�24 −�34 �42 + �43

⎞
⎟⎠ .

(38)

Similar to the IHB case, the equations of motion for diagonal
density matrix elements decouple with the off-diagonal ele-
ments. The steady-state solutions of the present optical Bloch
equation read as

〈τ11〉SS = (�21 + �24)�31�43 + (�31 + �34)�21�42

A
,

〈τ22〉SS = (�12 + �13)�34�42 + (�42 + �43)�12�31

A
, (39)

〈τ33〉SS = (�12 + �13)�43�24 + (�42 + �43)�21�13

A
,

〈τ44〉SS = (�21 + �24)�13�34 + (�31 + �34)�12�24

A
,

with A = (�12 + �13)(�34�42 + �43�24) + (�21 + �24)
(�31�43 + �13�34) + (�31 + �34)(�21�42 + �12�24) +
(�42 + �43)(�21�13 + �12�31).

We can also obtain the equations of motion for these off-
diagonal density matrix elements as follows:

〈τ̇21(t)〉 = −(�21 + �12 + �13 + �24 − iε2)〈τ21(t)〉
+ 2�3〈τ43(t)〉,

〈τ̇31(t)〉 = −(�12 + �31 + �13 + �34 − iε1)〈τ31(t)〉
+ 2�4〈τ42(t)〉,

〈τ̇41(t)〉 = −(�12 + �13 + �42 + �43 − iε1 − iε2)〈τ41(t)〉,
〈τ̇32(t)〉 = −(�21 + �31 + �24 + �34 − iε1 + iε2)〈τ32(t)〉,
〈τ̇42(t)〉 = −(�21 + �42 + �24 + �43 − iε1)〈τ42(t)〉

+ 2�2〈τ31(t)〉,
〈τ̇43(t)〉 = −(�31 + �42 + �43 + �34 − iε2)〈τ43(t)〉

+ 2�1〈τ21(t)〉. (40)

The equations of motion for other elements can be obtained
by 〈τij (t)〉 = 〈τ ∗

ji(t)〉. Obviously, the steady-state solutions of
these off-diagonal density matrix elements are zero.

B. Quantum thermalization in eigenstate representation

Differently from the IHB case, for the present four-
level system, we introduce three effective temperatures to
characterize its state. The three effective temperatures T12,
T13, and T34 are defined according to the populations of the
four levels as follows:

Tij = Eλi
− Eλj

ln
( 〈τjj 〉SS

〈τii 〉SS

) . (41)

We can show that the above-introduced temperatures are the
same as that of the CHB,

T12 = T13 = T34 = T , (42)

which means the two coupled TLSs can approach a thermal
equilibrium with the CHB. In other words, the two coupled
TLSs in eigenstate representation can be thermalized by the
CHB.

According to Eqs. (18) and (42), we know that when the
temperatures of the heat baths are T , irrespective of two IHBs
or a CHB, the effective four-level system formed by the two
coupled TLSs can be thermalized into a thermal equilibrium
state with the same temperature T . In other words, based on
the thermal equilibrium state at temperature T , we can not
know whether the two coupled TLSs are connected with two
IHBs or a CHB.

C. Quantum thermalization in bare-state representation

We also investigate the quantum thermalization of the two
TLSs in the bare-state representation. In terms of Eqs. (20)
and (39), we can obtain the steady-state average values of the
two Pauli operators σ z

1 and σ z
2 as follows:

〈
σ z

l=1,2

〉
SS = (�21 + �24)(�31�43 − �13�34)

A

+ (�31 + �34)(�21�42 − �12�24)

A
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FIG. 5. (Color online) Plot of the scaled effective temperatures
Teff (ω1)/γ (solid blue line) and Teff (ω2)/γ (dashed red line) vs the
mixing angle θ . Other parameters are set as γ (ε1) = γ (ε2) = γ ,
ξ/γ = 0.1, ωm/γ = 20, and T/γ = 10. The resonant point θ = π/2
is useless.

