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Anomalous decoherence and absence of thermalization in a photonic many-body system
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The intention of this work is twofold: first, to present a most simple system capable of simulating the intrinsic
bosonic Josephson effect with photons and, second, to study various outcomes deriving from inherent or external
decoherence. A qubit induces an effective coupling between two externally pumped cavity modes. Without cavity
losses and in the dispersive regime, intrinsic Josephson oscillations of photons between the two modes occurs. In
this case, contrary to regular Markovian decoherence, the qubit purity shows a Gaussian decay and recurrence of
its coherence. Due to intrinsic nonlinearities, both the Josephson oscillations as well as the qubit properties display
a rich collapse-revival structure, where, however, the complexity of the qubit evolution is in some sense stronger.
The qubit as a meter of the photon dynamics is considered, and it is shown that qubit dephasing, originating,
for example, from nondemolition measurements, results in an exponential destruction of the oscillations which
manifests the collectiveness of the Josephson effect. Nonselective qubit measurements, on the other hand, render
a Zeno effect seen in a slowing down of the Josephson oscillations. Contrary to dephasing, cavity dissipation
results in a Gaussian decay of the scaled Josephson oscillations. Finally, following Ponomarev et al. [Phys.
Rev. Lett. 106, 010405 (2011)], we analyze aspects of thermalization. In particular, despite similarities with the
generic model studied by Ponomarev et al., our system does not seem to thermalize.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) systems, and later
circuit QED, operating in the strong coupling regime have
proven to be excellent for studies of quantum phenomena
such as entanglement or nonlocality and nonclassical states
of the radiation field [1,2]. In the recent past, however, new
directions in these fields have been explored. A long-term
goal is to build many-body quantum models constructed
of interacting photons. The idea is that these systems can
simulate many-body models appearing in fields such as
condensed matter theory [3]. By now, several proposals of
such cavity or circuit QED quantum simulators have been
put forward, among others; Mott insulator-superfluid phase
transitions [4], spin-models and fractional quantum Hall states
[5], the anomalous Hall effect [6], relativistic effects [7],
non-Abelian models [8], the Jahn-Teller effect [9], and the
photonic Josephson effect [10,11]. The desired nonlinearity,
and thereby photon-photon interaction, plays an important role
in all of these and is established via interaction between light
and matter. In the simplest example of matter-light interaction,
the Jaynes-Cummings model (JC) [12,13], the interaction is
inherently nonlinear giving rise to the effective scattering
between photons. This far, for the JC model the most striking
outings of the nonlinearity are the collapse-revival [14] and
the photon blockade effects [15].

Experimentally, quantum simulators involving many-body
systems are mainly to be found within ultracold atomic gases,
either trapped dilute fermi or bose gases [16] or more strongly
correlated lattice or low-dimensional models [17]. These sys-
tems provide an extreme controllability of system parameters
as well as being well isolated from their environments and
hence possessing long coherence times. Together with the
experimental achievements within this area, topics such as
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decoherence and thermalization in systems processing many
degrees of freedom have gained extra attention recently.

For completely isolated systems, it is understood that a
true thermalization of the full system cannot occur for an
initial pure state. Nevertheless, expectation values 〈Ân〉, where
Ân is any operator that operates in the subspace spanned by
particle or subsystem n, often display characteristics as if the
state ρ(n)

mic of this particle or subsystem is a microcanonical
one [18]. Dividing the full system into two subsystems A

and B, a sketch of the dynamics is given in Fig. 1. For more
details see Refs. [19,20]. The full system state ρ(0) evolves
unitarily in time under some operator Û (τ ). Tracing out the
degrees of freedom of subsystem B at time t = 0 or t = τ

gives the initial and final states for subsystem A, ρA(0) and
ρA(τ ). The state ρA(0) is related to the state ρA(τ ) via a
dynamical map [19,20]. When the evolution of subsystem A

is Markovian, the dynamical map L[ρA,τ ] forms a semigroup
[19,20]. The dynamics of subsystem A is in general not unitary.
Moreover, when B contains a large number of degrees of
freedom, any information in A is likely to be distributed over
the many degrees of freedom of B, and ρA(τ ) then becomes
approximately diagonal in its computational basis. Regardless
of whether ρA(τ ) approaches a microcanonical state or some
other diagonal state, system B has a decohering effect on
A. If B is a closed finite system, we call this decohrence as
inherent, while if the decoherence derives from coupling to an
infinite reservoir we call it external. A general believe is that for
closed quantum systems, chaos and nonintegrability is deeply
connected to thermalization and thereby integrable many-body
systems may not thermalize or even result in quasidiagonal
states ρA(τ ) [21]. In such systems, recurrences of the coher-
ence of system A often occurs, i.e., the information in system
A, once lost to B, is recovered in A at certain revival times.

For the photonic many-body systems mentioned above,
relatively little has been investigated in terms of inherent
decoherence and thermalization. On the contrary, external
decoherence and thermalization induced by a surrounding
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FIG. 1. Schematic picture of the subsystem dynamics. The full
A + B system evolves unitarily under the map U (τ ). Tracing over
subsystem B gives the state ρA(τ ) of subsystem A at the initial
(t = 0) and final (t = τ ) times. The dynamical map L[ρA,τ ] relates
these two states of subsystem A. The evolution of ρA(τ ) described by
the dynamical map is in general not unitary, and even if ρA(0) is pure
the propagated state ρA(τ ) does not need to be pure.

reservoir have been studied in great detail for cavity or circuit
QED models [19,22]. There are, however, some exceptions,
both theoretical and experimental. In his seminal work [23],
J. Gea-Banacloche explained how inherent decoherence may
cause peculiar effects in cavity QED systems. Consider-
ing the JC model with the field initially in a coherent
state with a large amplitude, it was shown how the qubit
disentangle from the field at half the revival time, regardless
of the initial state of the qubit [23]. In the qubit subspace,
the evolution is clearly nonunitary since the overlap (angle)
between any two initial qubit states is not preserved. A
physical picture of this phenomenon is given in Ref. [24]. In a
couple of experiments performed by the ENS group in Paris,
loss of qubit coherence due to interaction with a microwave
cavity field was demonstrated [25]. A similar idea was later
applied in circuit QED, and the qubit dephasing deriving from
measurement back-action was studied [26]. In the present
work we analyze a plethora of decoherence phenomena, both
inherent and external, in a bimodal cavity or circuit QED
system. Decoherence originating from nonunitary subsystem
evolution, irreversible coupling to surrounding environments,
as well as irreversible coupling to a measurement device are
discussed.

