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Perfect coherent shift of bound pairs in strongly correlated systems
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In the present work we extend the concept of coherent shift for the extended Bose-Hubbard model and
Fermi-Hubbard model. We present two types of local bound pairs (BPs) for the Bose system and one type for
the Fermi system. It is shown exactly that the perfect coherent shift can be achieved in such models in the large
binding-energy limit. We find that for a Bose on-site BP, the perfect coherent shift condition depends on the
nearest-neighbor interaction strength and the momentum of the incident single-particle wave packet, while for
the other two types of BPs, it is independent of the initial state in the proposed systems. Numerical simulation of
the scattering process between a single particle and a BP in a finite-size system is conducted and the computational
results are shown to confirm the analytical investigation.

DOI: 10.1103/PhysRevA.83.052102 PACS number(s): 03.65.Ge, 03.67.Lx, 05.30.Jp, 03.65.Nk

I. INTRODUCTION

The bound pair (BP) state and its dynamics are interesting
recent topics in quantum physics and quantum information
[1–11]. In a previous work [10], we studied the dynamics of a
BP and the interaction between a single particle and a BP in a
simple Bose-Hubbard model with an on-site coupling strength
U and nearest-neighbor hopping κ . Within the large U regime,
we found an interesting scattering process, coherent shift,
between them. A BP is formed by two particles occupying
a single site, which is stable when the binding energy is large
enough. It acts as a single particle with a hopping strength
2κ2/U . When a moving particle encounters a BP, they will
switch their roles by transferring a particle from a doubly
occupied state to a singly occupied state with amplitude 2κ .
During this process, the BP acquires a one-spacing shift in
the case of 2κ � 2κ2/U , i.e., the jump of the BP induced
by the collision is very much faster than its spontaneous
hopping. We believed that this phenomenon should not be
exclusive and could be applied to quantum device designs. In
addition, Valiente et al. performed a comprehensive numerical
simulation of such a scattering process, which is useful to
understand this phenomenon [12]. It was pointed that a
perfect coherent shift is hardly realized in such a uniform
Bose-Hubbard system. The imperfect transmission may due
to the difference between the BP shift amplitude 2κ and
the single-particle hopping strength κ in a simplest uniform
Bose-Hubbard chain. Although a perfect coherent shift can
be achieved in the deliberately designed chain [10], the
inhomogeneity of such a system will be an obstacle to realize
the perfect coherent shift in a many-particle system.

In this paper, we present three examples to demonstrate how
to realize the perfect coherent shift in both boson and fermion
systems in a uniform manner. We present two types of local
BPs for the Bose system and one type for the Fermi system. It
is shown exactly that the perfect coherent shift can be achieved
in such models. We find that for a Bose on-site BP, the perfect
coherent shift condition depends on the nearest-neighbor (NN)
interaction strength and the momentum of the incident single-
particle wave packet, while for the other two types of BPs, it
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is independent of the initial state in the proposed systems. In
order to verify the analytical result, a numerical simulation of
the scattering process between a single particle and a BP in
a finite-size system is conducted. Our results indicate that the
perfect coherent shift can be achieved and has great potential
for future applications.

The paper is organized as follows: In Sec. II, we introduce
an extended Bose-Hubbard model and the formation of the
two-particle bound state. In Sec. III, we investigate the
coherent shift process for an on-site BP in the case of weak
NN interaction. Section IV is devoted to the same discussion
for the NN BP. In Sec. V, we introduce the on-site BP in
the Fermi system and demonstrate how to perform a perfect
coherent shift. Section VI is devoted to the conclusion and a
short discussion.

II. EXTENDED BOSE-HUBBARD MODEL

We begin with the Bose on-site BP, considering the
scattering process between it and a single boson in an extended
Bose-Hubbard model. The Hamiltonian reads

H B = −κ
∑

i

(a†
i ai+1 + H.c.)

+ U

2

∑
i

ni(ni − 1) + V
∑

i

nini+1, (1)

where a
†
i (ai) is the particle creation (annihilation) operator

and ni = a
†
i ai is the number operator at the ith lattice site. The

tunneling strength and the on-site interaction between bosons
are denoted by κ and U . We consider an odd-site system with
N = 2N0 + 1, with periodic boundary conditions aN+1 = a1.
The Hamiltonian of Eq. (1) has an additional NN interaction
V in comparison to the Hamiltonian of Eq. (1) in the previous
paper [10].

