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Quantum discord for general two-qubit states: Analytical progress
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We present a reliable algorithm to evaluate quantum discord for general two-qubit states, amending and
extending an approach recently put forward for the subclass of X states. A closed expression for the discord
of arbitrary states of two qubits cannot be obtained, as the optimization problem for the conditional entropy
requires the solution to a pair of transcendental equations in the state parameters. We apply our algorithm to
run a numerical comparison between quantum discord and an alternative, computable measure of nonclassical
correlations, namely, the geometric discord. We identify the extremally nonclassically correlated two-qubit states
according to the (normalized) geometric discord, at a fixed value of the conventional quantum discord. The latter
cannot exceed the square root of the former for systems of two qubits.
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I. INTRODUCTION

It is as well theoretically proven as experimentally tested
that the exploitation of entangled states improves our ability to
manage information in several ways [1]. The development of
quantum information theory is definitely due to this fundamen-
tal result [2]. However, it has recently been discovered that even
multipartite separable states can play a relevant role in per-
forming better-than-classical communication and information
protocols [3–5]. In general, then, the usefulness of a particular
state of a quantum system for such tasks can be traced back to
the presence of internal correlations among parts of the system,
that is, to the knowledge that an observer Alice, probing a
subsystem A, gains about the state of another subsystem B,
controlled by another observer Bob, and vice versa.

The quantitative and qualitative evaluation of such correla-
tions and the proper discrimination of their nature—classical
versus quantum—stand as open problems. Several quantifiers
of nonclassicality of correlations have been introduced in the
literature [6–15] (not to be confused with the nonclassicality
of quantum optical states [16]), but there are still neither
clear criteria of faithfulness or bona fide–ness for them
nor a well-established hierarchy of reliability. Despite that,
they are heavily used in current research [17–30]. The most
popular one by far is the quantum discord [6,7], a measure
of nonclassical correlations that goes beyond entanglement
and whose definition has an immediate interpretation in
information theory: discord equals the difference of the total
correlations between two subsystems A and B before and after
a local measurement process is performed on one of them.
The quantum discord admits at least three other operational
interpretations, in contexts ranging from thermodynamics to
communication protocols, such as quantum state merging [21].
The evaluation of quantum discord is a hard task from a
computational point of view, implying an optimization of the
conditional entropy between Alice and Bob, S(A|B), over
all local (generalized) measurements on one party, which
is often obtainable by numerical methods only. A closed
analytical solution is known in the case of arbitrary two-mode
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Gaussian states [20], under the restriction of Gaussian local
measurements. Narrowing our overview to two-qubit states, an
analytical expression of discord has been derived, in particular,
for the subclass of so-called X states [24–27], and a successful
attempt to generalize this procedure has not been advanced
yet (to the best of our knowledge), apart from an upper bound
quantity for the discord defined in [26].

The difficulty in calculating quantum discord motivated
the introduction of alternative measures of nonclassical
correlations. In particular, the geometric discord [13] is one
such a measure, which quantifies the amount of nonclassical
correlations of a state in terms of its minimal distance from
the set of genuinely classical states. The geometric discord
involves a simpler optimization and is easily computable
analytically for general two-qubit states. However, its
relationship with the original quantum discord is not entirely
clear at the present stage.

In this work, we present an algorithm to calculate quantum
discord for general two-qubit states. First, we obtain an
explicit and simplified expression for the conditional entropy,
exploiting the Bloch representation of the density matrix;
second, we employ new variables that allow us to set
the optimization conditions in a closed form. Finally, we
associate them with constraints over the eigenvalues of the
statistical ensemble obtained after the measurement process.
Our approach qualifies as the most efficient and reliable way to
evaluate quantum discord for arbitrary states of two qubits [31].

Exploiting our algorithm, we perform a detailed numerical
exploration of the Hilbert space of two-qubit states to compare
the quantum discord and geometric discord as quantifiers of
nonclassical correlations. We shed light on the relationship
between these two quantities by identifying the states that
extremize geometric discord at a fixed quantum discord (and
vice versa). We are motivated by the aim of establishing a re-
liable hierarchy of nonclassical states based on physically and
mathematically consistent criteria. We find that, interestingly,
the quantum discord of a two-qubit state can never exceed the
square root of its (normalized) geometric discord. In analogy
with the study of maximal entanglement [32], we find that
the notion of maximal nonclassical correlations is measure
dependent: therefore, the feasibility in a specific experimental
realization will determine which, among the various classes of
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maximally quantumly correlated states, are the most suitable
ones to be employed for applications.

The paper is organized as follows. Section II provides an
introduction to quantum discord and geometric discord (here-
after denoted D and DG, respectively), presenting definitions,
main properties, and a summary of the results obtained in the
literature. In Sec. III, we pursue an analytical approach to the
calculation of quantum discord for general two-qubit states,
eventually recasting the optimization problem into a system
of two transcendental equations, whose solution specifies the
local measurement that minimizes the conditional entropy.
Section IV concerns the comparison between quantum discord
and geometric discord by using the results of the previous
sections; we identify the classes of states with maximal and
minimal geometric discord at a fixed quantum discord. Finally,
Sec. V recalls the main results of our work and suggests further
issues worthy of investigation.