In particular, a two-level system (qubit) induces an effective
coupling between two quantized photon modes. In the disper-
sive regime, as is studied here, the qubit mediated tunneling
between the two boson modes shows much resemblance
with a bosonic Josephson junction, appearing for example in
Bose-Einstein condensates in double-well potentials [27,28] or
via coupling of atomic Zeeman levels in a spinor condensate
[29]. The photonic counterpart of the Josephson effect has
currently been considered in either coupled cavity systems
(where the nonlinearity is of a JC photon blockade type)
[10] or in optomechanical cavity systems (where nonlinearity
instead stems from a mechanical photon blockade effect) [11].
Unlike Refs. [10,11], the Josephson effect studied in this
work is intrinsic and not as in earlier publications where the
effect is extrinsic and the Josephson current appears in real
space. Moreover, the qubit in our scheme brings out both the
boson tunneling as well as the nonlinearity. In this respect,
our model shares more similarities with the recent works of
Ref. [30]. The models of Ref. [30] are, however, both linear.
Studying the linear entropy or the qubit Bloch vector, we find
that inherent decoherence shows a Gaussian decay signaling
non-Markovianity. The nonlinearity causes a collapse-revival

pattern in the Josephson oscillations, similar to the collapse
revivals found in the JC model [12]. In contrast, the linear
entropy of the qubit shows a much richer collapse-revival
structure containing a series of well-established fractional
revivals. Measuring the qubit state, and especially the Bloch
vector amplitude, provides direct information about the
Josephson dynamics. However, the qubit dephasing resulting
from nondemolition qubit measurement causes an exponential
decay in the oscillations. For nonselective qubit measurements,
the Josephson current can be considerably slowed down via the
quantum Zeno effect. Somewhat surprising, for a dissipating
cavity, the scaled Josephson current does not decay exponen-
tially but rather in a Gaussian way and it is found that, for
realistic system parameters, around 10 full oscillations survive.
The bimodal JC model is integrable and thermalization is
not to be expected. Including the counter-rotating terms, i.e.,
going beyond the rotating-wave approximation, we consider
a weaker sort of thermalization related to the analysis of
Ref. [31]. Despite the close similarity with the generic model
of Ref. [31], we do not encounter thermalization. We further
evidence the absence of thermalization by consider long-time
state averages as was recently proposed in Ref. [32]. In this
sense our system does not thermalize.

The paper continues as follows. In the next section, the
model system is introduced and the photonic Josephson effect
demonstrated. In the linear regime we present an analytical
approximation giving a deeper understanding of the effect.
Section III proceeds by considering the evolution of the
qubit subsystem. Since the full system is so far assumed
closed, the field and the qubit subsystems exhibits the same
type of reduced evolution. Gaussian decay together with
periodic recurrences of the coherence is found. Effects deriving
from nondemolition or nonselective qubit measurements are
addressed in Sec. IV, while the following Sec. V considers the
more complete picture where the cavity has been coupled to
a zero-temperature photon bath. In Sec. VI, the prospects of a
weak kind of thermalization is analyzed. Finally, concluding
remarks are presented in Sec. VII.

II. INTRINSIC PHOTONIC JOSEPHSON EFFECT IN A
BIMODAL RESONATOR

We consider a two-level system, either an atom or ion inter-
acting with an optical Fabry-Perot cavity or a superconducting
qubit embedded in a transmission line resonator. We will call
the two-level system a qubit and describe it using the Pauli
matrices [σ̂z,σ̂

±] = ±2σ̂± and σ̂z|±〉 = ±|±〉, where |±〉 are
the two internal qubit states. The energy difference between the
two qubit states is h̄�. The resonator supports two quantized
modes, quasiresonant with the qubit transition. We will take
the two modes as degenerate with frequency ωc, but point out
that the degeneracy is not crucial and could, in principle, be
lifted. Introducing coherent driving of the two modes with
amplitude η, the Hamiltonian becomes (h̄ = 1)

Ĥ = ωc(â†â + b̂†b̂) + �

2
σ̂z

+ ga(â†σ̂− + σ̂+â) + gb(b̂†σ̂− + σ̂+b̂)

+ ga(â†σ̂+ + σ̂−â) + gb(b̂†σ̂+ + σ̂−b̂)

− iη(âe−iωpt − â†eiωpt ) − iη(b̂e−iωpt − b̂†eiωpt ), (1)
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where â and b̂ (â† and b̂†) are the annihilation (creation)
operators of the two modes, ga,b are the qubit-field coupling
strengths that have been taken real, and ωp is the frequency of
the driving field. The third line represents the counter-rotating
terms. Turning to a rotating frame with respect to the pumping,
and after imposing the rotating-wave approximation (RWA),
we have the time-independent Hamiltonian

ĤRWA = δ(â†â + b̂†b̂) + �

2
σ̂z

+ ga(â†σ̂− + σ̂+â) + gb(b̂†σ̂− + σ̂+b̂)

− iη(â − â†) − iη(b̂ − b̂†). (2)

Here, δ = ωc − ωp and � = � − ωp are the cavity-pump and
atom-pump detunings, respectively. For resonant driving (δ =
0) of a cavity without the qubit, energy will be constantly
pumped into the two modes. For δ �= 0, on the other hand, the
system will reach a coherent steady state with 〈n̂a,b〉 = η2/δ2.

With g ≡√
g2

a+g2
b and cos θ = ga/g, we define a new set of

boson operators[
Â

B̂

]
=

[
cos θ sin θ

− sin θ cos θ

][
â

b̂

]
. (3)

For ga = gb, which will be the situation considered throughout
this work, the above rotation is a simple Hadamard rotation
of the two boson modes. In the lossless case, assuming zero
pumping (η = 0), the RWA Hamiltonian is

Ĥ0 = δ(Â†Â + B̂†B̂) + δ

2
σ̂z

+ g
√

2(Â†σ̂− + σ̂+Â). (4)

Thus, in the transformed picture the two boson modes are
decoupled and the qubit interacts with the A mode according
to a JC type. In the large detuning regime, � � g

√
〈Â†Â〉, we

impose an adiabatic approximation [33] to find, up to some
trivial constants,

Ĥ0 = δ(Â†Â + B̂†B̂) + 2UÂ†Âσ̂z − 4U 2

�
(Â†Â)2σ̂z + · · · ,

(5)

where U = g2/�. Even though the Hamiltonian is diagonal
in the Fock basis of the A and B modes, the original a and
b modes still couple in a nontrivial manner since

Â†Â = 1
2 (n̂a + n̂b + â†b̂ + b̂†â), (6)

where the photon numbers n̂α = α̂†α̂. Neglecting the nonlinear
terms, the linearized Hamiltonian becomes

Ĥ0 ≈ δz(n̂a + n̂b) + U (â†b̂ + b̂†â)σ̂z, (7)

with the Stark shifted frequencies δz = δ + σ̂zU . The total
number of photons, N̂ ≡ n̂a + n̂b, is conserved and the
dynamics depends solely on U .

