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Experimental demonstration of decoherence-induced spontaneous symmetry breaking
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We experimentally investigate the variations of exchange-symmetry properties of the four Bell states in an
exchange-symmetric pure dephasing process with a two-photon system generated from spontaneous parametric
down-conversion (SPDC). Experiment results show that under such an exchange-symmetric local-noise
Hamiltonian, the exchange-symmetry property remains unchanged for two of the three symmetric Bell
states, i.e., the states |�〉± = 1√

2
(|00〉 ± |11〉). For the antisymmetric Bell state |�〉− = 1√

2
(|01〉 − |10〉), the

exchange-symmetry property increases and achieves a maximum value of 0.5 at the asymptotic limit. However,
for the third exchange-symmetric Bell state |�〉+ = 1√

2
(|01〉 + |10〉) , the exchange-symmetry property breaks,

surviving with a probability of 0.5 at the asymptotic limit, which provides some evidence supporting such
decoherence-induced spontaneous-symmetry-breaking phenomena.

DOI: 10.1103/PhysRevA.83.052105 PACS number(s): 03.65.Yz, 42.50.Dv, 42.50.Xa

I. INTRODUCTION

Quantum entanglement [1], as one of the characteristic
features of quantum mechanics, has been playing a key role in
the field of quantum information research and is responsible
for many important and interesting protocols in quantum
information processing, such as quantum teleportation [2],
quantum cryptography [3,4], superdense coding [5], and
quantum computation [6–8]. Quantum-entangled states have
also been recognized as valuable resources for quantum-
information-processing tasks. Unfortunately, this mysterious
feature of composite quantum systems is very fragile when
these systems are inevitably disturbed by the external environ-
ment in the real world. This has become the main obstacle
to progress in realizing large-scale quantum information
processing, e.g., long-distance quantum communication [9]
or efficient quantum computation [10].

The destruction of entanglement by the interaction be-
tween quantum systems and the environment is essentially
a “decoherence” [11] process, through which the coherent
superpositions of quantum states are destroyed. In the last
decade, the problem of decoherence has been extensively
studied in various aspects [12–15] due to its importance for
quantum-information-processing tasks and also for possible
new insights into the foundations of quantum mechanics [16].
In recent years, the problem of relations between decoherence
and spontaneous symmetry breaking has drawn much attention
[17–19]. And more recently, an interesting theoretical result
about decoherence-induced spontaneous symmetry breaking
on entangled states was presented by Karpat and Gedik [20].
They studied the time evolution of the exchange-symmetry
property of Bell states under an exchange-symmetric deco-
herence model and found a rather unexpected result: Not all
three of the exchange-symmetric Bell states preserve their
symmetry. The symmetry of Bell state |�〉+ = 1√

2
(|01〉 +

|10〉) breaks even when the decoherence model is exchange-
symmetric, i.e., the model has a Hamiltonian invariant upon
swapping the 2 qubits.
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In this paper, we present an experiment that provides
some evidence for supporting such decoherence-induced
spontaneous-symmetry-breaking effects. Due to its robustness
against environmental noise and its good controllability, the
photonic system has been a very good choice for experimental
research on decoherence [21]. So we used two-photon Bell
states in our experiment and investigated the evolution of their
exchange symmetry after a symmetric decoherence process
was imposed on them. The experiment results show that the
two symmetric Bell states |�〉± = 1√

2
(|00〉 ± |11〉) kept their

symmetry unchanged, while the third symmetric Bell state
|�〉+ lost its symmetry and had a maximum probability 0.5
of being found symmetric at the asymptotic limit, which
is in good accordance with theoretical prediction [20]. In
addition, we imposed the same decoherence environment on
the antisymmetric Bell state |�〉− = 1√

2
(|01〉 − |10〉), and

the experiment result shows that the probability of being
found in a symmetric state increases to 0.5 at the asymptotic
limit.