II. BASIC DEFINITIONS

A. Quantum discord

One of the lessons we can apprehend from quantum
mechanics is that the measurement process disturbs the state in
which a physical system is set. This differs from what happens
in the classical scenario, hence it is possible to conclude that
the disturbance induced by a measurement on a state is a good
evidence of its “quantumness.” Now, let us suppose we have a
bipartite system in a certain state and make a measurement on
one of its subsystems. We can analyze the nature of the internal
correlations of the system in such a state by studying in which
way they are affected by the measurement. Information theory
provides the tools to accomplish this task.

As a starting point, let us consider the case of information
stored in two classical probability distributions. The quantity
expressing the total amount of correlations between two
random variables X and Y , assuming values {xi},{yj } with
probability {pi},{qj }, is the mutual information I, defined as

I(X : Y ) = H(X) + H(Y ) − H(X,Y ), (1)

where H(X) = −∑
i pi log2 pi is the Shannon entropy as-

sociated with the random variable X; consequently, H(Y ) =
−∑

j qj log2 qj is the entropy for Y , whileH(X,Y ) is the joint
entropy of X and Y . Following Bayesian rules, we can retrieve
equivalent formulations, I(X : Y ) = I(Y : X) = J (X : Y ) =
J (Y : X), where

J (X : Y ) = H(X) − H(X|Y ), (2)

J (Y : X) = H(Y ) − H(Y |X). (3)

Here the conditional entropy is straightforwardly defined
as H(X|Y ) = H(X,Y ) − H(Y ) and represents how much
uncertainty (ignorance) we have on X given the value of Y

[and vice versa for H(Y |X)].
In the quantum scenario, we consider a bipartite system AB

described by a density matrix ρ ≡ ρAB , and subsystems A,B

with marginal density matrices ρA,ρB . The mutual information
can be used once more to quantify the total correlations

between A and B. The quantum analog of expression (1)
straightforwardly reads

I(A : B) = S(A) + S(B) − S(A,B), (4)

where S(A) = −Tr[ρA log2 ρA] is the von Neumann entropy
of subsystem A, and equivalently, S(B) = −Tr[ρB log2 ρB],
S(A,B) = −Tr[ρ log2 ρ]. In contrast, if we try to define a
quantum version of J , we have

J (A : B) = S(A) − S(A|B), (5)

which is an “ambiguous” quantity [6,7], since the conditional
quantum entropy S(A|B) is clearly dependent on which
observable we have measured on B. Using the same notation
as in [25], we recall that a von Neumann measurement
(henceforth, just measurement) on B projects the system into
a statistical ensemble {pk,ρk}, such that

ρ → ρk = (IA ⊗ PBk)ρ(IA ⊗ PBk)

pk

, (6)

where

pk = Tr[ρ(IA ⊗ PBk)], PBk = V �kV
†,

(7)
�k = |k〉〈k|, k = 0,1, V ∈ SU (2).

We stress that in this case study, the use of generalized
positive-operator-valued measurements is not required, since
it was proven in [23] that for two-qubit states the optimal
measurement for the conditional entropy is always a projective
one. We can say that the amount of truly classical correlations
is expressed by the mutual information obtained by adopting
the least disturbing measurement [7]:

C(A : B) = max
{PBk}

J (A : B)

= S(A) − min
{PBk}

∑
k

pkS(A|B{PBk}). (8)

Consequently, the amount of genuinely quantum correlations,
called quantum discord, is given by [6]

D(A : B) = I(A : B) − C(A : B) = S(B) − S(A,B)

+ min{PBk}
∑

k

pkS(A|B{PBk}). (9)

We note that quantum discord is not symmetric:

S(A) − S(A|B) �= S(B) − S(B|A); (10)

performing the measurement on Alice’s subsystem rather than
on Bob’s is perfectly legitimate, but it returns, in general,
a different value of discord. See, e.g., [14] and [22] for
a discussion of the implications of it. It is immediate to
verify that not only entangled states, but almost all separable
states have a nonvanishing quantum discord [19], that is, are
affected by the measurement process, thus exhibiting some
pretty quantum properties. In the case of pure bipartite states,
the discord reduces to the marginal entropy of one of the
two subsystems and, therefore, to the canonical measure
of entanglement. Quantum discord for two-qubit states is
normalized to1.
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B. Geometric discord

Recently, it has been argued that the experienced difficulty
of calculating quantum discord can be coped with, for a general
two-qubit state, by the introduction of its geometrized version,
hereafter just called geometric discord [13]. Let us suppose,
to be coherent with Sec. II A, that we have a bipartite system
AB and make a measurement on B. As we have remarked,
almost all (entangled or separable) states are disturbed by
the measurement; however, there is a subclass of states that
is invariant and presents zero discord. It is the class of the
so-called classical-quantum states [4], whose elements have a
density matrix of the form

ρ =
∑

i

piρAi ⊗ |i〉〈i|, (11)

where pi is a probability distribution, ρAi is the marginal
density matrix of A, and {|i〉} is an orthonormal vector set.
A classical-quantum state is not affected by a measurement on
B in any case.