+ (−1)l−1 cos θ

[
(�12 + �13)(�34�42 − �43�24)

A

+ (�42 + �43)(�12�31 − �21�13)

A

]
. (43)

Moreover, we have 〈σ+
1 〉SS = 〈σ+

2 〉SS = 0. Similar to Eq. (23)
in the previous section, we also introduce two effective
temperatures to characterize the state of the two TLSs. In
Fig. 5, we plot the two effective temperatures as a function
of the mixing angle θ . We emphasize that the resonant point
θ = π/2 in Fig. 5 should be taken out.

We can draw a conclusion from Fig. 5 that the TLS with
a larger energy separation can be thermalized to a thermal
equilibrium state with a lower temperature. This can be seen
as follows: When ω1 > ω2, we have 0 < θ < π/2, and from
Fig. 5 it is clear that the temperature of TLS1 is lower than
that of TLS2. On the other hand, when ω1 < ω2, we have
π/2 < θ < π , and Fig. 5 indicates that the temperature of
TLS2 is lower than that of TLS1 in this region. The physical
explanation for Fig. 5 is the same as that for Fig. 3(a).

D. Quantum antithermalization in the resonant case

When θ = π/2, the two TLSs are in resonance, and then
the decay rates �13, �31, �34, and �43 are zero under the
assumption γ1(εi) = γ2(εi). Hence, the eigenstate |λ3〉 decou-
ples with other eigenstates, resulting in an antithermalization
phenomenon. The state |λ3〉 is called a “dark state” [49]. In this
case, we need to rewrite new optical Bloch equations for these
density matrix elements. We obtain the equations of motion
for diagonal density matrix elements

〈τ̇11(t)〉 = −2�12〈τ11(t)〉 + 2�21〈τ22(t)〉,
〈τ̇22(t)〉 = 2�12〈τ11(t)〉 − 2(�21 + �24)〈τ22(t)〉

+ 2�42〈τ44(t)〉,
〈τ̇33(t)〉 = 0,

〈τ̇44(t)〉 = 2�24〈τ22(t)〉 − 2�42〈τ44(t)〉, (44)

and for off-diagonal density matrix elements

〈τ̇21(t)〉 = −(�21 + �12 + �24 − iε2)〈τ21(t)〉,
〈τ̇31(t)〉 = −(�12 − iε1)〈τ31(t)〉,

〈τ̇41(t)〉 = −(�12 + �42 − iε1 − iε2)〈τ41(t)〉,

〈τ̇32(t)〉 = −(�21 + �24 − iε1 + iε2)〈τ32(t)〉,
〈τ̇42(t)〉 = −(�21 + �42 + �24 − iε1)〈τ42(t)〉,

〈τ̇43(t)〉 = −(�42 − iε2)〈τ43(t)〉. (45)

The steady-state solutions for these density matrix elements
are

〈τ11〉SS = [1 − 〈τ33(0)〉]�21�42

�12�42 + �12�42 + �21�42
,

〈τ22〉SS = [1 − 〈τ33(0)〉]�12�42

�12�42 + �12�42 + �21�42
,

〈τ33〉SS = 〈τ33(0)〉,
〈τ44〉SS = [1 − 〈τ33(0)〉]�12�24

�12�42 + �12�42 + �21�42
,

〈τij 〉SS = 0, i �= j, (46)

where 〈τ33(0)〉 = 0 is the initial population of state |λ3〉. It is
obvious that the steady state of the two coupled TLSs depends
on its initial state. Therefore, the two coupled TLSs exhibit a
phenomenon of antithermalization in the sense that the heat
bath can not erase totally the initial information of the two
TLSs. For example, when initially the two coupled TLSs are
prepared in state |λ3〉, they will stay in |λ3〉 forever. However,
in the subspace spanned by the three eigenstates |λ1〉, |λ2〉,
and |λ4〉, the initial information of the two coupled TLSs can
be totally erased, which can also be seen from Eq. (46) when
〈τ33(0)〉 = 0.