With the Hamiltonian Ĥ0 of Eq. (7), it is clear that any initial
field state |ψa,0〉, where |ψa,ψb〉 represents the composite state
with the a mode in |ψa〉 and the b mode in |ψb〉, transforms
into (up to an overall phase) |0,ψa〉 after a time tj = π/2U ,
regardless of the atomic initial state. This is the analog of
intrinsic bosonic Josephson oscillations for photons. In the

earlier works on the photonic Josephson effect [10,11] photons
tunneled between spatially separated regions, while here they
tunnel between two orthogonal cavity modes. To make things
more transparent, lets assume the a mode to be initially in a
coherent state with amplitude α, â|α〉 = α|α〉, the b mode in
vacuum, and the qubit in the superposition state |ϕ〉 = (|+〉 +
|−〉)/√2, i.e.,

|�(0)〉 = |α,0〉 1√
2

(|+〉 + |−〉). (8)

In the interaction picture, the time evolved state reads

|�(t)〉 = 1√
2

[|α(e−i2Ut − 1)/2,α(e−i2Ut + 1)/2〉|+〉

+ |α(ei2Ut − 1)/2,α(ei2Ut + 1)/2〉|−〉], (9)

and for the scaled photon inversion defined as

Z(t) ≡ 〈n̂a〉 − 〈n̂b〉
〈n̂a〉 + 〈n̂b〉 (10)

we have Z(t) = cos(2Ut). This result is an ideal case where
losses and nonlinear contributions have been ignored. In the
next sections we will discuss the influences of dissipation and
decoherence, while we now consider the consequences of the
nonlinearity.

Typically, nonlinearity plays an important role in Josephson
dynamics. In the bosonic Josephson junction, it gives rise to
effects like self-trapping [27,28] and collapse revivals [34,35].
Self-trapping appears since the nonlinearity can be seen as
inducing effective shifts in the two mode frequencies and
when these are out of resonance the population swapping
is hindered. A collapse in the oscillations derives from the
fact that the nonlinearity disturbs the equividistant energy
spectrum of the linear model (7) and this in turn leads to
a destructive interference effect in the dynamics [36]. If at
some later time tr , the evolving eigenphases contained in the
propagated state return back in phase a revival of the Josephson
oscillations occurs. For revivals to be possible, the spectrum
should be discrete and quasilinear, i.e., the nonlinearity cannot
become too strong. In the language of cavity QED, revivals
are direct proof of the quantized nature of the electromagnetic
field [37], while a collapse could, in principle, derive from
any fluctuations. We conclude from the fact that our system
is governed by JC dynamics that a self-trapping effect should
not be found, while collapse revivals are expected.

The result for the scaled photon inversion Z(t), obtained
from numerically solving the driven two-mode JC model (2),
is presented in Fig. 2. We truncate the Hilbert space such
that Tr[ρ(t)] ≈ 1, with ρ(t) the full density operator. In (a)
we give the inversion for long times, while in (c) we display
the short-time behavior. The fast oscillating fluctuations in
Z(t) seen in (c) derives from the nonzero driving (η �= 0).
The long-time dynamics exhibits a typical collapse-revival
structure as found in the JC model [12,13,38]. However, in the
present bimodal model the collapse-revival structure is much
more complex compared to the regular JC model. In order to
demonstrate this we introduce the linear entropy of the field or
the qubit [39]

Pf,q (t) = 1 − Tr
[
ρ2

f,q (t)
]
, (11)
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FIG. 2. Time evolution of the scaled photon inversion Z(t) (a) and
(c) and linear entropy (b) for the Hamiltonian (2). As an initial state we
have a coherent state with amplitude α = 4 in the a mode, vacuum in
the b mode, and the qubit in (|+〉 + |−〉)/√2. Due to the nonlinearity
of the JC model, a clear collapse-revival pattern emerges. The linear
entropy displays a more pronounced collapse-revival pattern than the
inversion. The dimensionless parameters are g = 1, � = 50, δ = 1,
and η = 0.1.

where ρf,q = Trq,f [ρ] is the reduced density operator of
the field “f ” or the qubit “q” and ρ is the full system’s
density operator. Linear entropy is a measure of purity of
the state ρf,q , with Pf,q = 0 representing the pure state, and
for the special case of a qubit maximum mixedness gives
Pq = 1/2. Whenever the evolution is unitary and the initial
state is pure one has Pf (t) = Pq(t) [40]. Therefore, we do
not need to distinguish between the two subsystem’s linear
entropies in this case. For the above example, we plot in
Fig. 2(b) the corresponding linear entropy. This time the
collapse-revival structure is much more complex, indicating
that rich dynamics is occurring even within the collapse region
indicated by (a). The revival peaks are marked according to
standard conventions [36]. In a collapse region, the phase-
space distributions are smeared out over the whole accessible
part of the phase space [41]. At the 1/2 peak the distribution
reforms, however, 180◦ out of phase from its initial position,
while at the 1/1 revival it reforms at its original location [41].
The remaining fractional revivals represent partial restoration
of the phase-space distributions, which then form several
localized blobs in phase space and not single ones as is the
case for the 1/2 and the 1/1 revivals [41]. Increasing the
nonlinearity, i.e., increasing the fraction g/�, results in shorter
revival periods but also in less pronounced revivals.

III. FIELD-INDUCED DECOHERENCE OF THE QUBIT

Decoherence of a quantum system is seen as loss of
information, which is only possible by coupling the system
to some other system. If the additional system contains a large
number of degrees of freedom, the information can be shared
in many ways and it takes a long time to restore the information
in the initial system. If the number of degrees of freedom goes

to infinity and the various coupling strengths varies, we expect
the information to be forever lost. When we neglect any back-
action of the reservoir onto the system we say that the evolution
of our system is Markovian [19]. Markovian dynamics is
described by irreversible evolution (i.e., nonunitary), typically
leading to exponential loss rates. As the reservoir size is finite
or for very structured reservoirs, non-Markovian effects may
become important giving rise to recurrences of information
and, moreover, to nonexponential decay [19]. In particular,
for short times a Markovian decay is linear in time while
non-Markovian decay is typically quadratic. In this section we
will discuss the inherent decoherence effects the cavity fields
induces on the qubit.

In some recent publications, Sokolovski and coworkers con-
sidered a quibit coupled to a bosonic Josephson junction [30].
A Bose-Einstein condensate trapped in a double-well potential
is analyzed. The qubit couples to the barrier separating the two
wells, and in this respect its internal state controls the tunneling
rate between the condensates. As such, they introduced the
name “quantum gatekeeper model” for this setup. At first,
the condensate was seen as a reservoir for the qubit, and the
inherent decoherence of the qubit was studied. The qubit as a
measuring device for the bosonic Josephson oscillations was
then analyzed. In many aspects, the current system shows
great resemblance with the gatekeeper model. There are some
crucial differences though; the bosonic modes in our model
induces coupling between the qubit levels, i.e., our model is
intrinsically nonlinear, and the photon tunneling is present
for both internal qubit states. In principle, as demonstrated
in the previous section, transitions within the qubit can be
neglected by considering the limit of large detuning. Moreover,
by including a second qubit residing all the time in its lower
state |−〉 but still couple identically to the boson modes as the
first qubit, it is possible to construct an identical gatekeeper
model as in Ref. [30]. We, however, will keep only a single
qubit and allow for qubit transitions and thereby for nonlinear
effects.