Letting � be the set of classical-quantum two-qubit states,
and χ be a generic element in this set, the geometric discord
DG is defined as the distance between the state ρ and the
closest classical-quantum state. In the original definition [13],
the (squared) Hilbert-Schmidt distance is adopted. Recalling
that ||A||22 = Tr[AAT ] is the square of the Hilbert-Schmidt
norm of a matrix A, the geometric discord has been introduced
as

DG(ρ) = minχ∈�||ρ − χ ||22. (12)

It is possible to obtain an explicit closed expression of
DG for two-qubit states. First, one needs to express the 4 ×
4 density matrix of a two-qubit state in the so-called Bloch
basis [33]:

ρ = 1

4

3∑
i,j=0

Rijσi ⊗ σj = 1

4

(
I4×4 +

3∑
i=1

xiσi ⊗ I2×2

+
3∑

j=1

yj I2×2 ⊗ σj +
3∑

i,j=1

tij σi ⊗ σj

)
, (13)

where Rij = Tr[ρ(σi ⊗ σj )], σ0 = I2×2, σi (i = 1,2,3) are the
Pauli matrices, �x = {xi},�y = {yi} are the three-dimensional
Bloch vectors associated with subsystems A,B, and tij denote
the elements in the correlation matrix T . Then, it is shown
in [13] that the geometric discord is given by

DG(ρ) = 1

4

(∣∣∣∣�y �yT
∣∣∣∣

2 + ∣∣∣∣T ∣∣∣∣2
2 − k

)
, (14)

with k being the largest eigenvalue of the matrix �y �yT + T T T

(in case of measurement on Alice, one needs to replace �y
with �x and T T T with T T T ). An alternative formulation for
the geometric discord has been provided in [30]. It is easy to
see that DG is not normalized to 1: its maximum value is 1/2
for two-qubit states, so it is natural to consider 2DG a proper
measure for a comparison with the quantum discord D.

III. QUANTUM DISCORD FOR TWO-QUBIT STATES

A. General setting

Even though quantum discord has an apparently simple
definition [6], the practice reveals that its explicit evaluation is
hard to accomplish. In this paper we restrict our attention to
two-qubit states. An analytical algorithm has been proposed
for the subclass of states with maximally mixed marginals
(described by five real parameters) in [24]. Also, an extension
to states spanned by seven real parameters, called X states
because of the peculiar form of their density matrix (with
vanishing elements outside the leading diagonal and the
antidiagonal), has been introduced in [25] and amended in [27].
Here, we attempt to generalize the procedure to the entire class
of two-qubit states.

First, we consider that by performing local unitary trans-
formations we can recast the density matrix for an arbitrary
two-qubit state, Eq. (13), in the Bloch normal form [24,33],

ρ = 1

4

(
I4×4 +

∑
i

aiσi ⊗ I2×2 +
∑

i

biI2×2 ⊗ σi

+
∑

i

ciσi ⊗ σi

)
, (15)

which is a density matrix completely defined by nine real pa-
rameters arranged in three three-dimensional column vectors,
�a = {ai}, �b = {bi}, and �c = {ci}. This follows from the fact
that local unitary operations ρ ′ = (UA ⊗ UB)ρ(UA ⊗ UB)†

correspond to left and right multiplication of the Bloch matrix
R with orthogonal matrices [33],

R′ =
(

1 0

0 OT
A

)
R

(
1 0

0 OB

)
, (16)

with OA,B ∈ SO(3). It is then straightforward to obtain the
normal form of Eq. (15): one needs to calculate the singular
value decomposition of the lower diagonal 3 ⊗ 3 block T

in R, T = OACOT
B , divide OA and OB by their respective

determinants (to make sure they both have determinant +1),
and then apply Eq. (16). The density matrix is correspondingly
transformed into the normal form of Eq. (15), where the ci are
identified with the elements of the diagonal matrix C, that is,
the singular values of T . Every two-qubit state can be then
transformed in its simplified normal form by means of local
unitaries (which preserve entanglement and correlations in
general, by definition), so we can restrict our analysis to density
matrices of this type without incurring any loss of generality.

Now we move to calculate the quantum discord D,
Eq. (10), for generic states in normal form. The marginal
entropy S(B) and the global entropy S(A,B) are trivial to
obtain. The main issue regards the optimization involved in
the conditional entropy.

B. Conditional entropy

First, we have to write the conditional entropy in an
explicit form, adopting, for simplicity, the notation in [25]. We
remarked that a measurement sends state ρ into an ensemble
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{pk,ρk} as expressed in Eq. (6). The entropy of the ensemble
can be written as

S̃ =
∑

k

pkS(A|B{PBk}) =
∑

k

pkS(ρk) (17)

= p0S0 + p1S1,

where S0,S1 are the entropies associated with ρ0,ρ1. The mea-
surement is defined by the quantity PBk and is consequently
parametrized by the elements of the unitary matrix V , which
we can write in the basis of the Pauli matrices as

V = v0I2×2 + �v · �σ =
(

v0 + v3 v1 − iv2

v1 + iv2 v0 − v3

)
. (18)

We notice that the real vector {v0,�v} = {vi} has norm 1.
Therefore, it is possible to rearrange the four parameters in
three variables only, for example, in this way:

h = v0v1 + v2v3, j = v1v3 − v0v2, k = v2
0 + v2

3 . (19)