First, a state in two-particle Hilbert space, as shown in
Ref. [10], can be written as

|ψk〉 =
∑

r

f k(r)
∣∣φk

r

〉
, (2)
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with ∣∣φk
0

〉 = 1√
2N

∑
j

eikj a
†2
j |vac〉,

(3)∣∣φk
r

〉 = 1√
N

eikr/2
∑

j

eikj a
†
j a

†
j+r |vac〉.

Here |vac〉 is the vacuum state for the boson operator ai . k =
2πn/N , n ∈ [1,N ] denotes the momentum with N = 2N0 +
1, and r ∈ [1,N0] is the distance between the two particles.
The matrix representation for the Hamiltonian operator H B in
the basis {|φk

j 〉} is

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U
√

2T k

√
2T k V T k

T k
. . .

. . . T k

T k T k
N0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where T k = −2κ cos(k/2), and T k
N0

= (−1)nT k . Note that for
an arbitrary k, the eigenvalues of Eq. (4) are equivalent to that
of the single-particle (N0 + 1)-site tight-binding chain system
with one abnormal NN hopping amplitude

√
2T k between the

zeroth (|φk
0〉) and the first site (|φk

1〉), and the on-site potentials
U , V , and T k

N0
at the zeroth, first, and N0-th sites, respectively.

It follows that in each k-invariant subspace, there are three
types of bound states arising from the on-site potentials under
the following conditions. In the case with |U − V | � |κ|, the
particle can be localized at either the zeroth or the first site,
corresponding to (i) the on-site BP state or (ii) the NN BP
state. Interestingly, in the case of U = V , and |U |,|V | � |κ| ,
the particle can be in the bonding state (or antibonding state)
between the zeroth and the first sites, which was discussed
in Ref. [13]. In previous works [10,11], the bound states of
(i) and (ii) were well investigated. In Ref. [10], it was shown
that the coherent shift of an on-site BP occurs when a single
particle meets it. In the following we focus on the scattering
process between a BP and a single particle in the presence of
NN interaction. We will show exactly that the NN interaction
can lead to a perfect coherent shift.

III. ON-SITE BOUND PAIR IN BOSE SYSTEM

Now we start with the on-site BP state. The formation of
the BP state in the Bose-Hubbard system was studied in Refs.
[1,9–11]. Here in the extended Bose-Hubbard model, the on-
site BP corresponds to the BP bounded by U in the case of
large U but weak V , with |U | � |κ| ∼ |V |. In this case, the
solution of f k(r) has the form

f k(r) �
{

1 (r = 0),

0 (r �= 0),
(5)

with eigenenergy

εk � U + 4κ2

U
(cos k + 1). (6)

One can see that the on-site BP state acts as a composite particle
with an effective hopping strength of 2κ2/U . According to

Ref. [12], the effective Hamiltonian for a single on-site BP
and a single particle in the extended Bose-Hubbard system
can be obtained in the form

H U
eff = −κ

∑
i

(ã†
i ãi+1 + 2b̃

†
i+1b̃i ã

†
i ãi+1 + H.c.)

+ 2κ2

U

∑
i

(b̃†i b̃i+1 + H.c.) +
(

2V − 7κ2

2U

)

×
∑

i

b̃
†
i b̃i(ã

†
i−1ãi−1 + ã

†
i+1ãi+1)

+
(

U + 4κ2

U

)∑
i

b̃
†
i b̃i , (7)

where ãi and b̃i denote the hardcore bosons satisfying the fol-
lowing commutation relations: [ãj ,ã