E. Steady-state entanglement between the two TLSs

In the CHB case, in addition to the dipole-dipole interaction
between the two TLSs, the common bath can also provide a
physical mechanism to entangle the two TLSs. According to
Eqs. (33) and (34), the steady-state density matrix elements of
the two TLSs in the CHB case have the same form as those
given in Eq. (35). However, now the steady-state solutions
of the eigenstate populations 〈τjj 〉SS are given by Eq. (39).
Correspondingly, we can obtain the concurrence between the
two TLSs in terms of Eq. (36). For a given nonresonant θ , the
figure in the CHB case is very similar to Fig. 4 (so it is not
shown here). The phenomenon of threshold temperature also
exists in the CHB case.

V. CONCLUSION AND DISCUSSIONS

In conclusion, we have studied the quantum thermalization
of two coupled TLSs, which are immersed in either two IHBs
or a CHB. We have characterized the temperatures of the
two coupled TLSs in eigenstate and bare-state representations
when the coupling between the two TLSs is stronger and
weaker than the TLS-bath couplings, respectively. In the IHB
case, we have found that, when the two IHBs have the same
temperatures, the two coupled TLSs could be thermalized in
eigenstate representation with the same temperature as that of
the heat baths. However, in the case where the two heat baths
have different temperatures, just when the energy detuning
between the two TLSs satisfies a special condition, the effec-
tive four-level system formed by the two coupled TLSs can
be thermalized with an immediate temperature between those
of the two heat baths. In bare-state representation, we have
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found a counterintuitive phenomenon that the temperature of
the TLS connected with the high-temperature heat bath is
lower than that of the other TLS, which is connected with the
low-temperature heat bath. In the CHB case, the two TLSs
in eigenstate representation could be thermalized with the
same temperature as that of the heat bath for nonresonant
cases. In bare-state representation, we have found that the
TLS with a larger energy separation can be thermalized to
a thermal equilibrium at a lower temperature. We have also
found a phenomenon of antithermalization of the two TLSs in
a common heat bath in the resonant case. In addition, we have
studied the steady-state entanglement of the two TLSs in the
IHB and CHB cases. It has been found that there exist threshold
temperatures for the steady-state entanglement generation.

Finally, we present some discussions on the thermalization
time over which the thermalized systems evolve from their ini-
tial states to steady states. Mathematically, the thermalization
time for a system should be infinite because the long-time
limit (limt→∞) is needed to make sure that these density
matrix elements evolve to their steady-state values. From the
viewpoint of physics, we might introduce some time scales
to describe a thermalization as the half-life of an exponential
decay. However, for present systems, the evolutions of these
density matrix elements [i.e., the transient solution of Eq. (10)]
are not purely exponential functions. At the same time, these
evolutions depend on the initial conditions. Therefore, we need
to introduce the time scales under given initial conditions, other
than a universal time scale for a quantum thermalization.
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APPENDIX A:DERIVATION OF QUANTUM MASTER
EQUATION (8) FOR THE IHB CASE

In this appendix, we give a detailed derivation of quantum
master equation (8), which describes the evolution of the two
TLSs immersed in two IHBs. In the interaction picture with
respect to H0 = HTLSs + H

(IHB)
B , the interacting Hamiltonian

(5) becomes

H
(IHB)
I (t) = [τ13B13(t) + τ24B24(t)]eiε1t

+ [τ12B12(t) + τ34B34(t)]eiε2t + H.c., (A1)

where τij = |λi〉〈λj | and we introduce the noise operators

B12(t) = sin(θ/2)A(t) + cos(θ/2)B(t),

B24(t) = cos(θ/2)A(t) + sin(θ/2)B(t),
(A2)

B13(t) = cos(θ/2)A(t) − sin(θ/2)B(t),

B34(t) = − sin(θ/2)A(t) + cos(θ/2)B(t),

with A(t) = ∑
j g1j aj e

−iωaj t and B(t) = ∑
k g2kbke

−iωbk t .
Under the Born-Markov approximation [1], the quantum
master equation reads as

ρ̇S =−
∫ ∞

0
dt ′TrB

[
H(IHB)

I (t),[H(IHB)
I (t − t′),ρS(t) ⊗ ρB]

]
,

(A3)

where TrB stands for tracing over the degrees of freedom of the
baths. We assume that the two baths are in thermal equilibrium
state ρB = ρ