Setting the vectors �X = {2j,2h,2k − 1} and �m± = {mi±} =
{ai ± ciXi}, we have that, after a straightforward calculation,
the conditional entropy takes the following expression:

S̃ = −1

4

{
(1−�b · �X)

[ (
1− | �m−|

1−�b · �X

)
log2

(
1 − | �m−|

1 − �b · �X

)

+
(

1 + | �m−|
1 − �b · �X

)
log2

(
1 + | �m−|

1 − �b · �X

) ]

+ (1 + �b · �X)

[ (
1 − | �m+|

1 + �b · �X

)
log2

(
1 − | �m+|

1 + �b · �X

)

+
(

1 + | �m+|
1 + �b · �X

)
log2

(
1 + | �m+|

1 + �b · �X

) ]}
. (20)

This result is consistent with the formula provided in
the Appendix of [26], but here we have reached a simpler
expression by exploiting the normal form of the density
matrix, Eq. (15). However, we must remark that in this picture

there is still an amount of redundancy [26]. A projective
measurement on a two-qubit state can be characterized by
two independent variables only, identifiable as the angles θ

and φ, which parametrize a generic single-qubit pure state
as |ψ〉 = cos θ |0〉 + eiφ sin θ |1〉, and the Bloch sphere of
coordinates {x,y,z} in this way:

x = 2j = 2 cos θ sin θ cos φ, y = 2h = 2 cos θ sin θ sin φ,

z = 2k − 1 = 2 cos2 θ − 1. (21)

It is immediate to verify that the following constraint holds:

k2 + h2 + j 2 = k. (22)

The algorithm originally designed for X states in [25] is
flawed just in not considering the mutual dependence of h,j,k,
proving to be reliable only for a more restricted class of states
identified in [27].

The above mapping enables us to reparameterize the
conditional entropy, Eq. (20), as a function of the azimuthal
and polar angles θ,φ; we can then write S̃(h,j,k) = S̃(θ,φ)
and perform the optimization of S̃ over these two independent
variables.

C. Optimization

Inspired by [25], we look for symmetries in the expression
of the conditional entropy. We notice immediately the invari-
ance under the transformation θ → θ ± π , which, however,
can be englobed by the one

k → 1 − k, h → −h, j → −j, (23)

which corresponds to

θ → θ ± π/2. (24)

We can appreciate this with an example. Let us pick a
random state, such as

⎛
⎜⎜⎜⎝

0.437 0.126 + 0.197i 0.0271 − 0.0258i −0.274 + 0.0997i

0.126 − 0.197i 0.154 −0.0115 − 0.0187i −0.0315 + 0.170i

0.0271 + 0.0258i −0.0115 + 0.0187i 0.0370 0.00219 − 0.0367i

−0.274 − 0.0997i −0.0315 − 0.170i 0.00219 + 0.0367i 0.372

⎞
⎟⎟⎟⎠; (25)

we can operate with local unitaries on it, obtaining a new state
ρ (albeit with the same entropies and discord) described by
the simplified normal form presented in Eq. (15); we then
perform a projective measurement on subsystem B, obtaining
an ensemble whose conditional entropy is plotted in Fig. 1.

One sees that there are no further apparent symmetries for
the conditional entropy. Therefore the analysis so far, while not
being conclusive, allows us just to refine the problem by safely
letting the optimization of the conditional entropy be restricted
to the interval θ ∈ [0,π/2). To determine the minimum of S̃,
we need to calculate its derivatives with respect to θ and
φ. The dependence on these variables involves logarithms
of nonlinear quantities, so we cannot expect to solve the

problem analytically in any case, whatever ingenious variables
we might choose. However, we can seek to write the two
constraints in a compact and elegant form. Let us impose

p = �b · �X, r+ = | �m+|, r− = | �m−|. (26)

After a bit of algebra, we obtain

S̃ = − 1
4 {(1 − p − r−) log2[1 − p − r−] + (1 − p + r−)

× log2[1 − p + r−] + (1 + p + r+) log2[1 + p + r+]

+ (1 + p − r+) log2[1 + p − r+] − 4 + 2(−(1 − p)

× log2[1 − p] − (1 + p) log2[1 + p])}. (27)
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FIG. 1. (Color online) Example of conditional entropy S̃ for
a random two-qubit state [Eq. (25)]. The angles θ and φ

parametrize the measurement: we can appreciate the symmetry
properties of S̃ with respect to such variables, expressed by
the invariance S̃(θ,φ) = S̃(θ ± π/2,φ). All quantities plotted are
dimensionless.

Now we set the partial derivatives to 0:

∂S̃
∂θ

= ∂S̃
∂p

∂p

∂θ
+ ∂S̃

∂r+

∂r+
∂θ

+ ∂S̃
∂r−

∂r−
∂θ

= 0;

∂S̃
∂φ

= ∂S̃
∂p

∂p

∂φ
+ ∂S̃

∂r+

∂r+
∂φ

+ ∂S̃
∂r−

∂r−
∂φ

= 0.