II. THEORETICAL CALCULATIONS

In our experiment, we chose two-photon Bell states
generated from the spontaneous parametric down-conversion
(SPDC) process to undergo the decoherence. As mentioned
above, photons are usually robust against decoherence, so for
the sake of introducing a controllable decoherence model,
we can utilize the many degrees of freedom (DOFs) of
photons: polarization, frequency, momentum, etc. Such a
decoherence model of coupling between polarization and
frequency was first discussed by Berglund in Ref. [22]. If
we consider the qubit encoded on only certain DOFs, then the
other DOFs can be treated as the “environment” [23]. Thus,
through some special method, the coupling between different
DOFs of photons would lead to decoherence of the encoded
qubit.

One method that has been frequently applied in experi-
ments studying the decoherence of photonic systems is the
nondissipative coupling between polarization and frequency
DOFs of photons in a birefringent medium [21,24]. Here
we encode the qubits on the polarization DOF and adopt the

052105-11050-2947/2011/83(5)/052105(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.052105


HUANG, PENG, LI, LIU, LI, AND GUO PHYSICAL REVIEW A 83, 052105 (2011)

photon’s frequency spectrum as the environment. The coupling
between them is introduced by passing the photons through
birefringent quartz plates. The different group velocities of
the two orthogonal polarization modes in the quartz crystal
and the nonzero photon-frequency-spectrum bandwidth result
in decoherence of the polarization qubits. And we can well
control the decoherence process by changing the thickness of
quartz plates (evolution time) and also the spectrum of photons
(the environment’s features), thus providing a controllable
decoherence model.

The initial two-photon entangled states generated by the
SPDC process can be written as

|ψ(0)〉 = |�〉AB ⊗
∫

g(ω1,ω2)|ω1〉A|ω2〉Bdω1dω2,,

where |�〉AB is the 2-qubit entangled state encoded in the
polarization DOF, and the subscripts A and B denote photons
in spatial modes A and B. In the following discussion we will
focus on the four Bell states |�〉±AB and |�〉±AB . The integral
part of the previous equation describes the initial state in
the frequency DOF, i.e., the decoherence “environment”; and
g(ω1,ω2) is the amplitude corresponding to state |ω1〉A|ω2〉B ,
satisfying the normalization condition∫

|g(ω1,ω2)|2dω1dω2 = 1.

In the normal experiment condition of SPDC, g(ω1,ω2) can be
written as

g(ω1,ω2) = hA(ω1)hB(ω2)ap(ωp)ϕ(ωp,ω1 − ω2),

where hA(ω1) and hB(ω2) are frequency amplitude functions
of photon A and photon B, usually decided by narrow band
filters placed in the paths of photon A and B, ap(ωp) is the
frequency amplitude function of the pump light in SPDC, and
ωp = ω1 + ω2 is the energy conservation relation in the SPDC
process. The last factor, ϕ(ωp,ω1 − ω2), is the phase-matching
function related to the details of phase-matching type and
length of the down-conversion crystal. Here we can assume
that the down-conversion crystal is thin; thus the constraint
imposed by ϕ(ωp,ω1 − ω2) is weak and can be neglected.
So g(ω1,ω2) can be rewritten as g(ω1,ω2) = hA(ω1)hB(ω2)
ap(ωp).

The decoherence coupling between the polarization and
frequency DOFs is introduced by passing photon A and photon
B through two quartz plates of length L1 and L2, respectively.
And the two quartz plates are both oriented in such a way that
the optical-path length for horizontal (or vertical) polarization
mode is nH L (nV L) after passing through an L-length quartz
plate.

Now let us consider the case when the initial polarization
state is |�〉+AB = 1√

2
(|HV 〉 + |V H 〉)AB , where |H 〉 and |V 〉

denote the horizontal and vertical polarization states, respec-
tively. Then the state after passing through the two quartz
plates is

|ψf 〉 = 1√
2
|HV 〉AB

⊗
∫

g(ω1,ω2)ei(ω1nH L1+ω2nV L2)/c|ω1〉A|ω2〉Bdω1dω2

+ 1√
2
|V H 〉AB

⊗
∫

g(ω1,ω2)ei(ω1nV L1+ω2nH L2)/c|ω1〉A|ω2〉Bdω1dω2.