(a)
th ⊗ ρ

(b)
th with ρ

(a)
th = Z−1

a exp(−β1H
(a)
B ) and

ρ
(b)
th = Z−1

b exp(−β2H
(b)
B ), where Za = TrBa [exp(−β1H(a)

B )]
and Zb = TrBb [exp(−β2H(b)

B )] are the partition functions of
the two baths, respectively. The parameters β1 = 1/T1 and
β2 = 1/T2 are the inverse temperatures of the baths for TLS1
and TLS2. Through making the rotating-wave approximation,
we obtain

ρ̇S =
∑
(i,j )

[
τijρSτji

∫ ∞

0
dt ′ei(Eλi

−Eλj
)t ′ 〈B†

ij (−t ′)Bij (0)〉 − τjjρS

∫ ∞

0
dt ′e−i(Eλi

−Eλj
)t ′ 〈B†

ij (0)Bij (−t ′)〉

+ τjiρSτij

∫ ∞

0
dt ′e−i(Eλi

−Eλj
)t ′ 〈Bij (−t ′)B†

ij (0)〉 − τiiρS

∫ ∞

0
dt ′ei(Eλi

−Eλj
)t ′ 〈Bij (0)B†

ij (−t ′)〉
]

+
∑

(ij,kl)

[
τijρSτkl

∫ ∞

0
dt ′ei(Eλi

−Eλj
)t ′ 〈B†

lk(−t ′)Bij (0)〉 + τlkρSτji

∫ ∞

0
dt ′ei(Eλi

−Eλj
)t ′ 〈B†

ij (−t ′)Blk(0)〉
]

+ H.c., (A4)

where the summation parameter (i,j ) in the first line of Eq. (A4) can take (i,j ) = (1,2),(1,3),(2,3), and (2,4), and the summation
parameter (ij,kl) in the third line of Eq. (A4) can take (ij,kl) = (12,43),(13,42),(31,24), and (43,12). Here, the bath correlation
functions are defined by 〈X(t)Y (t ′)〉 = TrB[X(t)Y(t′)ρB], and we use the property 〈X(t)Y (t ′)〉 = 〈X(t − t ′)Y (0)〉 = 〈X(0)Y (t ′ −
t)〉 of the correlation functions. To derive the quantum master equation, we need to calculate the one-side Fourier transform of the
correlation functions in Eq. (A4). For simplicity, in the following we only keep the real parts of the one-side Fourier transforms
of the correlation functions and neglect their imaginary parts since the imaginary parts only contribute to the Lamb shifts,
which are neglected in this work. The real parts of the one-side Fourier transform of the correlation functions can be obtained
as follows:

Re

[∫ ∞

0
dt ′eiε1t

′ 〈B24(0)B†
24(−t ′)〉

]
= Re

[∫ ∞

0
dt ′eiε1t

′ 〈B13(0)B†
13(−t ′)〉

]
= �1,

Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B†
24(0)B24(−t ′)〉

]
= Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B†
13(0)B13(−t ′)〉

]
= �2,
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Re

[∫ ∞

0
dt ′eiε2t

′ 〈B12(0)B†
12(−t ′)〉

]
= Re

[∫ ∞

0
dt ′eiε2t

′ 〈B34(0)B†
34(−t ′)〉

]
= �3,

Re

[∫ ∞

0
dt ′e−iε2t

′ 〈B†
12(0)B12(−t ′)〉

]
= Re

[∫ ∞

0
dt ′e−iε2t

′ 〈B†
34(0)B34(−t ′)〉

]
= �4, (A5)

and

Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B24(−t ′)B†
13(0)〉

]
= Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B13(−t ′)B†
24(0)〉

]
= �1,

Re

[∫ ∞

0
dt ′e−iε2t

′ 〈B12(−t ′)B†
34(0)〉

]
= Re

[∫ ∞

0
dt ′e−iε2t

′ 〈B34(−t ′)B†
12(0)〉

]
= �2,

(A6)