Defining the quantities

α = det

(
∂p

∂θ

∂p

∂φ
∂r+
∂θ

∂r+
∂φ

)
β = det

(
∂p

∂θ

∂p

∂φ
∂r−
∂θ

∂r−
∂φ

)

γ = det

(
∂r+
∂θ

∂r+
∂φ

∂r−
∂θ

∂r−
∂φ

)
, (28)

after some manipulations, we can write the stationarity
conditions in the following form:

1

4
log2

[
1 + p − r+
1 + p + r+

]

+ 1

2
log2

[
(1 + p)(1 − p − r−)

(1 − p)(1 + p − r+)

]
β

α + β + γ
= 0;

(29)
1

4
log2

[
1 − p − r−
1 − p + r−

]

− 1

2
log2

[
(1 + p)(1 − p − r−)

(1 − p)(1 + p − r+)

]
α

α + β + γ
= 0.

We see immediately that this system can be further
simplified to

log2

[
1+p−r+
1+p+r+

]
β

+
log2

[
1−p−r−
1−p+r−

]
α

= 0;

1

4
log2

[
1 − p − r−
1 − p + r−

]

− 1

2
log2

[
(1 + p)(1 − p − r−)

(1 − p)(1 + p − r+)

]
α

α + β + γ
= 0. (30)

We can still express these equations as relations among
the eigenvalues of the ensemble {pk,ρk}. Calling λ+

0 ,λ−
0 the

eigenvalues of ρ0 and λ+
1 ,λ−

1 the eigenvalues of ρ1, we have

λ±
0 = 1

2

(
1 ± r−

1−p

)
, λ±

1 = 1

2

(
1 ± r+

1 + p

)
, (31)

After some straightforward algebra, one can show that the
vanishing of the derivatives of S̃ occurs when the following
constraints are satisfied:

λ−
0 =

(
λ+

1

λ−
1

) α
β

1 +
(

λ+
1

λ−
1

) α
β

; λ−
1 = λ−

0

(
λ+

0

λ−
0

) α+β+γ

2α

. (32)

These two transcendental equations can be solved nu-
merically. They represent the most compact formulation to
date for the problem of calculating the quantum discord of
arbitrary two-qubit states. Let us call si the solutions obtained,
corresponding to values {θi,φi}. To establish if they represent
minima of S̃ , we adopt the conventional method and evaluate
the signature of the Hessian matrix H at points {θi,φi}, and,
in the case of detH = 0, we study the sign of the functions
δi = S̃(θ,φ) − S̃(θi,φi). Naming {θmj ,φmj } the angles such
that H is positive definite or δi > 0, we clearly have that the
absolute minimum of the conditional entropy is defined as

min{PBk}
∑

k

pkS(A|B{PBk}) = min{θmj ,φmj }S̃(θmj ,φmj ).

The quantum discord for generic two-qubit states of the form
Eq. (15) finally reads

D(A : B) = S(B) − S(A,B) + min{θmj ,φmj }S̃(θmj ,φmj ). (33)

IV. COMPARISON BETWEEN QUANTUM DISCORD AND
GEOMETRIC DISCORD

We can use our results to compare the quantum discord
D [6] with the geometric discord DG [13] for general two-qubit
states [34]. We have generated up to 106 random general two-
qubit states. After transforming each of them into the normal
form of Eq. (15), we have calculated their quantum discord
D, as numerically obtained from the algorithm in Sec. III, and
their normalized geometric discord 2DG. The latter admits the
following explicit analytic expression for states ρ in normal
form, derived from Eq. (14):

DG(ρ) = 1

4

(∣∣∣∣�b�bT
∣∣∣∣

2 + ∣∣∣∣�c�cT
∣∣∣∣

2 − k̃
)
, (34)

where k̃ is the largest eigenvalue of the matrix �b�bT + �c�cT .
The results are shown in Fig. 2. We notice that physical

states of two qubits fill up a two-dimensional area in the space
of the two nonclassicality measures, meaning that the two
impose inequivalent orderings on the set of mixed two-qubit
quantum states; this is reminiscent of the case of entanglement
measures (see, e.g., [32]), and a similar feature has been
reported concerning the comparison between discord and
other nonclassicality indicators [14]. Nevertheless, at a fixed
quantum discord, the geometric discord admits exact lower
and upper bounds (and vice versa). We have identified them
numerically.
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FIG. 2. (Color online) Comparison between normalized geomet-
ric discord 2DG and quantum discord D for 106 randomly generated
general two-qubit states. The dashed line is obtained by taking the
equality sign in Ineq. (35). Refer to the text for details on the other
boundary curves. All quantities plotted are dimensionless.

First, we have observed that the following hierarchical
relationship holds for arbitrary two-qubit states:

2DG � D2. (35)

In other words, the quantum discord for any two-qubit state
can never exceed its (normalized) distance from the set of
classical-quantum states. The corresponding boundary curve
is plotted as the dashed (gray) line in Fig. 2. However, we
see that such a bound is tight only in the region 0 � D �
1/3, in which it coincides with what we refer to as branch
i (see below), while it is not attainable for higher degrees
of nonclassical correlations. The actual, tight lower bound in
the whole {D,2DG} plane accommodates states with minimal
geometric discord at a fixed quantum discord or, equivalently
maximal quantum discord at a fixed geometric discord: such
extremal states are constituted by the union of four families,
which sit on branches i–iv in Fig. 2.