And the density matrix of the two-photon polarization state
can be figured out by tracing the frequency DOF:

ρ
f

pol = Trω1ω2 (|ψf 〉〈ψf |)

= 1

2
|HV 〉〈HV | + 1

2
|V H 〉〈V H |

+ 1

2
|HV 〉〈V H |

∫
|g(ω1,ω2)|2

× ei(ω2L2−ω1L1)�n/cdω1dω2

+ 1

2
|V H 〉〈HV |

∫
|g(ω1,ω2)|2

× ei(ω1L1−ω2L2)�n/cdω1dω2.

Here we make an assumption that the frequency filters for
photons A and B have narrow bandwidth, such that

nV (ω1) − nH (ω1) ≈ nV (ω2) − nH (ω2) = �n

for all ω1 and ω2 in the bandwidth. Recalling the requirement
in Ref. [20] for the decoherence model to be exchange-
symmetric, we should further require that L1 = L2 = L,
hA(ω) = hB(ω) = h(ω), and ap(ωp) is a white spectrum. Thus
the decoherence “environments” that photons A and B endure
are identical and independent, i.e., exchange-symmetric. So
the final density matrix of the 2-qubit state in the polarization
DOF is given as (based on |HH 〉, |HV 〉, |V H 〉, |V V 〉)

ρ
f

|�〉+AB

(L) =

⎛
⎜⎜⎜⎝

0 0 0 0

0 1
2

1
2G(L) 0

0 1
2G∗(L) 1

2 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

where

G(L) =
∫

|h(ω1)h(ω2)ap(ωp)|2ei(ω2−ω1)�nL/cdω1dω2.

Similar calculations for the other three Bell states yield

ρ
f

|�〉+AB

(L) =

⎛
⎜⎜⎜⎝

1
2 0 0 1

2G1(L)

0 0 0 0

0 0 0 0
1
2G∗

1(L) 0 0 1
2

⎞
⎟⎟⎟⎠ ,

ρ
f

|�〉−AB

(L) =

⎛
⎜⎜⎜⎝

1
2 0 0 − 1

2G1(L)

0 0 0 0

0 0 0 0

− 1
2G∗

1(L) 0 0 1
2

⎞
⎟⎟⎟⎠ ,

ρ
f

|�〉−AB

(L) =

⎛
⎜⎜⎜⎝

0 0 0 0

0 1
2 − 1

2G(L) 0

0 − 1
2G∗(L) 1

2 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

052105-2



EXPERIMENTAL DEMONSTRATION OF DECOHERENCE- . . . PHYSICAL REVIEW A 83, 052105 (2011)

where

G1(L) =
∫

|h(ω1)h(ω2)ap(ωp)|2e−i(ω2+ω1)�nL/cdω1dω2.

In the following we will discuss the exchange-symmetry
property of the state after decoherence. Notice that there is
only one exchange-antisymmetric state in the four Bell states,
and the other three Bell states are all exchange-symmetric. We
can conclude that among all 2-qubit pure states, there is only
one exchange-antisymmetric state, i.e., |�−〉. So we use the
following definition as a measure for the exchange-symmetry
property:

S = 1 − 〈�−|ρf (L)|�−〉.
Figure 1 shows the theoretical results of S versus scaled

quartz thickness N (N = �nL/λ0; λ0 = 780 nm; L is quartz
length) for |�〉±AB and |�〉±AB with different h(ω) and ap(ωp).
For |�〉±AB , the values of S remain unchanged when L changes.
and it is also obvious that S will not change with different
h(ω) and ap(ωp) for |�〉±AB , because their expressions of S