Throughout this work, the two qubit states |±〉 are assumed
meta-stable such that dissipation and decoherence can be
neglected. In this section we further take any cavity losses
to be zero within the time scale of the experiment. Cavity
losses and its effects will be investigated in Sec. VI. Our initial
state will be taken to have the form (8).

The time evolution in the dispersive linear regime is given
by Eq. (9), and we find the reduced density operator for the
qubit

ρq(t) =
[
ρ++ ρ−+
ρ+− ρ−−

]
, (12)

where ρ++ = ρ−− = 1/2 and

ρ−+ = 1
2e−|α|2 sin2(2Ut)ei2|α|2 sin(2Ut), (13)

such that the linear entropy becomes

P (t) = 1
2 (1 − e−2|α|2 sin2(2Ut)). (14)

The short time decay of the coherence term ρ−+ is quadratic in
t as expected for non-Markovian decoherence, and, similarly,
the linear entropy grows quadratically in t . In this linear
approximate model, at t = π/2U , the coherence is fully
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FIG. 3. (Color online) Comparison of the linear entropy as ob-
tained from the analytical approximate result (14) or from numerical
diagonalizition of the Hamiltonian (2) [analytic approximation (green
dashed lines) and numerical (black solid lines)]. In (a) the parameters
are as in Fig. 2, i.e., the nonlinearities are weak, while in (b) � = 20
increasing the effects of nonlinearities.

recovered. For unitary evolution with initial pure states, the
linear entropy is a good measure of entanglement, and we
therefore see that the two fields quickly become entangled with
the qubit. For large field amplitudes |α|, the two subsystems
stays almost completely entangled until they fully disentangle
at tj = π/2U . Thus, the qubit rapidly loses information
(coherence) to the two boson modes, but since the system
is finite the information is restored periodically in time. Once
the information is completely transferred to the two modes,
the qubit is maximally entangled with the cavity fields. Note
that the disentanglement occurs when the photonic Josephson
junction has performed half an oscillation, i.e., when the initial
coherent state in mode a has been transfered to mode b.

The above analytical model is an idealized case where we
completely disregarded nonlinearities. In Fig. 3, we therefore
compare the analytical results with results obtained from a full
numerical diagonalization of the Hamiltonian. As for Fig. 3,
the nonzero pumping induces small rapid oscillations. In the
upper plot [Fig. 3(a)], the parameters are the same as those in
Fig. 2 and we find that the analytic approximations captures
well the overall structures. The oscillations deriving from
the pumping is naturally not seen in the analytic results. In
the lower plot (b) we decrease the detuning � in order to
increase the nonlinearity, and, as expected, the two results
begin to diverge. Figure 3 gives dynamics at the time scale of
the Josephson oscillations, while in the previous section we
studied evolution on the scale of collapse revivals. Naturally,
the linear analytical model of Eq. (14) is not capable of
catching the collapse-revival patterns of Fig. 2(b).

In the “gatekeeper model” of Ref. [30], the qubit was
suggested as a quantum “meter” measuring the Josephson
oscillations of the Bose-Einstein condensate. In that model,
if the qubit occupies its upper state |+〉 Josephson oscillations
took place, while if the qubit resided in its lower state |−〉
oscillations were blocked. Thereby, by measuring the effective
amount of time the qubit has spent in the state |+〉 one knows
for how long the oscillations (“the gate”) has been turned on
(“open”). The situation differs in our case since Josephson

oscillations are independent of whether the qubit is in |+〉 or
|−〉. This, however, does not imply that the qubit does not carry
any information about the oscillations. In a Bloch picture, since
〈σ̂z〉 ≈ 0 the Bloch vector R(t) ≡ (〈σ̂x〉,〈σ̂y〉,〈σ̂z〉) revolve
mainly along the equator of the Bloch sphere. Thereby, in
our system it should be more practical to measure 〈σ̂x〉 or 〈σ̂y〉
instead of 〈σ̂z〉. Another possibility is to measure the length of
the Bloch vector. In our analytic model we have

〈σ̂x〉 = e−|α|2 sin2(2Ut) cos[2|α|2 sin(2Ut)],
(15)

〈σ̂y〉 = e−|α|2 sin2(2Ut) sin[2|α|2 sin(2Ut)],

and for the length of the Bloch vector

|R(t)| = e−|α|2 sin2(2Ut). (16)

In the vicinity of the disentanglement times tj = nπ/2U

(n = 0, 1, 2, . . .), the Bloch vector length is roughly unity.
In between the disentanglement, the vector length rapidly
shrinks to approximately zero. The area covered by the Bloch
vector during one disentanglement period can be approximated
by I = ∫

dt e−|α|2(2Ut)2 =
√

π/4U |α|2. The function �(t) ≡∫ t

0 dt ′|R(t ′)| should thereby have a stairlike shape increasing
in steps ∼I. In Fig. 4 we present the numerical results
of �(t) compared to the integration of |R(t)| of Eq. (16).
The parameters and initial conditions are the same as for
Fig. 3(a). From the figure it is clear that even in the collapse
regions, the two subsystems (fields and qubit) are not fully
entangled, which would be reflected in a Bloch vector of zero
length. The analytic results (green curve) still captures the
general structure of the numerical results (black curve). As a
conclusion, by measuring |R(t)|, and thereby �(t), the number
of Josephson oscillations performed by the cavity fields is
obtained. Measuring the qubit dipole movements 〈σ̂x〉 and 〈σ̂y〉
is easily obtained by detecting the qubit population inversion
after a π/2 pulse has been applied to the qubit [1]. Any
measurement on the qubit will, however, induce a perturbance,
whether it is in the qubit population or in its coherence. While
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FIG. 4. (Color online) The integration of the Bloch vector length
obtained from the numerical results (black solid line) and from the
analytical expression (16) (green dashed line). The parameters are
taken the same as in Fig. 3(a). When integrated, the discrepancy
between the analytical and numerical results for the Bloch vector
amplitude adds up and the two curves diverge, even though the
qualitative structure is the same.
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such effects were disregarded from the analysis of Ref. [30],
we address them in the next section.

IV. QUBIT MEASUREMENT INDUCED DECOHERENC OF
THE JOSEPHSON EFFECT

In its original idea [42], the Josephson effect is a macro-
scopic quantum phenomenon describing a current across the
bulk of two attached superconductors. A common quantum
coherence among the constituent electrons is the crucial aspect
for a nonzero current. At the mean-field level, the relative
phase between the two superconductors are directly coupled
to the inversion Z(t) [27]. The question in our system then
raises the question regarding how a qubit measurement will
affect the Josephson oscillations. For example, we note that
since the Stark shifts of the qubit states |±〉 depend on the
photon number, the back-action noise from measuring the
relative phase between the qubit states should manifest itself in
the phase coherence of the cavity fields. Apart from dephasing,
more drastic outcomes may appear when the measurement is
projective. Most well known is the Zeno slowing down caused
by repeatedly reprojecting the system state. In this section, we
will analyze both the case of pure dephasing and Zeno slowing
down.