†
i ] = [b̃j ,ã

†
i ] = [b̃j ,b̃

†
i ] =

0, (i �= j ); {ãi ,ã
†
i } = {b̃i ,b̃

†
i } = 1; {b̃i ,ã

†
i } = {b̃i ,ãi} = 0. The

former two terms of H U
eff depict the hoppings while the last two

terms depict the interaction between the two kinds of particles.
The term b̃

†
i+1b̃i ã

†
i ãi+1 represents the swapping between the BP

and the single particle and the term b̃
†
i b̃i(ã

†
i−1ãi−1 + ã

†
i+1ãi+1)

is NN interaction. In the case of V = 0, H U
eff reduces to the

effective Hamiltonian presented in Ref. [12]. As pointed by
Ref. [12], these terms act as the barriers to an incident single-
particle wave packet, which leads to irreversible reflection. At
the region around |U/κ| = 10, as shown in Fig. 1 of Ref. [12],
7κ2/2U cannot be neglected and plays an important role in the
scattering process. Furthermore, even in the large U limit the
swapping strength 2κ still causes the reflection. This can be
seen from the following analytical result of Eq. (24). However,
we would like to point that the resonant transmission may be
achieved when the optimal strengths of the two terms are
taken. In this work, we introduce the NN interaction V to seek
the perfect coherent shift. This mechanism can be seen in the
following reduced single-particle Hamiltonian.

Considering the scattering problem without loss of general-
ity, we set the particle b̃†|vac〉 at the zeroth site and incident the
particle ã†|vac〉 from −∞ at the beginning. For the scattering
process between them within a short duration, the particle
b̃†|vac〉 is static compared to the single particle ã†|vac〉. Then
the whole scattering process is dominantly governed by

HU
eff = −κ

∑
i=−∞

ã
†
i ãi+1 − 2κb̃

†
−1b̃0ã

†
0ã−1 + H.c.

+ 2V (ã†
−1ã−1b̃

†
0b̃0 + b̃

†
−1b̃−1ã

†
0ã0)

+Ub̃
†
0b̃0 + Ub̃

†
−1b̃−1 (8)

at the condition |U | � |κ| ∼ |V |. Here we neglected the terms
with κ2/U and κ2/V . The swapping process between a single
particle and a on-site BP is the key of the coherent shift, which
is schematically illustrated in Fig. 1(a). The scattering process
is represented in the form

ã
†
−∞b̃

†
0|vac〉 → rã

†
−∞b̃

†
0|vac〉 + t ã†

∞b̃
†
−1|vac〉, (9)

where r and t are the reflection and transmission (coherent
shift) amplitudes, respectively.

052102-2



PERFECT COHERENT SHIFT OF BOUND PAIRS IN . . . PHYSICAL REVIEW A 83, 052102 (2011)

(a)

(b)

(c)

FIG. 1. (Color online) Schematic illustrations of the swapping
processes leading to the perfect coherent shift in both Bose and Fermi
systems. (a) On-site BP in an extended Bose-Hubbard model. (b) NN
BP in an extended Bose-Hubbard model. (c) On-site singlet BP in a
simple Fermi-Hubbard model.

In order to investigate the above Hamiltonian Eq. (8), we
define a different set of basis {|l〉u} as

|l〉u ≡
{

ã
†
l b̃

†
0|vac〉 = ã

†
l ã

†2
0 /

√
2|vac〉 (l < 0),

b̃
†
−1ã

†
l |vac〉 = ã

†2
−1ã

†
l /

√
2|vac〉 (l � 0),

(10)

and then reduce the two-body problem to a single-particle
problem. Actually, acting the Hamiltonian of Eq. (8) or the
original Hamiltonian Eq. (1) on the basis (10), we obtain the
equivalent single-particle Hamiltonian

Hsp = −κ

( −2∑
l=−∞

+
+∞∑
l=0

)
|l〉u〈l + 1| − 2κ| − 1〉u〈0| + H.c.

+ 2V (| − 1〉u〈−1| + |0〉u〈0|). (11)

The physics of the equivalent Hamiltonian is obvious—it
describes a particle in the chain with an embedded impurity.
The impurity consists of two neighboring sites with identical
on-site potentials 2V and a tunneling strength 2κ between
them. Obviously, each impurity can lead to nonzero reflection
individually. However, when the optimal strengths of V are
chosen, total transmission may be realized. In the following,
we will investigate this problem with analytical and numerical
tools. Figure 2 is a schematic illustration for the equivalent

ikl

ikl

e

re−

iklte

2κ κ κ

2 2V V

FIG. 2. (Color online) Schematic illustration of the equivalent
effective Hamiltonian governs the evolution of a single particle and
an on-site BP. It is a chain with an embedded impurity, which consists
of two neighboring sites with identical on-site potentials 2V and
a tunneling strength 2κ between them. The resonant transmission
occurs at V = VR , and is equivalent to the perfect coherent shift.