(i) (Green online) This branch is filled by so-called α states
[28],

ρα =

⎛
⎜⎜⎝

α
2 0 0 α

2

0 1−α
2 0 0

0 0 1−α
2 0

α
2 0 0 α

2

⎞
⎟⎟⎠ , 0 � α � 1/3, (36)

for which D(ρα) = α and 2DG(ρα) = α2, thus saturating the
inequality (35).

(ii) (Blue online) This small branch is filled by a subclass
of the two-parameter family

ρr =

⎛
⎜⎜⎜⎝

(1 − a)/2 0 0 r/2

0 a 0 0

0 0 0 0

r/2 0 0 (1 − a)/2

⎞
⎟⎟⎟⎠ ,

1

3
� a � 5

14
,

√
4a − 3a2 − 1, (37)

with r ∈ [
√

4a − 3a2 − 1, 1−a
3 ] given by the solution

to 2r tanh−1(
√

a2+r2)√
a2+r2 + ln(−a − r + 1) − ln(−a + r + 1) +

2 tanh−1(r) = 0. The geometric discord of these states
is simply 2DG(ρr ) = a2, while their quantum discord is
calculated in [28]. We highlight the presence of the “pimple”

at the joint between branch i and branch ii, a recurring
feature in the profile of extremal states involving quantum
discord [14,28,29].
(iii) (Red online) This branch accommodates asymmetric X

states of the form

ρg =

⎛
⎜⎜⎜⎝

a 0 0
√

a − a2 − ac

0 c 0 0

0 0 0 0√
a − a2 − ac 0 0 1 − a − c

⎞
⎟⎟⎟⎠ ,

a = 1 − 2c + 2c2 − g

2c
, 0 � g � 1, (38)

with

c ∈
[

1 − √
g

2
,

1

2
−

{
1
2

√
2g − 1, g > 1

2 ;

0, otherwise;

]
,

solution to 8(1 − 2c)c2 tanh−1[
√

8(c − 1)c − 2g + 3] −
4c2√8(c − 1)c − 2g + 3 tanh−1(1 − 2c) +
2
√

8(c − c2) − 2g + 3(2c2 + g − 1) tanh−1( 3c−2c2+g−1
c

) =
0. For these states, 2DG(ρg) = g and
D(ρg) = 1

ln 4 {− ln[−4c(a + c − 1)] − 2
√

4c(a + c − 1) + 1
tanh−1[

√
4c(a + c − 1) + 1] − 2 ln(1 − a) + 4a tanh−1(1 −

2a) + 2 ln(2 − 2c) − 4c tanh−1(1 − 2c)}.
(iv) (Black online) The top-right-most branch accommo-

dates just pure states ρp = |ψ〉AB〈ψ |, for which the discord
equals the marginal von Neumann entropy, D(ρp) = S(ρA) =
−p log2 p − (1 − p) log2(1 − p), and the geometric discord
equals the marginal linear entropy, 2DG(ρp) = 2(1 − Trρ2

A) =
4 det ρA = 4p(1 − p), where we have denoted the eigenvalues
of the reduced density matrix ρA by {p,1 − p}.

In contrast, the upper boundary (v) in Fig. 2, despite being
single-branched, is more involved and we are unable to provide
a tractable parametrization of the states that saturate it. They
can be sought among symmetric X states of full rank, but with
the two biggest eigenvalues dominating the other two. The
extremal curve has been obtained as the result of extensive
numerical optimization, in which the parameter space has been
finely sliced in discrete intervals of nearly constant discord, and
for each interval the data point corresponding to the random
state with the maximum geometric discord has been selected.
Joining all such extremal states we have obtained the smooth
(magenta online) line in Fig. 2.

The two measures D and 2DG correctly coincide in
classical-quantum states, Eq. (11), where both vanish, and
in maximally entangled Bell states, where both reach
unity.

V. CONCLUSIONS

We have presented a reliable and effective algorithm for
evaluation of the quantum discord D of general two-qubit
states. We have simplified the optimization involved in
calculating the conditional entropy, by removing the redundant
degrees of freedom that can be set to 0 by means of local
unitaries in the first place and by properly taking into account
the symmetries of the problem. The optimization problem for
the conditional entropy, and equivalently for the discord, is
recast into a compact form that implies an elegant relationship
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among the eigenvalues of the ensemble obtained after the local
measurement process on one qubit. The derived transcendental
constraints are is amenable to direct numerical solution.

We have then compared quantum discord with an alternative
but affine quantity, the geometric discord DG, identifying
the classes of states with extremal values of geometric
discord at a fixed quantum discord. For a fixed geometric
discord, maximal quantum discord is attained by different
families of states, depending on the degree of nonclassical
correlations, encompassing pure as well as mixed symmetric
and nonsymmetric states. In general, the hierarchical bound
D �

√
2DG holds for all two-qubit states.

We hope that our results will provide further insight into
the fascinating but still not well-understood paradigm of
nonclassical correlations beyond entanglement in compos-
ite quantum systems. The methods presented here can be
generalized to higher dimensional and continuous variable
systems.
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and H. Ritsch, ibid. 94, 173602 (2005).

[17] R. Dillenschneider, Phys. Rev. B 78, 224413 (2008); C. A.
Rodriguez-Rosario, K. Modi, A. Kuah, A. Shaji, and E. C.
G. Sudarshan, J. Phys. A 41, 205301 (2008); A. Shabani and
D. A. Lidar, Phys. Rev. Lett. 102, 100402 (2009); M. S.