do not contain any factor of G1(L). However, the situations
for |�〉±AB are more complex. We can see from Figs. 1(c)–
1(h) that for |�〉+AB(|�〉−AB), the values of S always decrease
(increase) from 1 (0) to 0.5 at an asymptotic limit. But the
details of these processes are not the same when h(ω) and
ap(ωp) change. When h(ω) has a Gaussian shape, the curves
of S are identical no matter whether ap(ωp) is a white spectrum
or a delta function δ(ωp − ωp0) [see Figs. 1(c) and 1(d)]. If
h(ω) has a rectangular shape, the values of S break through the
limit of 0.5 in some regions of L when ap(ωp) is δ(ωp − ωp0)
[see Figs. 1(e) and 1(f)] And if we apply the real transmission
spectrum of the interference filter used in our experiment for
h(ω), we get results like those in Figs. 1(c) and 1(d) [see
Figs. 1(g) and 1(h)], because the interference filter we used
has an approximately rectangular transmission spectrum. In a
real experiment, we cannot provide a pump light with white
spectrum as required for the exchange-symmetric decoherence
model. So we can deduce from our experiment results whether
it is a good approximation to take our experiment decoherence
model as an exchange-symmetric one by checking whether the
measured values of S exceed the limit 0.5 when L increases.

III. EXPERIMENT SETUP AND RESULTS

Our experiment setup is shown in Fig. 2. A pulse train
from a mode-locked Ti : sapphire laser (with a duration of
140 fs, a repetition rate of 76 MHz, and a central wavelength
of 780 nm) is frequency-doubled, and the output ultraviolet
laser beam of the frequency doubler is focused onto one pair
of β barium borate (BBO) crystals for down-conversion. The
two BBO crystals are both 1 mm thick and cut at θpm = 42.62◦,
ϕ = 30◦ for beamlike two-photon generation [25,26], and
they are oriented in a special way to prepare the two-photon
Bell state in the polarization DOF, while some specially
designed birefringent crystals are placed in the paths of down-
converted photons for time and spatial compensation [27].
Then, two polarization-preserved single-mode fibers transfer
the prepared two-photon initial states to the decoherence part
of the experiment. Using the half-wave plate (HWP) and
tiltable quarter-wave plate (QWP), we can easily transform
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FIG. 1. (Color online) Theoretical calculated results of S versus
quartz plate length N for four Bell states with different h(ω) and
ap(ωp). Panels (a) and (b) are for |�〉+ and |�〉−, respectively,
and the curves are both S = 0.5 for all kinds of h(ω) and ap(ωp).
Panels (c), (e), and (g) are for |�〉+, with h(ω) being a Gaussian
spectrum, rectangular spectrum, and our experiment’s filter spectrum,
respectively; while (d), (f), and (h) are for |�〉−, with h(ω) being the
same as (c), (e), and (g), respectively. The dashed lines at S = 0.5
in (c)–(h) show the asymptotic limit. In (c) and (d), the S curves
when ap(ωp) being white spectrum and delta function δ(ωp − ωp0)
are identical, so we see only one curve in each figure. In (e)–(h), the
dotted lines show the ap(ωp) curves for for the delta function, while
the solid lines show the ap(ωp) curves for the white spectrum.

one Bell state to another. The entanglement interference
visibility of our prepared Bell state is V = (96.8 ± 0.8)%.
And two-photon coincidence rates based on |HV 〉 and |V H 〉
are about 16 000 pairs/s for 50-mW pump laser power.

In the decoherence part, we set the paths of the two photons
parallel and very close to each other so that they can pass
through the same piece of quartz plate. This small trick can
ensure that the two local paths imposed by the quartz on
the two photons are identical. This trick is also critical for
the measurements in cases of |�〉±AB , because very small
differences in quartz length (of the order of L = λ0/�n)
will introduce a relative phase between the |HV 〉 and |V H 〉
terms of |�〉±AB , thus leading to additional variations of S.
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FIG. 2. (Color online) Experiment setup for Bell states prepara-
tion, decoherence, and final-state tomography.