A. Measurement-induced dephasing

A qubit measurement relying on, for example, ionization is,
of course, destructive. Once measured, the qubit is “destroyed.”
The idea of a quantum nondemolition (QND) measurement
is that repeated measurements can be performed on one
and the same system, all yielding the same outcome. Let
us take a physical quantity characterized by some operator
Â, then if Â commutes with the system Hamiltonian and
the measurement of Â does not induce any back-action
noise on Â, a second measurement of Â will reveal the
same value as the first measurement [43]. Even though the
measurement does not have any back-action effect on Â,
according to quantum mechanics it will induce noise in the
conjugate variable of Â. In cavity QED, in order to measure
the photon number of the quantized cavity mode, QND
measurements has been thoroughly analyzed both theoretically
[44] and experimentally [45]. Similar QND measurements
have been carried out also in circuit QED [46]. Our goal is
not, however, to measure the number of photons contained
in the resonator, but to measure the state of the qubit.
For superconducting qubits, such QND measurements have
recently been demonstrated [47]. The picture we have in mind
is that the qubit level-population is detected nondestructively,
i.e., measuring σ̂z. Since neither σ̂x nor σ̂y commutes with σ̂z,
the measurement induces a qubit dephasing [48]. In the bosonic
Josephson junction, decoherence has been shown to suppress
the oscillations [35,49]. For Bose-Einstein condensates in
double-well potentials, the loss of coherence (phase diffusion)
is mainly due to atom-atom interactions [50]. The dephasing
we consider in this section has a different nature as it affects
the anchilla system and not the boson modes directly.

We assume this QND measurement to be an irreversible
process that can be modeled by a master equation [19], i.e.,
the measurement is continuous and far from a traditional

von Neumann measurement. As no dissipation occurs, we
write down the equation of motion for the full density operator
as

∂ρ(t)

∂t
= −i[ρ(t),ĤRWA]

+ γ
(
2σ̂xρ(t)σ̂x − σ̂ 2

x ρ(t) − ρ(t)σ̂ 2
x

)
, (17)

where γ is the effective decoherence rate induced by the
measurements. Letting γ = 0 we find identical evolution as
in Figs. 2 and 3. Once γ �= 0, the off-diagonal terms ρ−+
and ρ+− of the atomic density operator will typically show an
exponential decay [19].

We solve the master equation (17) by simple Newton
integration, valid to order O(dt2) in the time-step dt . However,
in its simplest form, the first part describing regular Hamilto-
nian dynamics becomes nonunitary and the method is greatly
unstable. Therefore, the first unitary evolution is taken into
account in all orders of dt , while the irreversible evolution
is performed to order O(dt2). As long as dt is small this
should be justified, and to be completely sure we have verified
convergence of our results by varying dt .

In Fig. 5, the photonic inversion (a) together
with the Bloch vector amplitude (b) are displayed. It is seen
that the Josephson oscillations decay exponential, indicating
that the noise induced by the qubit measurement propagates to
the fields and thereby demolishes the macroscopic coherence
needed for the oscillations. As pointed out in the introduction,
this exponential decay signals an irreversible loss of coherence.
The Bloch vector amplitude shows an interplay between the
non-Markovian inherent decoherence resulting from coupling
to the two cavity modes and Markovian external decoherence
due to the qubit measurements. The exponential decay rate is
set by γ , and in the most simple approximation we get

|R(t)| = e−|α|2 sin2(2Ut)−γ t . (18)
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FIG. 5. (Color online) The scaled photonic inversion Z(t) of
Eq. (10) and the amplitude of the Bloch vector |R(t)|, as obtained
from numerical integration of the master equation (17) (black
solid lines). The green dashed line shows the comparison with the
analytical approximation (18) for the Bloch vector amplitude. Both
the Josephson oscillations and the Bloch vector decay exponential
due to the qubit measurements. The decoherence rate γ = 0.005, and
the remaining parameters are as in Fig. 2.
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From Fig. 5(b) we note that the analytical approximation (18)
(green curve) slightly overestimates the exponential decay.
A large γ implies that information about the qubit, and
thereby the boson modes, is rapidly leaked from the system
to the “observer/meter.” If the measurement is perfect, i.e.,
a complete knowledge of the system is obtained, all the
coherence shared between the two subsystems gets lost, and
the qubit disentangles from the two modes. There is hence a
trade-off between the information subtracted and the survival
of the Josephson oscillations. We note that using the qubit as
a meter was recently utilized in a circuit scheme measuring
the quantum state of a mechanical (rather than an optical)
resonator [51].

B. Quantum Zeno effect

Repeatedly measuring a system affects the effective evo-
lution of the system. The extreme situation of freezing the
evolution by constantly projecting the system state back onto
its initial state is the idea behind the quantum Zeno effect [52].
In reality, no measurement is expected to be instantaneous
resulting in a “dead time” after each measurement. In this
respect an ideal Zeno effect is unlikely [52]. This, however,
does not prevent a slowing-down effect, which was recently
demonstrated within cavity QED [53]. We briefly discussed the
evolution of a cavity mode under coherent external pumping.
For an empty mode, the field growth is initially quadratic in
time. Under a Zeno slowing down, this becomes linear in
time [53]. A quadratic growth hinges on coherently adding
up the injected field, while repeated QND measurements
destroys the field phase. The injected field can then be seen as
making a random walk in phase space and thereby the linear
growth. We will not consider the field buildup due to external
pumping but instead consider the growth of the initially empty
cavity mode deriving from photon tunneling between the two
modes. We have seen that such growth is as well quadratic for
small times t . In order to separate it from external pumping
we pick η = 0.

The approach of the previous subsection is not capable of
describing the Zeno slowing down since we pictured a constant
loss of information and no repeated phase disturbances. We
will, therefore, instead, assume repeated nonselective qubit
measurements [54]. At times tn = nτ (n = 1, 2, . . .) the qubit
population is measured but the result is not recorded. The
correlations between the fields and the qubit is taken to be
fully demolished by the measurement, hence

ρ(t) → ρf (t)ρq(t). (19)

In between measurements, the system evolves unitarily as
Ûτ = exp(−iĤRWAτ ). Since the measurements are taken to
be instantaneous, the full evolution operator becomes

Û (t,τ ) = [M̂Ûτ ]k, (20)

where M̂ is the field-qubit disentanglement operator charac-
terizing the measurement, and k is the largest integer such that
0 � t − kτ � 1. If τ is small, the coherent buildup of the field
is frequently interrupted and we expect a slow and linear field
increase.

The predicted linear rise of the field amplitude is numer-
ically demonstrated in Fig. 6 for various values of τ . For no
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FIG. 6. (Color online) Evolution of the field intensity 〈n̂b〉 under
repeated nonselective qubit measurements. The different curves
correspond to different measurement frequencies: (red curve) τ = ∞,
(green curve) τ = 1/100, (blue curve) τ = 1/500, (pink curve)
τ = 1/1000, and (black curve) τ = 1/1500. The dimensionless
parameters are, g = 1, � = 50, δ = 1, η = 0, and α = 2.

measurements, τ = ∞, the field grows quadratically from time
t = 0. When τ is decreased we find a regime of linear growth
which passes over into a quadratic regime. The smaller the τ ,
the smaller the incline and therefore the more the quadratic
evolution is inhibited. The figure is a typical example of the
Zeno slowing down [53,55].