Hamiltonian. Then the scattering process of Eq. (9) can be
rewritten as

a
†
−∞|vac〉 → ra

†
−∞|vac〉 + ta†

∞|vac〉. (12)

The transmission coefficient |t |2 corresponds to the success
probability of the coherent shift. For an incident plane wave of
momentum k, its expression as a function of k and V can be
derived by using the Green’s function method [14,15] or the
Bethe-ansatz technique [16].

The retarded Green’s function of the system of Eq. (11) for
an input energy E = −2κ cos k is

GR = 1

E − Hc − ∑R
, (13)

where Hc is the Hamiltonian of the central system

Hc =
(

2V −2κ

−2κ 2V

)
, (14)

and
∑R denotes the contribution of the half-infinite leads,

which can be viewed as an effective Hamiltonian arising from
the interaction of the central system with the leads

∑R =
(−κeik 0

0 −κeik

)
. (15)

The transmission probability is given by

|t |2 = T12 = Tr[�1G
R�2G

A], (16)

where the advanced Green’s function GA and �1,2 matrices
are

GA = GR†, �1 =
(

2κ sin k 0

0 0

)
, �2 =

(
0 0

0 2κ sin k

)
.

(17)

Then we can obtain the transmission probability as

T12 = 16 sin2 k∏
l=−1,1[4(V/κ + l)2 + 4(V/κ + l) cos k + 1]

. (18)

Noting that the transmission coefficient is k dependent, we
calculate the resonant transmission or perfect coherent shift.
For T12 = 1, we have the NN coupling constant V = VR ,
where

VR = κ

2
(− cos k ±

√
cos2 k + 3). (19)
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It is worth noting that Eq. (19) is available for any k, since
VR is always in the order of κ . In practice, this process can
be implemented via a broad wave packet. For the case of
k = π/2, which corresponds to the stablest and fastest wave
packet [17], we can generate a unitary swap between an on-site
BP and a single particle under the condition VR = ±√

3κ/2.
In this condition, the k-dependent transmission coefficient
T12(k) = 4 sin2 k/(4 − cos2 k) and we notice that T12(π/2) =
1. Then we get the conclusion that the perfect coherent shift
can be achieved in the Bose-Hubbard model with a weak NN
interaction and a large U limit.

In order to demonstrate the coherent shift quantitatively
and to verify the above analysis, we perform the numerical
simulation for a three-particle model H B of Eq. (1) on an
N -site chain (N is even). The coherent shift will be simulated
via the dynamical process driven by H B. Initially, a BP is
located at (N/2 + 1)th site, while a single boson wave packet
comes from the left. The initial wave function has the form

|ψ(0)〉 = 1√
2�

∑
j

e− α2

2 (j−Nc)2+ik0j a
†
j a

†2
N
2 +1

|vac〉, (20)

where k0, Nc (Nc ≺ N/2) denote the speed and the initial
position of the wave packet of the Gaussian type. � is the
normalization factor and α controls the width of the packet.
As α → 0, the wave packet is reduced to a plane wave with
momentum k0, which is used in the above analytical analysis.
We compute the following quantities during the scattering
process,

ρj = 1

2

〈
a
†2
j a2

j − a
†3
j a3

j

〉
, (j = N/2, N/2 + 1), (21)

nL =
N/2∑
j=1

〈
a
†
j aj − a

†2
j a2

j + 1

2
a
†3
j a3

j

〉
, (22)

nR =
N∑

j=N/2+1

〈
a
†
j aj − a

†2
j a2

j + 1

2
a
†3
j a3

j

〉
, (23)

where 〈A〉 denotes the expectation value 〈ψ(t)|A|ψ(t)〉 =
〈ψ(0)eiH Bt |A|e−iH Btψ(0)〉 at time t . Note that nL (nR) denotes
the total single-particle number on the left (right) of the BP,
while ρj denotes the BP number at the j th site. According to
the above analysis, for perfect coherent shift, we have nL =
ρN/2+1 = 1, nR = ρN/2 = 0 at t = −∞, and nL = ρN/2+1

