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Dependence of Berry’s phase on the sign of the g factor for conical rotation of a magnetic field,
measured without any dynamical phase shift
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Berry’s phase for a whole turn in a conical rotation of the magnetic field with a semiangle θ has been clearly
manifested free from the dynamical phase shift using the magnetic-field-insensitive two-photon transitions
between sodium-ground hyperfine states having different signs of the g factors. The solid angles for states with a
positive g factor and with a negative g factor are verified to be 2π (1 − cos θ ) and −2π (1 + cos θ ), respectively,
for a right-handed rotation of a magnetic field and a semiangle of 0 � θ � π/2.
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I. INTRODUCTION

Since Berry predicted in 1984 that a particle of any spin in
an eigenstate of a magnetic field slowly rotated around a circuit
C will acquire a geometrical phase factor in addition to the dy-
namical phase factor [1], many experimental demonstrations
of Berry’s phase have been carried out using polarized light [2],
nuclear quadrupole resonance [3], neutron interferometers
[4,5], and other physical systems [6]. Furthermore, in 1992,
Miniatura et al. first demonstrated the atomic Berry’s phase
using a longitudinal Stern-Gerlach atomic interferometer [7].
In most studies, it was verified that Berry’s phase is given
by γ = −m�(C), where m is the spin component along the
magnetic field and �(C) is the solid angle, not depending on the
magnitude of the g factor. If C is a right-handed circuit around a
cone of semiangle θ , the solid angle is �(C) = 2π (1 − cos θ ).
This solid angle is true for neutrons [4] whose g factors
are negative and for atoms with positive atomic g factors.
(It should be noted that the sign of the atomic g factor is
conventionally reversed to that of an elementary particle.)
However, it is defined by the complementary larger solid angle
of � = −2π (1 + cos θ ) for a negative atomic g factor and
the same rotation direction, which is derived using Berry’s
connection 〈ψ | d

dt
|ψ〉 [8].

Until now, Tycko pointed out that the spin interaction with
a real field depends on the sign of the nuclear g factor [3], and
Richardson et al. discussed that the solid angle depends on
the rotation direction and the sign of the g factor [5]. In 2005,
we examined Berry’s phase of sodium atoms for the partial
rotation of a magnetic field using a two-photon-stimulated
Raman atom interferometer, by which two phases for different
spin states were compared. The Zeeman sublevels in the F =
1 state have a negative atomic g factor (hereafter, we simply
describe it as g factor), whereas those in the F = 2 state have
a positive g factor. We showed that a sign of Berry’s phase
for a partial rotation of angle φ depends on the sign of the
g factor at θ = π /2 [9]. Subsequently, we measured Berry’s
phase for a partial conical rotation of a magnetic field between
these states and showed a possibility of the dependence of
the solid angle on the sign of the g factor [10], although the
experimental data were scattered with large uncertainties for
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the dynamical phase shift due to the scalar Aharonov-Bhom
effect [11]. Thus, the solid angle for a negative g factor has not
yet been experimentally demonstrated.

To experimentally verify the dependence of Berry’s phase
on the sign of the g factor, it should be measured without any
dynamical phase shift for a whole turn in a conical rotation
of the magnetic field, similarly to experiments on polarized
light [2] or a two-level system on a Bloch sphere [12]. In
the rotation of a magnetic field, the dynamical phase shift
can be ignored by using magnetic-field-insensitive transitions,
such as “clock” transitions between two m = 0 states [9].
Recently, the two-photon microwave-radiofrequency (MW-rf)
transition between the ground hyperfine levels of the |F = 1,
mF = −1〉 state to the |F = 2, mF = 1〉 state of 87Rb was
found as a magnetic-field-insensitive transition, since the two
states undergo the same first-order Zeeman shift at the “magic”
magnetic field of 323 µT [13,14].

In this paper, we report the dependence of Berry’s phase
on the sign of the g factor. We attempted to use the transition
between the |F = 1, mF = −1〉 sodium ground hyperfine state
with a negative g factor and the |F = 2, mF = 1〉 state with
a positive g factor. The magnetic-field-insensitive transition
could be generated easily by the two-photon MW-rf transition
at a lower magic magnetic field. Berry’s phase for a whole turn
of the magnetic field was measured as a function of semiangle
θ . The obtained Berry’s phase allowed us to verify the solid
angles for positive and negative g factors.