For a composite system A+B, it has been demonstrated
that repeated projective measurements on subsystem A render
a purification of subsystem B [56]. Letting the ρ(0) =
ρA(0)ρB(0), with ρA(0) = |ψA(0)〉〈ψA(0)|, be the initial state,
the projective measurements divide the unitary evolution at
tn = nτ (n = 1, 2, . . .) according to

ρ(t) → ρB(t)|ψA(0)〉〈ψA(0)|. (21)

In the case of nonselective measurements a disentanglement
between the two subsystems appears, whereas for projective
measurements, in addition to disentanglement, the A system
is as well reset to its initial state. Regardless of the initial state
ρB(0), the effective evolution will translate into a pure state.
This is the idea behind measurement-controlled evolution
[56,57]. In the present system, we have verified that this
mechanism indeed works. Various initial states like coherent
and thermal field states have been considered, and in every
case the purity of the field subsystem approaches unity after
sufficiently many projective qubit measurements. The specific
purified field state differs among various initial field states.
In certain situations the fields approach Fock states, but this
seems not to be a generic feature.

V. RESERVOIR-INDUCED DECOHERENCE

So far we have considered decoherence as either inherent
or imposed via qubit measurements. We now proceed by
analyzing the effects deriving from coupling the photon modes
to a zero-temperature reservoir. The two qubit states |±〉 are
still taken to be metastable and losses are therefore solely in
the boson fields. As for the case of qubit measurements, we
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model the irreversible coupling with a master equation [22]:

∂ρ(t)

∂t
= −i[ρ(t),ĤRWA]

+ κ(2âρ(t)â† − n̂aρ(t) − ρ(t)n̂a)

+ κ(2b̂ρ(t)b̂† − n̂bρ(t) − ρ(t)n̂b). (22)

Here, κ is the common decay rate of the two modes. The above
equation is commonly used for a zero-temperature photon
reservoir, the generalization to a nonzero temperature typically
implies two extra Lindblad terms that are as well proportional
to κ . In the case of strong qubit-field coupling, it has been
shown that such a master equation does not, in general, decay
into the correct canonical distribution [58]. However, at zero
temperature as considered here, the long time behavior of the
above master equation is physically relevant [58]. In contrast to
Eq. (17), which describes decoherence, the above equation (22)
results in dissipation of cavity photons to the reservoirs. As
will be seen, pure dephasing and dissipation have different
influences on the Josephson oscillations. Direct dephasing of
the boson modes, without dissipation, is obtained by replacing
â and â† with n̂a (and similarly for the b mode) in the two
Linblad terms.

Exactly like in the previous sections, we can find an
analytical solution of Eq. (22) in the linear dispersive regime
[59]. In the long time limit and letting δ = 0, the atomic density
operator becomes

ρat(t) = 1

2

[
1 ρ+−

ρ−+ 1

]
, (23)

where

ρ+− = p̃e
−κη2( U

κ2+U2 )2t (24)

and p̃ is a complex time-independent factor of order unity [59].
The form of the field density operator reads

ρf = 1
2 [|a+,b+〉〈a+,b+| + |a−,b,〉〈a−,b−|], (25)

where the explicit expressions for the coherent amplitudes
a±(t) and b±(t) in the most general case are rather complex;
see Ref. [59]. They become, however, simple in the limit of no
pumping, η = 0,

〈n̂a〉 = α2

2
e−2κt [1 + cos(2Ut)],

(26)

〈n̂b〉 = α2

2
e−2κt [1 − cos(2Ut)].

It follows that the inversion Z(t) = cos(2Ut) as without losses.
In general though, with η �= 0, the expression for the inversion
becomes very complicated. Nonetheless, for this case we note
that generally 〈n̂a〉 �= 〈n̂b〉 in the limit t → ∞. This derives
from the fact that the two mode were initially differently
populated. As a consequence of this, the photonic inversion
does not approach zero; limt→∞ Z(t) �= 0. Moreover, as long
as δ �= 0, the initial decay of Z(t) is not exponential, which is in
contrast to pure dephasing. We will also see that nonlinearities
beyond the above analytical model play an important role.

As before, our numerical investigation goes beyond the
linear regime of the analytical consideration. We solve the
master equation (22) with the same procedure as in the previous
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FIG. 7. Evolution of the scaled photon inversion Z(t) (a) and
the Bloch vector amplitude |R(t)| (b) in the presence of photon
dissipation. The Bloch vector amplitude displays a combination of
Gaussian and exponential decay. The scaled Josephson oscillations,
however, survives much longer. The parameters are as in Fig. 2,
but with α = 3 and κ = 0.0012g corresponding to the experimental
decay rate of Ref. [60].

section. For the photon decay rate we take an experimentally
relevant value of κ = 0.0012g [60]. The numerical results are
shown in Fig. 7. The rest of the parameters are the same as
in the example of Fig. 2, except that the amplitude of the
initial coherent state α = 3 (instead of α = 4 as in Fig. 2).
As in the case of pure dephasing, the Bloch vector amplitude
displays an interplay between Gaussian decay and recurrences
and exponential decay. Contrary to the example of dephasing,
the amplitude does not approach zero in the long time limit.
This does not, however, imply that the qubit is entangled with
the boson modes. Since the evolution is not unitary, the linear
entropy (nor the Bloch vector amplitude) is a good measure
of entanglement. In fact, the off-diagonal elements of both ρat

and ρf vanish in the long time limit.
It is interesting to note that the behavior of the system

with photon dissipation differs markedly from the case with
dephasing. Dephasing induced an exponential decay of the
photon numbers 〈n̂a〉 and 〈n̂b〉 such that 〈n̂a〉 = 〈n̂b〉 for large
times. The same kind of exponential decay was seen in the
photon inversion Z(t) [see Fig. 5 (a)]. Dissipation causes
as well an exponential decay of 〈n̂a〉 and 〈n̂b〉 toward their
steady-state values, but Z(t), on the other hand, does not
decay exponentially. At first, the scaled Josephson current
is not greatly affected by the dissipation. After about six
full Josephson oscillations, the scaled current begin to decay,
however, with something more reminiscent of Gaussian decay.
As the amplitudes of the two modes decrease, the rapid
oscillations deriving from the nonzero pumping becomes more
pronounced, and after around 20 full oscillations the pumping-
induced fluctuations washes out the Josephson oscillations and
a new structure in Z(t) emerges. This additional inference
pattern is not seen in the regime where the Josephson
oscillations are still well resolved. It is important to point
out that, even though the Josephson oscillations may survive
a relatively long time, it should be noted that the photon
amplitudes 〈n̂a〉 and 〈n̂b〉 can become very small, putting
limitations on photon detection. Today, on the other hand,
very small field amplitudes (〈n̂〉 
 1) can be measured [1].