= 0, nR = ρN/2 = 1 at t = ∞. In practice, the simultaneous
switches of nL, ρN/2+1 and nR , ρN/2 demonstrate the (probably
imperfect) coherent shift. We plot nL,R and ρN/2,N/2+1 as a
function of time in Figs. 3(a) and 3(b) for a small size system.
We consider the incident wave packets with k0 = π/2,Nc = 7,
and α = 0.5 and 0.4 for the systems with N = 26, V/κ =√

3/2, and U/κ = 30, 50, and 103, respectively. Initially, a BP
is located at the 14th site. The transmission probability and the
coherent shift efficiency can be obtained from the asymptotic
values of nR and ρN/2, which are labeled on the right-hand side
of the figure. The coherent shift of the BP can be demonstrated
from the temporal behavior of ρN/2,N/2+1. It shows that the
transmission probability (transmitted single-particle number)
increases as U becomes large. However, it cannot approach
perfect transmission even in the large U limit, which seems
differ from our prediction based on Eq. (18). It is due to the

0  

0.5

1  
U=30

ρ
ρ

0.52

n

n 0.88

0  

0.5

1  
U=50

0.74
0.89

0 2 4 6 8
0  

0.5

1  
U=103 0.91

Time (units of 1/κ)(a)

0  

0.5

1  
U=30

ρ

ρ 0.54

n

n 0.91

0  

0.5

1  
U=50

0.77
0.93

0 2 4 6 8
0  

0.5

1  
U=103 0.94

Time (units of 1/κ)(b)

FIG. 3. (Color online) The expectation values of the single-
particle and BP numbers, which are defined in Eqs. (21)–(23),
as functions of time. The simulation is performed in the 26-site
systems with V/κ = √

3/2, U/κ = 30, 50, and 103, respectively.
The parameters for the Gaussian wave packets are k0 = π/2, Nc = 7,
and α = 0.5 for (a) [0.4 for (b)]. A BP is at the 14th site initially. The
dashed lines indicate nL,R (magenta for nL, green for nR), while the
solid lines indicate ρN/2,N/2+1 (red for ρN/2, blue for ρN/2+1). In each
case, the simultaneous switches of solid and dished lines demonstrate
the coherent shift. The asymptotic values of nL,R , are labeled on the
right-hand side of the figure, which reveal the transmission probability
and the coherent shift efficiency.
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fact that our simulations employ the wave packet instead of
the plane wave. One can note that the transmission probability
enhances as smaller α is taken. We believe that it will tend to 1
as α approaches zero. Correspondingly, the switch of ρN/2 and
ρN/2+1 demonstrates the BP coherent shift. The plots show
the influence of relevant parameters to the efficiency of the
coherent shift. For the case of U = 30, one can see that
the right BP number ρN/2+1 starts to decrease from 1 while the
left single-particle number nL remains 1. This shows that the
initial BP spreads before the scattering occurs. For large U

(U = 50, 103), the spreading is suppressed. Especially, for
U = 103, ρN/2 can reach 0.91 for α = 0.5 (0.94 for α = 0.4)
after scattering and becomes close to nR . This demonstrates
a good coherent shift of the BP and implies that the perfect
coherent shift can be achieved if a sufficiently smaller α is
taken.

In the previous work [10], we only consider the simplest
Bose-Hubbard model, in which the NN interaction is not
included. It has been pointed that a perfect coherent shift
cannot be reached [12]. One can also compute the correspond-
ing transmission probability for the simplest Bose-Hubbard
model studied in Refs. [10] and [12], by employing the
above-mentioned Green’s function method. Actually, from
Eq. (18), one can get

T12(V = 0) = 16 sin2 k/(9 + 16 sin2 k) (24)

by simply taking V = 0. It reaches its maximum 0.64 at k =
π/2, which is in agreement with the result obtained from the
computation of the effective Hamiltonian [12]. The switching
strength of the BP and the single particle being 2κ are the key
reasons for the imperfect coherent shift in the case of V = 0.