Re

[∫ ∞

0
dt ′eiε1t

′ 〈B†
24(−t ′)B13(0)〉

]
= Re

[∫ ∞

0
dt ′eiε1t

′ 〈B†
13(−t ′)B24(0)〉

]
= �3,

Re

[∫ ∞

0
dt ′eiε2t

′ 〈B†
12(−t ′)B34(0)〉

]
= Re

[∫ ∞

0
dt ′eiε2t

′ 〈B†
34(−t ′)B12(0)〉

]
= �4,

where the parameters �i and �i have been defined in
Eq. (9). Based on the above one-side Fourier transforms of
these correlation functions, we can obtain those for other
correlation functions. By substituting them into quantum
master equation (A4) and returning to the Schrödinger picture,
we can obtain quantum master equation (8).

In the following, we give an example for calculation of the
one-side Fourier transform of correlation function:

Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B†
24(0)B24(−t ′)〉

]

= cos2(θ/2)Re

[∫ ∞

0
dt ′e−iε1t

′ 〈A†(0)A(−t ′)〉
]

+ sin2(θ/2)Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B†(0)B(−t ′)〉
]

, (A7)

which is based on the fact that there is no correlation between
the two IHBs. We can calculate

Re

[∫ ∞

0
dt ′e−iε1t

′ 〈A†(0)A(−t ′)〉
]

=
∑

j

g2
1j n̄a(ωaj )πδ(ωaj − ε1)

= π�(εa)g2
1(ε1)n̄a(ε1) = γa(ε1)n̄a(ε1), (A8)

where we introduce the rate γa(ε1) = π�a(ε1)g2
1(ε1) and the

average thermal excitation n̄a(ε1) = 1/[exp(ε1/T1) − 1]. Note
that here we have also used the formula

∫ ∞

0
dt ′e±iωt ′ = πδ(ω) ± iP

1

ω
, (A9)

where the sign P stands for the principal value integral.
Similarly, we can obtain Re[

∫ ∞
0 dt ′e−iε1t

′ 〈B†(0)B(−t ′)〉] =
γb(ε1)n̄b(ε1) with γb(ε1) = π�b(ε1)g2

2(ε1). Therefore, we have

Re

[∫ ∞

0
dt ′e−iε1t

′ 〈B†
24(0)B24(−t ′)〉

]

= cos2(θ/2)γa(ε1)n̄a(ε1) + sin2(θ/2)γb(ε1)n̄b(ε1) = �2.

(A10)

With the same method, the one-side Fourier transform for other
correlation functions can also be obtained.

APPENDIX B: DERIVATION OF THE RATES IN Eq. (37)
FOR THE CHB CASE

In the CHB case, the interaction Hamiltonian has the same
form as Eq. (A1). But now, the noise operators become

B12(t) = sin(θ/2)A1(t) + cos(θ/2)A2(t),

B24(t) = cos(θ/2)A1(t) + sin(θ/2)A2(t),
(B1)

B13(t) = cos(θ/2)A1(t) − sin(θ/2)A2(t),

B34(t) = − sin(θ/2)A1(t) + cos(θ/2)A2(t),

with A1(t) = ∑
j g1j aj e

−iωj t and A2(t) = ∑
j g2j aj e

−iωj t .
The quantum master equation for the CHB case has the same
form as Eq. (A4), but now the real parts of the one-side Fourier
transform for the correlation functions become

Re

[∫ ∞

0
e−iε2t

′ 〈B12(−t ′)B†
12(0)〉dt ′

]
= �12, Re

[∫ ∞

0
e−iε1t

′ 〈B13(−t ′)B†
13(0)〉dt ′

]
= �13,

Re

[∫ ∞

0
e−iε1t

′ 〈B24(−t ′)B†
24(0)〉dt ′

]
= �24, Re

[∫ ∞

0
e−iε2t

′ 〈B34(−t ′)B†
34(0)〉dt ′

]
= �34,

Re

[∫ ∞

0
eiε2t

′ 〈B†
12(−t ′)B12(0)〉dt ′

]
= �21, Re

[∫ ∞

0
eiε1t

′ 〈B†
13(−t ′)B13(0)〉dt ′

]
= �31,
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Re

[∫ ∞

0
eiε1t

′ 〈B†
24(−t ′)B24(0)〉dt ′

]
= �42, Re

[∫ ∞

0
eiε2t

′ 〈B†
34(−t ′)B34(0)〉dt ′

]
= �43, (B2)