In order to confirm the differences between dephasing
and dissipation of the boson modes (Figs. 5 and 7), we
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have numerically solved the dephasing master equation, i.e.,
replacing â and â† by n̂a and replacing b̂ and b̂† with n̂b

in the Linblad terms. This time, the inversion Z(t) decays
exponentially in a similar way as in Fig. 5(a).

Figure 7 has been calculated using physically relevant
parameters and we thereby conclude that the intrinsic photonic
Josephson effect should indeed be realizable. However, only
around 10 Josephson oscillations survive. On the other hand,
the intrinsic and extrinsic bosonic Josephson effect studied in
Bose-Einstein condensates is typically detected only during
a few oscillations [28,61]. Our numerical analysis does not
allow us to go to larger photon numbers, but increasing the
initial amplitude α may prolong the oscillation time. It should
be noted, though, that increasing the number of photons while
keeping the detuning � fixed increases the nonlinearity, which
might lead to undesired effects. Stronger pumping will help
in terms of preserving a measurable number of photons in the
two modes, but it will as well imply a bigger impact of rapid
oscillations on top of the Josephson oscillations. Optimizing
the system parameters might be tricky, but it is nonetheless
clear that the example of Fig. 7 is probably not at all the most
optimal one in terms of a sustainable Josephson effect.

VI. QUANTUM THERMALIZATION?

Thermalization in quantum systems is normally attributed
to dissipation and external decoherence [19,22]. Assuming
a quantum system S to be irreversibly coupled to a thermal
reservoir with some characteristic temperature T , and denoting
the state of the system as ρs , by waiting long enough, the state
of the system normally becomes diagonal and of the form

ρs ∝ e−βĤs , (27)

where Ĥs is the system Hamiltonian and β = kBT is the
Boltzmann’s constant time temperature T . The reduction of
the off-diagonal coherence terms of ρs is an outcome of
the dissipation and decoherence induced by the reservoir.
On the other hand, assuming ρs to be initially pure and the
system to be closed, it follows that ρs will remain pure, i.e.,
Tr[ρ2

s (t)] = 1. However, this does not forbid the state ρA

of subsystem A of the total system S to become diagonal.
We saw examples of temporary subsystem diagonalization
in the previous sections. This, of course, is an effect of
the inherent decoherence enforced on subsystem A. Whether
a recurrence of the off-diagonal terms appears is a highly
legitimate question. More precisely, one wishes to understand
if, why, and how ρA attains an asymptotic diagonal distribution
that can be modeled by a microcanonical ensemble. When
thermalized, the asymptotics of any expectation value of some
operator Â acting on the subsystem A can be obtained from
statistical mechanical arguments. This is a topic of current
intense research [18]. A rule of thumb is that a chaotic system
thermalizes in the above sense. The present model, in its
closed counterpart, Eq. (2), is not chaotic and contains only
a few degrees of freedom, and one thereby does not expect
thermalization. In fact, we know that for relatively localized
initial states (〈�n̂〉 ∼ 〈n̂〉), the JC model possesses a series of
collapse revivals [12], and we will not have any thermalization.
Things may become more interesting if we go beyond the RWA
and include the counter-rotating terms to our Hamiltonian. The

model is then believed to be nonintegrable [13,62]. Even so,
within the range of our numerics, generic thermalization is
not found in our model. Instead, we will consider an even
weaker type of thermalization that was recently discussed by
Ponomarev et al. in Ref. [31]. Their model does not put any
constraints on integrability nor on a large number of degrees
of freedom. In this respect it is more related to the system at
hand.

The Hamiltonian considered in Ref. [31] has the form

ĤP = ĤA + ĤB + Ĥint, (28)

where ĤA and ĤB act in subsystems A and B, respectively,
and they are assumed identical, ĤA = ĤB ; furthermore, the
interaction is taken on the form Ĥint = ŶA ⊗ ŶB , where ŶA =
ŶB and they too act in the respective subsystems. Thus far,
the model is rather generic. However, one more constraint
is assumed. Letting En be the nth eigenvalue of ĤP , they
assumed En − Em = Es − Ew if and only if s = n and w =
m. Within this model, Ponomarev et al. showed that for an
initial state ρ(0) = ρA(0) ⊗ ρB(0), with ρA,B(0) thermal states
characterized by the temperature TA and TB , respectively, the
asymptotic states ρA(∞) = ρB(∞). Hence, regardless of the
two temperatures TA and TB , the system thermalizes to states
with a common temperature. It was further demonstrated that
this property is not restricted to initial thermal states but holds
for more general diagonal initial states ρA(0) and ρB(0).

As a closed system (28), we will in this section neglect
any irreversible coupling to reservoirs. Thinking of subsystem
A and B as our two boson modes, it is clear that our model
does not fulfill the above constraints. First, the qubit adds
extra degrees of freedom and, second, not even in the linear
regime (i.e., the importance of the qubit degrees of freedom
has been omitted) does our Hamiltonian possesses the desired
form (28). Furthermore, within the RWA, the linearized model
has a spectrum that does not obey En − Em �= Es − Ew for
different (n,m) and (s,w). This condition can, however, be
met by including the counter-rotating terms, in other words,
go beyond the RWA. To have a time-independent model we
do not consider external pumping, and our Hamiltonian to be
studied in this section is then

Ĥ = ωc(â†â + b̂†b̂) + �

2
σ̂z

+ g[(â† + â) + (b̂† + b̂)]σ̂x . (29)

We know that the qubit induces an effective coupling of the
two modes and that the counter-rotating terms brings about
an irregularity of the spectrum. Therefore, it feels natural to
expect our non-RWA system to thermalize in the sense of
Ref. [31].

As our initial state, we let the qubit be in the same pure state
as earlier, mode b in vacuum and mode a in a thermal state:

ρA(t = 0) =
∞∑

n=0

n̄n
a

(n̄a + 1)n+1
|n〉〈n|, (30)

where n̄a determines the number of thermal photons, i.e.,
〈n̂a〉 = n̄a . At zero temperature, T = 0, we naturally have
n̄a = 0. Note that beyond the RWA, the number of excitations
is not conserved. If we assume that the energy exchange
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between the fields and the qubit is small within the large
detuning regime, thermalization then implies