IV. NN BOUND PAIR IN BOSE SYSTEM

Now we consider another kind of BP in the extended Bose-
Hubbard model of Eq. (1) to avoid the reflection caused by
the swapping strength being 2κ between the BP and the single
particle in a uniform chain. This bound pair is bounded by the
NN interaction V , rather than the on-site interaction U . The
swapping between the NN BP and the single particle now is κ

and becomes the same with a single-particle hopping strength.
In a large V limit, |V |, |V − U | � |κ|, a pair of hardcore
bosons can be bounded by the NN interaction V . This was
pointed out by Valiente et al. in their work [11]. In such a
condition, the dynamics of a single boson and a NN BP can be
depicted by the following effective Hamiltonian,

H V
eff = −κ

∑
i

(a†
i ai+1 + B

†
i Bi+2a

†
i+3ai + H.c.)

+
(

κ2

V
+ 2κ2

V − U

) ∑
i

(B†
i Bi+1 + H.c.)

−2κ2

V

∑
i

(B†
i Bia

†
i−2ai−2 + B

†
i Bia

†
i+3ai+3)

+
(

V + 2κ2

V
+ 4κ2

V − U

) ∑
i

B
†
i Bi, (25)

where the NN pair operator is defined as B
†
i = a

†
i a

†
i+1. For

the scattering process between the NN BP and the single

particle within a short duration, it is dominantly governed
by the first term, which includes the hopping of a single
particle and the swapping between them. The swapping
process is schematically illustrated in Fig. 1(b). We consider
the scattering problem between a single particle and a NN BP.
Initially, a NN BP B

†
2|vac〉 = a

†
2a

†
3|vac〉 is located at the dimer

of sites 2 and 3, while a single particle a†|vac〉 is located at the
left. Similarly, we can define a set of basis {|l〉v} as

|l〉v ≡
{

a
†
l B

†
2|vac〉 = a

†
l a

†
2a

†
3|vac〉 (l � 0),

B
†
0a

†
l+2|vac〉 = a

†
0a

†
1a

†
l+2|vac〉 (l > 0).

(26)

Acting the Hamiltonian Eq. (25) on the basis Eq. (26), after
neglecting the high-order terms κ2/V and κ2/(V − U ), we
obtain a uniform tight-binding chain. Obviously, such a system
can realize a perfect coherent shift for any incident single-
particle wave with the shift distance being two lattice spacings.
Comparing to the previous on-site BPs, the perfect coherent
shift of the NN BP is k independent.

The corresponding numerical simulation is executed for a
three-particle model H B on an N -site chain (N is even); here
the BP is bounded by the NN interaction V . The coherent shift
will be simulated via the dynamical process driven by H B.
Initially, a NN BP is located at the (N/2 + 1)th and (N/2 +
2)th sites, while a single boson wave packet comes from the
left. Similarly, the initial wave function has the form

|ψ(0)〉= 1√
�

∑
j

e− α2

2 (j−Nc)2+ik0j a
†
j

(
a
†
N
2 +1

a
†
N
2 +2

)|vac〉. (27)

We compute the following quantities during the scattering
process,

ρj = 〈njnj+1〉 (j = N/2 ± 1), (28)

nL =
N/2∑
j=1

〈nj 〉, (29)

nR =
N∑

j=N/2+1

〈nj 〉, (30)

where nj =a
†
j aj − a

†2
j a2

j + 1
2a

†3
j a3

j − (njnj−1 + njnj+1)+
nj−1njnj+1. Here we take the same denotations as in the last
section for simplicity. Note that nL (nR) denotes the total
single-particle number on the left (right) of the NN BP, while
ρj denotes the NN BP number at the j th and (j + 1)th sites.
According to the above analysis, for a perfect coherent shift,
we have nL = ρN/2+1 = 1, nR = ρN/2−1 = 0 at t = −∞, and
nL = ρN/2+1 = 0, nR = ρN/2−1 = 1 at t = ∞. In practice,
the simultaneous switches of nL, ρN/2+1 and nR , ρN/2−1

demonstrate the (probably imperfect) coherent shift. We
plot nL,R and ρN/2−1,N/2+1 as functions of time in Fig. 4
for a small size system. We consider the incident wave
packets with k0 = π/2, Nc = 7, α = 0.4 for the systems
with N = 26, U/κ = +∞, and V/κ = 30, 50, and 103,
respectively. Initially, a NN BP is located at the 14th and
15th sites. The transmission probability and the coherent shift
efficiency can be obtained from the asymptotic values of nR