II. EXPERIMENTAL METHODS

In a sodium atom, there are three two-photon transitions
between the ground hyperfine levels that are insensitive to the
magnetic field to the first order. Figure 1 shows a diagram
of the ground-state hyperfine levels of 23Na with the Zeeman
splitting due to the presence of a magnetic field and the three
clock transitions. The transition between |F = 1, mF = 0〉 and
|F = 2, mF = 0〉 is a well-known clock transition that can be
directly transited by a single photon. These three transitions
occur at the two-photon MW-rf transition [15]. The g factors
of the F = 1 and F = 2 states are -1/2 and 1/2, respectively;
thus, the Zeeman splitting for each state is essentially identical.
The resonance frequencies are shown in Fig. 1(b), which are
calculated using the Breit-Rabi formula [16] with sodium data
[17]. The resonance frequency ν−1,1 between the |1, −1〉 and
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FIG. 1. (Color online) (a) A diagram of the ground hyperfine
states of 23Na shown in Zeeman splitting due to the presence
of a magic magnetic field of 67.7 µT, together with magnetic-
field-insensitive two-photon microwave-radiofrequency transitions.
(b) Differential Zeeman shift at low magnetic fields for the |F = 1,
mF = −1〉 → |F = 2, mF = 1〉, |1, 0〉 →|2, 0〉, and |1, 1〉 → |2,
−1〉 transitions. The solid lines are the predicted splitting from the
Breit-Rabi formula and open circles are experimental data.

|2, 1〉 states is minimum at B0 = 67.7 µT, which is called
magic value, and it is 762 Hz lower than the frequency of
clock transition at zero magnetic field; thus, the differential
Zeeman shift between the |1, −1〉 and |2, 1〉 states is nearly
independent of the magnetic field around B0. As a results, the
frequency shift for ν−1,1 is only 7 Hz, even if the magnetic
field is varied by about 10% around B0. The strength of the
magic magnetic field is easier to generate and is suitable for
smooth and adiabatic rotation.

We use two-photon MW-rf excitations to drive these clock
transitions. At the magic magnetic field, the Zeeman splitting
frequency is 474 kHz. We apply a pulse of microwave radiation
in which the frequency is 420 kHz less than that corresponding
to the ground-state hyperfine splitting of Na (1.771626 GHz),
along with an rf magnetic field around 420 kHz. This connects
the |1, −1〉 state to the |2, 0〉 state via an intermediate virtual
state with a detuning of 54 kHz from the |2, 0〉 state by σ+-σ+
polarized fields. Other two-photon excitations are shown in
Fig. 1.

To measure Berry’s phase of an atomic spin for a whole
turn of a magnetic field around a cone of semiangle θ , we
used a Ramsey atom interferometer composed of the |1, mF 〉
and |2, mF 〉 sodium ground hyperfine states [9] coupled with
two two-photon MW-rf pulses. Let us suppose that sodium
atoms remain at the origin of the x, y, and z coordinates. First,
the magnetic field Bx with the magic value is applied in the x
direction and the magnetic field Bz is applied in the z direction,
as shown in Fig. 2. The resultant magnetic field B is B =√

B2
x + B2

z , and the semiangle θ from the z axis is cos θ =
Bz/

√
B2

x + B2
z . During the interrogation time between the two

two-photon pulses, the Bx is adiabatically rotated in the x-y
plane by a whole turn at a constant strength, then the tip of the
resultant magnetic field traces a closed loop C in which the
solid angle is �(C). There are two senses of rotation. We define
right-handed rotation around +z axis as the positive sense of
rotation and left-handed rotation around the +z axis as the
negative sense of rotation. Then the two states each acquire

FIG. 2. (Color online) Schematic of Berry’s phase in a conical
rotation of the magnetic field. B is the total magnetic field, sum of
Bx , which is the magnetic field rotating in the x-y plain, and Bz, which
is the magnetic field along z axis. Total angular-momentum vector F
of atom precesses around B. The sense of precession depends on the
sign of the g factor (figure shows the case of g > 0). θ is the semiangle
of B from +z axis and φ rotation angle of B. The right-handed rotation
around the +z axis is defined as positive rotation sense. A whole turn:
φ = 2π .

Berry’s phase and dynamical phase due to the fluctuation of
the magnetic field. The phase of the interference fringes shifts
by the difference between Berry’s phase of each state, while
the dynamical phase shifts between the |1, −1〉 and |2, 1〉 states
should be canceled out.