ρA(∞) = ρB(∞) =
∞∑

n=0

n̄n

(n̄ + 1)n+1
|n〉〈n|, (31)

with n̄ = n̄a/2.
Our numerical results, presented in Fig. 8, demonstrates a

Gaussian collapse of the photon inversion into a state with a
thermal distribution. However, after some time the Josephson
oscillations sets off again and the system revive. The two
collapsed field states showed identical thermal-like photon
distributions, but the off-diagonal coherence terms of the states
are not exactly zero, which causes the revival. In the JC model,
the revivals become more fuzzy with time and after very long
times the revivals begin to overlap, causing super-revivals. The
well-resolved collapse-revival structure of Fig. 8(a) seems to
survive for extremely long times, and within our numerical
tests we have surprisingly not seen any long time decay of the
revivals. The amplitude of the revivals varies, but every now
and then a revival appears where Z(t) oscillates approximately
between −1 and 1. Furthermore, we have checked our findings
for different initial populations n̄a and �. However, if �

is taken to be too small the nonlinearity is very strong and
the whole collapse-revival structure smears out. The Bloch
vector amplitude displayed in Fig. 8(b) reproduces a similar
collapse-revival structure as was found in Fig. 2(b), i.e.,
consisting of a series of full and fractional revivals. Thus,
once again, the qubit possesses a more complex dynamics than
the Josephson current. The increased qubit purity at half the
revival time is reminiscent of that encountered in the regular
JC model [23]. Not shown in Fig. 8 is the field purity. Despite
the fact that the initial state is mixed and one would expect
thermalization, we have found that the field purity displays
a similar structure as the Bloch vector amplitude. Thus, the
structure of the field purity contradicts thermalization as well.
We should point out that we have also verified similar results
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FIG. 8. Evolution of the scaled photon inversion Z(t) (a) and the
Bloch vector amplitude |R(t)| (b) for an initial thermal state in mode
a and vacuum in b. The inversion shows a Gaussian collapse, and,
at later times, revivals build up, indicating absence of thermalization.
The Bloch vector amplitude collapses and revives at half the inversion
revival and also at the revival of the inversion. In between these
revivals a series of fractional revivals are seen. The dimensionless
parameters are ωc = 54.3g, � = 150g, and n̄a = 5.
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FIG. 9. Evolution of the field linear entropy Pf (t) for an ini-
tial mixed field state of mode a (32) (a), and a coherent state
with the same photon distribution as the mixed state (b). The b

mode is initially in vacuum and the qubit as in previous examples.
The general structure is similar in both cases, but the initial mixed
state stays largely mixed even at the revivals in contrast to the initial
pure state which almost perfectly regains its purity at the half and full
revivals. The dimensionless parameters are as in Fig. 8, except the
initial mean number of photons n̄a = 16.

as the ones above when the qubit is an initial maximally mixed
state, ρat(t = 0) = (|+〉〈+| + |−〉〈−|)/2.

Figure 8 hints that our system does not thermalize. To
explore this further, we consider instead an initial diagonal
state

ρA(t = 0) =
∞∑

n=0

|α|2n

n!
|n〉〈n|. (32)

Thus, despite being diagonal, the photon distribution is
Poissonian as for a coherent state. In Fig. 9 we display
the corresponding field linear entropy Pf (t) (a). This is
compared with the field linear entropy with an initial pure state
ρA(t = 0) = |α〉〈α|. The general structure is the same between
the two cases, but it is clear that even at the well-resolved
revivals the purity of the initially mixed state is not increased
considerably. Nonetheless, it clearly demonstrates the absence
of thermalization.

Finally, we explore a definition of thermalization which
differs from what was discussed in Ref. [32]. With the model
Hamiltonian (29), the time-averaged reduced density operators

ρ̄α = lim
T →∞

1

T

∫ T

0
dt ρα(t), α = A,B, (33)

were analyzed. If ρ̄α becomes diagonal, the system clearly
has thermalized. We do not show our results here, but we
have verified for different initial states and parameters that the
time-averaged reduced density operators do not diagonalize.
Thus, once again we have found absence of thermalization.

VII. CONCLUSIONS

We have presented a most simple model that simulates
the photonic counterpart of a bosonic Josephson junction.
Opposed to earlier studies of the photonic Josephson effect, our
model describes the internal effect. In the dispersive regime
a qubit mediates an effective coupling between two photon
modes of either an optical or a transmission line resonator.
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After introducing the general model we demonstrated the
Josephson effect both within a linear analytic model and using
full numerical diagonalization. Our numerical results shows
the presence of collapse revivals originating from the intrinsic
qubit-field nonlinearity.

We continued by addressing several aspects that arises
from decoherence in one or another way. To start with,
we considered inherent decoherence of the qubit stemming
from interaction with the quantized boson modes. In such
a Markovian analysis we found a rapid Gaussian decay of
the qubit purity, and at a quarter of a Josephson oscillation
period the qubit has lost its coherence almost entirely. At
half an oscillation, the coherence is essentially completely
regained. Our setup serves as well as a realization of the
quantum gatekeeper modeĺ́ discussed in Ref. [30]. As in
Ref. [30], regarding a qubit coupled to a boson Josephson
junction formed in a Bose-Einstein condensate [30], we also
examine the prospects of using the qubit as a quantum meter
for the Josephson oscillations. We show that the Josephson
current can be measured by integrating the length of the Bloch
vector.

What was not put forward in Ref. [30] is the back-action a
qubit measurement has on the Josephson current itself. As a
first example, we mimicked the irreversible qubit measurement
within a master equation approach. The induced dephasing of
the qubit rapidly propagates to the boson modes which leads to
an exponential decay of the oscillations. The more information
subtracted from the qubit, the stronger the demolishing effect
on the Josephson oscillations. This fact demonstrates the
macroscopic nature of the Josephson oscillations as a collec-
tive quantum many-body phenomenon. As a second example,
we considered nonselective or projective measurements, and
such interrupted unitary evolution was shown to render a
quantum Zeno slowing down of the Josephson oscillations.

The following section looked into effects deriving from
cavity dissipation. Again, this was modeled utilizing a master
equation. The important result coming out from this analysis

was the fact that even when realistic experimental parameters
was considered, the Josephson oscillations survived for around
10 full oscillations. This is indeed comparable, or even
longer, than what has been observed in either Bose-Einstein
condensates trapped in double-well potentials [28] or in spinor
condensates with Raman coupled Zeeman levels [61]. A
somewhat surprising finding was that photon dissipation did
not render an exponential decay of the scaled Josephson
current, but instead we found a Gaussian decay. This is in
contrast to the exponential decay of the amplitudes of the two
modes and also to the exponential decay of the scaled current
when exposed to dephasing.

We finished our investigations by considering thermaliza-
tion in a weak sense. That is, we did not study equilibration
into microcanonical ensembles where the expectation values
〈Â〉 can be predicted by the corresponding ensembles [18], but
thermalization of two interacting thermal quantum systems
according to Ref. [31]. Our model fulfills most of the
constraints for such thermalization, but it was demonstrated
that despite this we do not find thermalization. Lack of the
sort of thermalization as discussed in Ref. [32] was also
numerically verified.

Throughout we assumed the two boson modes to be
degenerate. Our results would still be valid even if we
drop this constraint. However, it should be noted that the
Josephson effect is detuned and hence not all photons will
be swapped between the two modes. In circuit QED, which
utilizes transmission line resonators, there is in general only a
single mode for a given frequency. However, in optical Fabry-
Perot cavities there are typically two orthogonally polarized
degenerate modes. Noteworthy is that bimodal cavity QED
experiments have already been demonstrated [63].
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[28] M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and
M. K. Oberthaler, Phys. Rev. Lett. 95, 010402 (2005); S. Levy,
E. Lahoud, I. Shomroni, and J. Steinhauer, Nature 449, 579
(2007).
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