and ρN/2−1, which are labeled on the right-hand side of the
figure. It shows that the transmission coefficient (transmitted
single-particle number) is always 1. As V goes large, ρN/2−1
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FIG. 4. (Color online) The expectation values of the single-
particle and NN BP numbers, which are defined in Eqs. (28)–(30), as
functions of time. The simulation is executed in the 26-site systems
with U/κ = +∞ and V/κ = 30, 50, and 103, respectively. The
parameters for the Gaussian wave packets are k0 = π/2, Nc = 7,
and α = 0.4. A NN BP is at the 14th and 15th sites initially. The
dashed lines indicate nL,R (magenta for nL, green for nR), while the
solid lines indicate ρN/2−1,N/2+1 (red for ρN/2−1, blue for ρN/2+1).

increases and finally approaches 1. The switch of ρN/2−1 and
ρN/2+1 demonstrates the NN BP coherent shift. For the case
of V = 30, one can see that the right NN BP number ρN/2+1

starts to decrease from 1 while the left single-particle number
nL remains 1. This shows that the initial NN BP spreads before
the scattering occurs. Comparing with the results shown in
Fig. 3(b), the coherent shift efficiency is better. For larger V

(V = 50, 103), the spread is more suppressed. Especially, for
V = 103, ρN/2−1 can reach 1 after scattering and becomes
close to nR . This demonstrates a perfect coherent shift of
the NN BP and the switch of ρN/2−1 and ρN/2+1 indicates a
two-lattice-spacing coherent shift.

V. ON-SITE BOUND PAIR IN FERMI SYSTEM

As pointed out in Ref. [12], the nonzero reflection of a
single incident particle in the coherent shift process [10] is
attributed to the swapping strength being 2κ rather than κ .
Essentially, this arises from the identity of two particles of a
BP. Consequently, for a system with a BP consisting of two
particles with opposite spins, the unexpected reflection should
be avoidable.

Now we turn to the Fermi system. A one-dimensional
Fermi-Hubbard Hamiltonian reads

H F = −κ
∑
i,σ

(c†i,σ ci+1,σ + H.c.) + U
∑

i

ni↑ni↓, (31)

where c
†
i,σ is the creation operator of the fermion at the site i

with spin σ =↑ , ↓ and U is the on-site interaction. Similarly,
there also exists a BP state in such a system. Actually, a state
in the two-particle Hilbert space with spin zero can be written
as of Eq. (2), where we redefine the corresponding basis as∣∣φk

0

〉F = 1√
N

∑
j

eikj c
†
j,↑c

†
j,↓|vac〉,

∣∣φk
r

〉F = 1√
2N

eikr/2
∑

j

eikj (32)

×(c†j,↑c
†
j+r,↓ − c

†
j,↓c

†
j+r,↑)|vac〉.

Then all the analysis for the formation of a Bose on-site BP can
be applied completely on that of a Fermi on-site BP. Besides,
in the large U limit, the effective Hamiltonian describing the
dynamics of a single particle and a Fermi on-site BP has the
form

H F
eff = −κ

∑
i,σ

(c̃†i,σ c̃i+1,σ + c̃
†
i,σ c̃i+1,σ d

†
i+1di + H.c.)

+2κ2

U

∑
i

(d†
i di+1 + H.c.)

−2κ2

U

∑
i,σ

c̃
†
i,σ c̃i,σ (d†

i−1di−1 + d
†
i+1di+1)

+
(

U + 4κ2

U

) ∑
i

d
†
i di, (33)

where c̃i,σ = ci,σ (1 − ni,−σ ) is the projected fermion creation
operator, and di = ci,↓ci,↑ is the Fermi on-site BP operator. The
projector (1 − ni,−σ ) allows to create an electron with spin σ

at the site i only if there is no other electron on that site. For the
scattering process between c̃i,σ and di within a short duration,
it is dominantly governed by the first term, which includes
the hopping of the single particle and the swapping between
them. The swapping process is schematically illustrated in
Fig. 1(c). We note that the swapping operation c̃

†
i,σ c̃i+1,σ d

†
i+1di

has the same coupling strength with the term c̃
†
i,σ c̃i+1,σ . This

allows the perfect coherent shift. In addition, such a process is
independent of the momentum of the incident particle and the
spin polarization, since the bound pair is singlet.