III. EXPERIMENTAL RESULTS

The experimental apparatus and setup were described in
detail in a previous paper [11]. Sodium atoms were trapped in a
dual-operated magneto-optical trap (MOT) [18] and cooled by
polarization-gradient cooling. The temperature of the sodium
atoms was about 200 µK and the number of trapped atoms
was 109 atoms with a peak density of 1011 atoms/cm3. A
few milliseconds after the release of atoms from the trap, a
quantization magnetic field of 67.6 ± 0.1 µT was applied in
the x direction, and all atoms were initialized to the F = 1 state
by optical pumping. The three magnetic sublevels of the |1, 1〉,
|1,0〉, and |1,−1〉 states were populated with equal-population
probabilities. A dipole antenna, which generates MW with a
frequency of 1.771206 GHz, was set parallel to the x direction
near the magneto-optical trap; thus, the polarization direction
of the MW is perpendicular to the quantization magnetic field
(σ -polarization). An rf field was produced by a loop antenna
near the MOT and swept at a frequency around 420 kHz.
To resolve the three magnetic-field-insensitive transitions
separated by a few kHz, the width of these MW and rf pulses
was set to 2 ms, and their field strength was optimized to
maximize the strength of the two-photon spectra. The spectra
are shown in Fig. 3(a). The three peaks corresponding to the
transitions |1, −1〉 to |2, 1〉, |1,0〉 to |2, 0〉, and |1, 1〉 to |2, −1〉
are clearly resolved. The resonance frequencies of the three
peaks are plotted in the Fig. 1(b), together with theoretical
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FIG. 3. (Color online) Spectra of the |1, −1〉 → |2, 1〉, |1, 0〉 →|2,
0〉, and |1, 1〉 → |2, −1〉 two-photon transitions at the magnetic field
of 67.5 µT. (a) Spectra excited by a two-photon pulse with a pulse
width of 2 ms. (b) Ramsey fringes excited by two two-photon pulses
with pulse widths of 0.75 ms and pulse durations of 4.25 ms.

curves obtained from the Breit-Rabi formula. The agreement
between experiment and theory is reasonably good.

The time-domain atom interferometer used in the exper-
iment was composed of two two-photon MW-rf pulses with
pulse widths of 0.75 ms, which were separated by 4.25 ms. The
interrogation time was 5 ms. Under a constant magnetic field,
the Ramsey fringes with a cycle of 200 Hz can be clearly seen
in Fig. 3(b). The visibility is about 0.5 for the |1, −1〉-to-|2, 1〉
transition.

To rotate the magnetic field around the z axis, magnetic
fields along the x and y axes were produced by two mutually
orthogonal Helmholtz coils [19]. The coils were driven by
alternating currents with a relative phase shift of 90˚. The
strength of the magnetic field was 67.5 µT, which corresponds
to a Larmor frequency of 470 kHz. The magnetic field was
rotated around the z axis by a whole turn for 5 ms. During
the rotation, the amplitude of each alternating current was
adjusted so that the Zeeman frequency shifts of the resonance
for magnetic-field-sensitive transitions were 67.5 ± 0.4 µT.
The rotation frequency of 200 Hz was sufficient to satisfy the
adiabatic condition. To change the semiangle θ from the z axis,
the magnetic field Bz parallel to the z axis was applied before
rotation. The strength of Bz was changed from 0 to ±40 µT,
which corresponds to a change from π /3 to 2π /3. The resultant
magnetic field at π /3 and 2π /3 became 1.15 times larger than
that at θ = π /2, which yields a frequency shift of at most
17 Hz.

A few of the central Ramsey fringes of the two-photon
MW-rf transition between the |1, −1〉 and |2, 1〉 states are
shown in Fig. 4, where Fig. 4(a) shows fringes under a constant
magnetic field of 67. 5 µT, Fig. 4(b) shows those under a
whole rotation in the negative direction with a semiangle of
0.465π , and Fig. 4(c) shows those under a whole rotation in
the negative direction with a semiangle of 0.552π . The size
of fringes decreases as the semiangle increases. The phase in

FIG. 4. (Color online) Observed central Ramsey fringes of the
|1, −1〉 → |2, 1〉 transition under (a) a constant magnetic field, (b) a
whole rotation to the positive sense at θ = 0.457π , and (c) a whole
rotation to the negative sense at θ = 0.544π .

Fig. 4(b) is shifted by (0.53±0.01)π from the phase without
rotation, but that in Fig. 4(c) is shifted by (0.48±0.01)π .