Sarandy, Phys. Rev. A 80, 022108 (2009); T. Werlang, S. Souza,
F. F. Fanchini, and C. J. Villas Boas, ibid. 80, 024103 (2009);
B. Bylicka and D. Chruscinski, ibid. 81, 062102 (2010); L.
Mazzola, J. Piilo, and S. Maniscalco, Phys. Rev. Lett. 104,
200401 (2010); L. C. Celeri, A. G. S. Landulfo, R. M. Serra, and
G. E. A. Matsas, Phys. Rev. A 81, 062130 (2010); A. Brodutch
and D. R. Terno, ibid. 81, 062103 (2010); M. D. Lang and
C. M. Caves, Phys. Rev. Lett. 105, 150501 (2010); T. Werlang,
C. Trippe, G. A. P. Ribeiro, and G. Rigolin, ibid. 105,
095702 (2010); F. F. Fanchini, L. K. Castelano, and A. O.
Caldeira, New J. Phys. 12, 073009 (2010); B. Wang, Z. Y. Xu,
Z. Q. Chen, and M. Feng, Phys. Rev. A 81, 014101 (2010);
F. F. Fanchini, T. Werlang, C. A. Brasil, L. G. E. Arruda, and
A. O. Caldeira, ibid. 81, 052107 (2010); D. O. Soares-Pinto,
L. C. Celeri, R. Auccaise, F. F. Fanchini, E. R. deAzevedo,
J. Maziero, T. J. Bonagamba, and R. M. Serra, ibid. 81,
062118 (2010); J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B.
Zou, and G.-C. Guo, Nat. Commun. 1, 7 (2010); K. Bradler,
M. M. Wilde, S. Vinjanampathy, and D. B. Uskov, Phys. Rev. A
82, 062310 (2010); A. Datta, e-print arXiv:1003.5256 (2010);
M. F. Cornelio, M. C. de Oliveira, and F. F. Fanchini, e-print
arXiv:1007.0228 (2010); K. Modi, M. Williamson, H. Cable,
and V. Vedral, e-print arXiv:1003.1174 (2010); B. Eastin, e-print
arXiv:1006.4402 (2010); F. F. Fanchini, M. F. Cornelio, M. C.
de Oliveira, and A. O. Caldeira, e-print arXiv:1006.2460 (2010);
A. Brodutch and D. R. Terno, Phys. Rev. A 83, 010301 (2011).

[18] A. Datta and S. Gharibian, Phys. Rev. A 79, 042325 (2009);
A. Datta, ibid. 80, 052304 (2009); R. Srikanth, S. Banerjee, and
C. M. Chandrashekar, ibid. 81, 062123 (2010); A. Auyuanet and
L. Davidovich, ibid. 82, 032112 (2010).

[19] A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and
A. Acin, Phys. Rev. A 81, 052318 (2010).

[20] G. Adesso and A. Datta, Phys. Rev. Lett. 105, 030501
(2010); P. Giorda and M. G. A. Paris, ibid. 105, 020503
(2010).

[21] W. H. Zurek, Phys. Rev. A 67, 012320 (2003); D. Cavalcanti,
L. Aolita, S. Boixo, K. Modi, M. Piani, and A. Winter, ibid.
83, 032324 (2011); V. Madhok and A. Datta, ibid. 83, 032323
(2011); A. Streltsov, H. Kampermann, and D. Bruss, Phys. Rev.
Lett. 106, 160401 (2011).

[22] J. Maziero, L. C. Celeri, and R. Serra, e-print arXiv:1004.2082
(2010).