In order to demonstrate the coherent shift quantitatively
and to verify the above analysis, we perform the numerical
simulation for a three-spin model H F of Eq. (31) on an N -site
chain (N is even). The coherent shift will be simulated via the
dynamical process driven by H F. Initially, a Fermi on-site BP
is located at the (N/2 + 1)th site, while a single spin-up wave
packet comes from the left. The initial wave function has the
form

|ψ(0)〉 = 1√
�

∑
j

e− α2

2 (j−Nc)2+ik0j c
†
j,↑

(
c
†
N
2 +1,↑c

†
N
2 +1,↓

)|vac〉,

(34)

where k0, Nc (Nc ≺ N/2) denote the speed and the initial
position of the wave packet of the Gaussian type, respectively.
� is the normalization factor and α controls the width of
the packet. As α → 0, the wave packet is reduced to the
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FIG. 5. (Color online) The expectation values of the single spin-
up particle and Fermi on-site BP numbers, which are defined in
Eqs. (35)–(37), as functions of time. The simulation is performed in
the 22-site systems with U/κ = 30, 50, and 103, respectively. The
parameters for the Gaussian wave packets are k0 = π/2, Nc = 7, and
α = 0.4. A Fermi on-site BP is at the 14th site initially. The dashed
lines indicate nL,R (magenta for nL, green for nR), while the solid
lines indicate ρN/2,N/2+1 (red for ρN/2, blue for ρN/2+1).

plane wave with momentum k0, which is used in the above
analytical analysis. We compute the following quantities
during the scattering process,

ρj = 〈c†j,↑cj,↑c
†
j,↓cj,↓〉 (j = N/2, N/2 + 1), (35)

nL =
N/2∑
j=1

〈c†j,↑cj,↑ − c
†
j,↑cj,↑c

†
j,↓cj,↓〉, (36)

nR =
N∑

j=N/2+1

〈c†j,↑cj,↑ − c
†
j,↑cj,↑c

†
j,↓cj,↓〉, (37)

where nL (nR) denotes the total single spin-up particle
number on the left (right) of the Fermi on-site BP, while
ρj denotes the Fermi on-site BP number at the j th site.
According to the above analysis, for a perfect coherent shift,
we have nL = ρN/2+1 = 1, nR = ρN/2 = 0 at t = −∞, and
nL = ρN/2+1 = 0, nR = ρN/2 = 1 at t = ∞. In practice, the
simultaneous switches of nL, ρN/2+1 and nR , ρN/2 demonstrate
the (probably imperfect) coherent shift. We plot nL,R and
ρN/2,N/2+1 as functions of time in Fig. 5 for a small size
system. We consider the incident wave packets with k0 = π/2,

Nc = 7, and α = 0.4 for systems with N = 22, U/κ = 30, 50,
and 103, respectively. Initially, a Fermi on-site BP is located
at the 14th site. The transmission probability and the coherent
shift efficiency can be obtained from the asymptotic values of
nR and ρN/2, which are labeled on the right-hand side of the
figure. It shows that the transmission coefficient (transmitted
single spin-up particle number) is always 1. Correspondingly,
the switch of ρN/2 and ρN/2+1 demonstrates the Fermi on-site
BP coherent shift. For the case of U = 30, one can see that the
right Fermi on-site BP number ρN/2+1 starts to decrease from
1 while the left single spin-up particle number nL remains 1.
This shows that the initial Fermi on-site BP spreads before the
scattering occurs. For large U (U = 50, 103), the spreading
is suppressed. Especially, for U = 103, ρN/2 can reach 1
after scattering and becomes close to nR . This demonstrates a
perfect coherent shift of the Fermi on-site BP in a large U limit.

VI. CONCLUSION

In summary, we present three kinds of bound pairs and the
corresponding optimal systems, which can avoid unexpected
reflection in the coherent shift process. It is shown exactly
that the perfect coherent shift can be achieved in simply
engineered systems. For a Bose on-site BP, the perfect coherent
shift requires a resonant condition which depends on the
NN interaction strength and the momentum of the incident
single-particle wave packet. For a Bose NN BP and a Fermi
on-site BP, the perfect coherent shifts occur for an arbitrary
initial state in simple chain systems. We believe that our
findings have great potential for future applications.
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