and

Re

[∫ ∞

0
e−iε1t

′ 〈B24(−t ′)B†
13 (0)〉dt ′

]
= Re

[∫ ∞

0
e−iε1t

′ 〈B13(−t ′)B†
24 (0)〉dt ′

]
= �1,

Re

[∫ ∞

0
e−iε2t

′ 〈B12(−t ′)B†
34 (0)〉dt ′

]
= Re

[∫ ∞

0
e−iε2t

′ 〈B34(−t ′)B†
12 (0)〉dt ′

]
= �2,

(B3)

Re

[∫ ∞

0
eiε1t

′ 〈B†
24(−t ′)B13(0)〉dt ′

]
= Re

[∫ ∞

0
eiε1t

′ 〈B†
13(−t ′)B24(0)〉dt ′

]
= �3,

Re

[∫ ∞

0
eiε2t

′ 〈B†
34(−t ′)B12(t)〉dt ′

]
= Re

[∫ ∞

0
eiε2t

′ 〈B†
12(−t ′)B34(0)〉dt ′

]
= �4,

where the parameters �ij and �i have been defined in Eq. (37).
The one-side Fourier transform of other correlation functions
can be obtained in terms of the above results. Below, we give
an example for calculation of the one-side Fourier transform
of correlation functions:

Re

[∫ ∞

0
eiε2t

′ 〈B†
12(−t ′)B12(0)〉dt ′

]

= sin2 (θ/2) Re

[∫ ∞

0
eiε2t

′ 〈A†
1(−t ′)A1(0)〉dt ′

]

+ cos2 (θ/2) Re

[∫ ∞

0
eiε2t

′ 〈A†
2(−t ′)A2(0)〉dt ′

]

+ 1

2
sin θ

{
Re

[∫ ∞

0
eiε2t

′ 〈A†
1(−t ′)A2(0)〉dt ′

]

+ Re

[∫ ∞

0
eiε2t

′ 〈A†
2(−t ′)A1(0)〉dt ′

] }
. (B4)

We calculate

Re

[∫ ∞

0
dt ′eiε2t

′ 〈A†
1(−t ′)A1(0)〉

]

=
∑

j

g2
1j n̄(ωj )πδ(ωj − ε2) = π�(ε2)g2

1(ε2)n̄(ε2)

= γ1(ε2)n̄(ε2), (B5)

where we introduce the rate γ1(ε2) = π�(ε2)g2
1(ε2) and the

average thermal excitation n̄(ε2) = 1/[exp(ε2/T ) − 1]. By
using the same method, we can obtain

Re

[∫ ∞

0
dt ′eiε2t

′ 〈A†
1(−t ′)A2(0)〉

]

=
∑

j

g1j g2j n̄(ωj )πδ(ωj − ε2)

= π�(ε2)g1(ε2)g2(ε2)n̄(ε2)

= γ12(ε2)n̄(ε2), (B6)

where the rate γ12(ε2) = π�(ε2)g1(ε2)g2(ε2) =√
γ1(ε2)γ2(ε2). Similarly, we have Re[

∫ ∞
0 dt ′eiε2t

′

〈A†
2(−t ′)A2(0)〉] = γ2(ε2)n̄(ε2) and Re[

∫ ∞
0 dt ′eiε2t

′ 〈A†
2(−t ′)

A1(0)〉] = γ12(ε2)n̄(ε2). Therefore, we obtain

Re

[∫ ∞

0
eiε2t

′ 〈B†
12(−t ′)B12(0)〉dt ′

]

= [sin(θ/2)
√

γ1(ε2) + cos(θ/2)
√

γ2(ε2)]2n̄(ε2) = �21.

(B7)

The one-side Fourier transform for other correlation functions
can also be obtained with the same method.
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