052108-7

http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.75.042310
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://dx.doi.org/10.1103/PhysRevLett.100.090502
http://arXiv.org/abs/arXiv:1103.4032
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1063/1.1498001
http://dx.doi.org/10.1103/PhysRevLett.92.067902
http://dx.doi.org/10.1103/PhysRevLett.92.067902
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevA.66.022104
http://dx.doi.org/10.1103/PhysRevA.66.022104
http://dx.doi.org/10.1103/PhysRevA.80.032319
http://dx.doi.org/10.1103/PhysRevA.80.032319
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://arXiv.org/abs/arXiv:1012.4302
http://dx.doi.org/10.1103/PhysRevA.82.052342
http://dx.doi.org/10.1103/PhysRevA.82.052342
http://dx.doi.org/10.1088/0031-8949/1986/T12/005
http://dx.doi.org/10.1103/PhysRevA.59.826
http://dx.doi.org/10.1103/PhysRevLett.84.1849
http://dx.doi.org/10.1103/PhysRevLett.89.283601
http://dx.doi.org/10.1103/PhysRevLett.94.173602
http://dx.doi.org/10.1103/PhysRevB.78.224413
http://dx.doi.org/10.1088/1751-8113/41/20/205301
http://dx.doi.org/10.1103/PhysRevLett.102.100402
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.80.024103
http://dx.doi.org/10.1103/PhysRevA.81.062102
http://dx.doi.org/10.1103/PhysRevLett.104.200401
http://dx.doi.org/10.1103/PhysRevLett.104.200401
http://dx.doi.org/10.1103/PhysRevA.81.062130
http://dx.doi.org/10.1103/PhysRevA.81.062103
http://dx.doi.org/10.1103/PhysRevLett.105.150501
http://dx.doi.org/10.1103/PhysRevLett.105.095702
http://dx.doi.org/10.1103/PhysRevLett.105.095702
http://dx.doi.org/10.1088/1367-2630/12/7/073009
http://dx.doi.org/10.1103/PhysRevA.81.014101
http://dx.doi.org/10.1103/PhysRevA.81.052107
http://dx.doi.org/10.1103/PhysRevA.81.062118
http://dx.doi.org/10.1103/PhysRevA.81.062118
http://dx.doi.org/10.1038/ncomms1005
http://dx.doi.org/10.1103/PhysRevA.82.062310
http://dx.doi.org/10.1103/PhysRevA.82.062310
http://arXiv.org/abs/arXiv:1003.5256
http://arXiv.org/abs/arXiv:1007.0228
http://arXiv.org/abs/arXiv:1003.1174
http://arXiv.org/abs/arXiv:1006.4402
http://arXiv.org/abs/arXiv:1006.2460
http://dx.doi.org/10.1103/PhysRevA.83.010301
http://dx.doi.org/10.1103/PhysRevA.79.042325
http://dx.doi.org/10.1103/PhysRevA.80.052304
http://dx.doi.org/10.1103/PhysRevA.81.062123
http://dx.doi.org/10.1103/PhysRevA.82.032112
http://dx.doi.org/10.1103/PhysRevA.81.052318
http://dx.doi.org/10.1103/PhysRevLett.105.030501
http://dx.doi.org/10.1103/PhysRevLett.105.030501
http://dx.doi.org/10.1103/PhysRevLett.105.020503
http://dx.doi.org/10.1103/PhysRevLett.105.020503
http://dx.doi.org/10.1103/PhysRevA.67.012320
http://dx.doi.org/10.1103/PhysRevA.83.032324
http://dx.doi.org/10.1103/PhysRevA.83.032324
http://dx.doi.org/10.1103/PhysRevA.83.032323
http://dx.doi.org/10.1103/PhysRevA.83.032323
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://arXiv.org/abs/arXiv:1004.2082


DAVIDE GIROLAMI AND GERARDO ADESSO PHYSICAL REVIEW A 83, 052108 (2011)

[23] S. Hamieh, R. Kobes, and H. Zaraket, Phys. Rev. A 70, 052325
(2004).

[24] S. Luo, Phys. Rev. A 77, 042303 (2008).
[25] M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A 81, 042105

(2010); see also M. Ali, A. R. P. Rau, and G. Alber, ibid. 82,
069902(E) (2010).

[26] X.-M. Lu, J. Ma, Z. Xi, and X. Wang, Phys. Rev. A 83, 012327
(2011).

[27] Q. Chen, C. Zhang, S. Yu, X. X. Yi, and C. H. Oh, e-print
arXiv:1102.0181 (2010).

[28] A. Al Qasimi and D. F. V. James, Phys. Rev. A 83, 032101
(2011).

[29] F. Galve, G. L. Giorgi, and R. Zambrini, Phys. Rev. A 83, 012102
(2011).

[30] S. Luo and S. Fu, Phys. Rev A, 82, 034302 (2010).
[31] In this respect we remark, as already pointed out in [26], that the

most used analytical method in the literature, introduced in [25]
for the special subclass of X states, is not completely reliable,
since it does not take into account all the constraints concerning
the variables that characterize the measurement. This problem
is overcome in our formulation.

[32] T.-C. Wei, K. Nemoto, P. M. Goldbart, P. G. Kwiat, W. J. Munro,
and F. Verstraete, Phys. Rev. A 67, 022110 (2003).

[33] F. Verstraete, J. Dehaene, and B. De Moor, Phys. Rev. A 64,
010101(R) (2001).

[34] A similar study was recently attempted [J. Batle, A. Plastino,
A. R. Plastino, and M. Casas, e-print arXiv:1103.0704 (2011)],
albeit without identification of the extremal states.

052108-8

http://dx.doi.org/10.1103/PhysRevA.70.052325
http://dx.doi.org/10.1103/PhysRevA.70.052325
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.81.042105
http://dx.doi.org/10.1103/PhysRevA.81.042105
http://dx.doi.org/10.1103/PhysRevA.82.069902
http://dx.doi.org/10.1103/PhysRevA.82.069902
http://dx.doi.org/10.1103/PhysRevA.83.012327
http://dx.doi.org/10.1103/PhysRevA.83.012327
http://arXiv.org/abs/arXiv:1102.0181
http://dx.doi.org/10.1103/PhysRevA.83.032101
http://dx.doi.org/10.1103/PhysRevA.83.032101
http://dx.doi.org/10.1103/PhysRevA.83.012102
http://dx.doi.org/10.1103/PhysRevA.83.012102
http://dx.doi.org/10.1103/PhysRevA.82.034302
http://dx.doi.org/10.1103/PhysRevA.67.022110
http://dx.doi.org/10.1103/PhysRevA.64.010101
http://dx.doi.org/10.1103/PhysRevA.64.010101
http://arXiv.org/abs/arXiv:1103.0704