For example, when LA = 0 and LB = λ0
2(nV −nH ) , almost no

decoherence happens, but the value of S will directly change
from 1 to 0 (or from 0 to 1) for |�〉+AB(|�〉−AB). Such variations
might lead to confusion about the phenomena we want to
observe in this experiment. In the decoherence part, the optic
axis of the quartz plate is set to be parallel to the vertical
polarization direction of the down-converted photon. So for
our central wavelength λ0 = 780 nm, nV = ne = 1.54769,

and nH = no = 1.53879. Finally, the output two-photon state
from the decoherence part is directed into a two-photon
polarization-state tomography device, which consists of two
sets of polarization analyzers.

Figure 3 illustrates the experimentally measured S values of
different lengths of quartz plates for the four cases. The scaled
quartz lengths N we employed in the experiment are N =
0,34,58,75,92,109,133,150,167,184,199,216,233,and 274,
respectively. We can see that the results agree well with
the theoretically calculated curves. The typical error of S in
Fig. 3 is about ±0.025. As mentioned in Sec. II, in a real
experiment we cannot provide a pump light with a white
spectrum, so we use an ultrashort pulse laser (pulse width
less than 200 fs) as the pump for SPDC instead, which has
a Gaussian spectrum and a relatively larger bandwidth. In
such a condition we consider the two local decoherence
paths to be approximately independent, thus leading to an
exchange-symmetric decoherence model.

By checking the measured results for |�〉±AB , we can
see that no value of S breaks through the limit of
0.5, indicating that our result is closer to the S curve
when ap(ωp) being white-spectrum in Figs. 1(g) and
1(h); thus the decoherence model in our experiment can
be considered an exchange-symmetric one. So the results
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FIG. 3. (Color online) Experimentally measured S values versus
scaled quartz length N for four Bell states: (a) |�〉+, (b) |�〉−, (c)
|�〉+, (d) |�〉−. Solid curves are theoretically calculated S values
with our experiment’s filter transmission spectrum and pump light’s
practical spectrum. The dashed lines in (c) and (d) are the asymptotic
limit of S = 0.5.

for |�〉+AB provide some evidence to support the effect of
decoherence-induced spontaneous symmetry breaking.

IV. CONCLUSION

In summary, we experimentally investigated the evolution
of the exchange-symmetry property for Bell states under
an exchange-symmetric decoherence model. Our experi-
ment results show some evidence supporting the effect of
decoherence-induced spontaneous symmetry breaking. How-
ever, to conclusively show this effect, more work is needed.
To our knowledge, no experiments have investigated the
relation between decoherence and symmetry reported before.
Our results might be helpful for a deeper understanding of
decoherence in the future.
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W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[3] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[4] A. Muller, H. Zbinden, and N. Gisin, Europhys. Lett. 33, 335
(1996).

[5] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
(1992).

052105-4

http://dx.doi.org/10.1017/S0305004100013554
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1209/epl/i1996-00343-4
http://dx.doi.org/10.1209/epl/i1996-00343-4
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.69.2881


EXPERIMENTAL DEMONSTRATION OF DECOHERENCE- . . . PHYSICAL REVIEW A 83, 052105 (2011)

[6] D. Deutsch and R. Josza, Proc. R. Soc. London A 439, 553
(1992).

[7] P. W. Shor, SIAM J. Comput. 26, 1484 (1997).
[8] M. A. Nielson and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
England, 2000).

[9] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

[10] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409,
46 (2001).

[11] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[12] T. Yu and J. H. Eberly, Phys. Rev. B 66, 193306 (2002).
[13] D. Tolkunov, V. Privman, and P. K. Aravind, Phys. Rev. A 71,

060308(R) (2005).
[14] Z. Gedik, Solid State Commun. 138, 82 (2006).
[15] A. G. Kofman and A. N. Korotkov, Phys. Rev. A 77, 052329

(2008).
[16] M. Horodecki, P. Horodecki, and R. Horodecki, in Quantum

Information: An Introduction to Basic Theoretical Concepts and
Experiments, edited by G. Alber, Springer Tracts in Modern
Physics, Vol. 173 (Springer-Verlag, Berlin, 2001).

[17] J. van Wezel, J. van den Brink, and J. Zaanen, Phys. Rev. Lett.
94, 230401 (2005).
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