Thus, we measured Berry’s phases of the three transitions
between the |1, −1〉 and |1, 1〉 states, the |1, 1〉 and |1, −1〉
states, and the |1, 0〉 and |2, 0〉 states as reference, for a whole
turn of the magnetic field around a cone of semiangle θ from
π /3 to 2π /3 for positive and negative rotations. The results
are summarized in Fig. 5. The phase shift observed for the
transition between |1, −1〉 and |2, 1〉 for positive rotation and
that for the transition between |1, 1〉 and |2, −1〉 for negative
rotation are well fitted by the curve 	γ = 4π cos θ . On the
other hand, the data for the transition from |1, −1〉 to |2, 1〉
for negative rotation are well fitted by 	γ = −4π cos θ . The
data for the transition from |1, 0〉 to |2, 0〉 is displaced from 0
with increasing semiangle, because the resonance frequency
is shifted by the second-order Doppler shift that depends on
the total strength of the magnetic field. On the other hand, the
frequency shift of the transition from |1,−1〉 to |2, 1〉 is so small
around the magic magnetic field that we could obtain Berry’s
phase free from the dynamical phase shift.

FIG. 5. (Color online) Observed Berry’s phase using atom inter-
ferometer as a function of θ for several situations denoted in the
figure. mF -mF

′ represents the |1, mF > → |2, mF
′ > transition. φ =

+2π and -2π represents a whole rotation to the positive sense and to
the negative sense, respectively. A solid line is a 4π cos θ curve and
a dashed line is a −4π cos θ curve.
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IV. DISCUSSION

The solid angles for positive and negative g factors are
calculated by a path integral of Berry’s connection [8]. First,
we define the rotation axis of the magnetic field and θ (<π /2)
to be the semiangle between the direction of the magnetic
field and the rotation axis. The right-handed rotation of the
magnetic field is defined as the positive sense of rotation, and
the left-handed rotation is defined as the negative sense of
rotation. Then, the solid angles for positive and negative g
factors are given by

0 � θ � π/2 : �g>0 = 2π (1 − cos θ )

�g<0 = −2π (1 + cos θ ). (1)

When θ becomes larger than π /2, the direction of the
rotation axis reverses; thus, the sense of the rotation of the
magnetic field reverses. The semiangle is newly defined by
θ ′ = π − θ ; thus, the formulas for � are described as follows
in terms of θ :

π/2 � θ � π : �g>0 = −2π (1 + cos θ )

�g<0 = 2π (1 − cos θ ). (2)

Namely, the formulas for �g>0 and �g<0 are exchanged. In
either case, Berry’s phase is given by multiplying the magnetic
quantum number mF . As a result, the difference between
Berry’s phases for the mF and mF

′ states measured by the
atom interferometer is

	γ = γ − γ ′ = −mF �(C) + m′
F �′(C). (3)

Consequently, Berry’s phase between |2, 1> and |1, -1> for
a whole positive rotation of the magnetic field (φ = 2π ) when
0 � θ � π/2 is given by

	γ = −2π (1 − cos θ ) − {−2π (1 + cos θ )} = 4π cos θ,

whereas for π/2 � θ � π ,

	γ = 2π (1 + cos θ ) − {2π (1 − cos θ )} = 4π cos θ.

Thus, we obtain the equation 	γ = 4π cos θ for any θ .
Similarly, Berry’s phase between |2, 1〉 and |1, −1〉 for a
whole negative rotation is given by 	γ = −4π cos θ , and that
between |2, −1〉 and |1, 1〉 for a whole negative rotation is
	γ = 4π cos θ .

In the case of photons in a helically wound optical
fiber, the fact that Berry’s phases for right-handed or
left-handed circular polarization are γ = −2π (1 − cos θ )
or γ = 2π (1 − cos θ ) means that their polarizations corre-
spond to the spin component ±1 [2], [20] with a positive
atomic g factor.

V. CONCLUSION

In conclusion, we have demonstrated Berry’s phase of a spin
for a whole rotation of a magnetic field free from the dynamical
phase shift using a sodium magnetic-field-insensitive transi-
tion. The experimental results show the clear dependence of
Berry’s phase on the sign of the g factor. The results verify that
the solid angle for a positive g factor is �g>0 = 2π (1 − cos θ ),
and that for a negative g factor is �g<0 = −2π (1 + cos θ )
for a positive rotation and a semiangle of 0 � θ � π/2.
Consequently, the sign of the g factor of particle and the sense
of rotation direction of the magnetic field should be considered
whenever Berry’s phase is examined or utilized in any physical
systems.
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