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Experimental characterization of qutrits using symmetric informationally complete positive
operator-valued measurements
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Generalized quantum measurements [also known as positive operator-valued measures (POVMs)] are of great
importance in quantum information and quantum foundations but are often difficult to perform. We present an
experimental approach which can in principle be used to perform arbitrary POVMs in a linear-optical context.
One of the most interesting POVMs, the symmetric informationally complete (SIC) POVM, is the most compact
set of measurements that can be used to fully describe a quantum state. We use our technique to carry out the
first experimental characterization of the state of a qutrit using SIC POVMs. Because of the highly symmetric
nature of this measurement, such a representation has the unique property that it permits all other measurement
outcomes to be predicted by a simple extension of the classical Bayesian sum rule, making no use of complex
amplitudes or Hilbert-space operators. We demonstrate this approach on several qutrit states encoded in single
photons.

DOI: 10.1103/PhysRevA.83.051801 PACS number(s): 42.50.Dv, 42.50.Xa

In recent years, it has become widely appreciated that the
projective valued measurements (PVMs) described in quantum
mechanics textbooks are merely a restricted class of the phys-
ically possible measurements, known as “generalized mea-
surements” or positive operator-valued measures (POVMs).
For certain tasks, nonprojective POVMs have been shown to
be superior; for instance, they achieve the theoretical bound for
unambiguous state discrimination [1,2] and are potentially of
vital importance in quantum cryptographic applications [3]. It
is not straightforward to directly implement a desired POVM
in the laboratory, however. In principle, one can always do so
by performing a suitable coupling between the system and an
ancillary system with a large number of degrees of freedom
and then projectively measuring the latter apparatus [4]; in
practice, the appropriate coupling is often unavailable. One
can often “mock up” a POVM by cycling through a number
of different projective measurements, but this can often be
inefficient, in a way we describe below. Motivated by the recent
observation that the symmetric informationally complete (SIC)
POVMs provide a uniquely elegant description of quantum
states [5], and the most efficient technique for characterizing
quantum states in all dimensions [6], we have developed a
method which allows arbitrary POVMs to be approximated
arbitrarily well in linear optics, using only presently available
technology. We demonstrate this technique by performing
the first SIC-POVM characterization of optical qutrits and
illustrate the novel features of this resulting representation.

The state of an ensemble of d-dimensional quantum sys-
tems is most typically described by a density matrix, an abstract
list of d2 numbers. Quantum state tomography involves
carrying out at least d2 linearly independent measurements
and then using one of a number of mathematical techniques to
estimate the state. Over the past several years, there has been
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a great deal of interest in determining the most efficient and
robust sets of measurements for this task [7–10]. Arguments
suggest that the more symmetric the measurement set, the less
biased the estimation will be [11]. In addition, the smaller
the measurement set, the less redundancy there is, and the
faster tomography will converge. For instance, the standard
set of measurements for a qubit can be represented as the ±x,
±y, and ±z projections on the Bloch sphere—the so-called
mutually unbiased bases (MUBs)—as no one projection gives
any information about the two other projections. Only recently
has this been extended to more than one qubit [9], because of
the difficulty of generalizing these measurements to higher di-
mensions. However, this characterization requires six different
projections, while, in principle, four projections (the vertices of
a regular tetrahedron embedded in the Bloch sphere) would be
the minimal sufficient set. This tetrahedral set of projectors is
the SIC-POVM for a qubit [8,12]. One experiment has recently
used SICs to perform qubit tomography [8], but extensions
to higher-dimensional systems have proved challenging. Is it
possible in practice to measure a higher-dimensional POVM
without necessarily including unwanted extra projectors?

This prospect has more than merely technical relevance.
A number of works [14] have underscored that instead of an
abstract list of complex numbers such as a density matrix,
a list of d2 directly measurable probabilities may serve as
a complete characterization of a quantum state. While any
linearly independent set would suffice in principle, one of
us [15] has recently observed that the outcomes of SIC-POVMs
form a more natural description of the quantum state. If an
observer uses SIC-POVMs to build up his statistics, then the
Born rule takes on an elegant form as a quantum variant of the
classic Bayesian sum rule,

p(Bj ) = (d + 1)
d2∑

i=1

p(Ai)p(Bj |Ai) − 1. (1)
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Here p(Ai) are the SIC-POVM probabilities, p(Bj |Ai) are the
probabilities for getting outcomes Bj in a further von Neumann
measurement if a SIC outcome Ai were obtained first, and
p(Bj ) are the probabilities for Bj in a direct measurement of
the observable. We call this form of the Born rule the quantum
law of total probability (QLTP); to test it is to test the Born
rule itself. Moreover, the consistency of the QLTP is enough to
imply much of the structure of quantum state space, where the
p(Ai) are restricted to a nontrivial convex set of all probability
distributions [16].

One could measure one POVM element by coupling it
out with a polarizing beam splitter (PBS), but then only the
orthogonal component of the state would remain, precluding
the measurement of later elements. If we instead use a
low-reflectivity “partially polarizing beam-splitter” (PPBS),
then a partial projection onto each element is possible,
leaving the remaining state mostly unaltered. To implement
a SIC-POVM, consider a sequence of d2 partial projectors,
where the remaining state from each SIC-POVM element is
recycled into the next element. If we place the sequence of
elements into a lossless storage loop with an optical switch on
the first mirror to accommodate photons entering the cavity,
we can further recycle the state. In fact this scheme can be
used to perform any optical POVM in any dimensionality, but
the partial-projection is only trivial if the information is stored
in a single particle. For multipartite systems, some quantum
circuit would generally be necessary in order to achieve this
outcoupling. Figure 1(a) shows a storage loop containing three
partial projectors with a reflection of ε. In principle, by sending
the quantum state ρ into the storage loop and by quickly
operating the switchable input mirror we trap the photon
inside, and it can only escape through the weakly coupled
ports. Since the projections are weak, the quantum state is
nearly unaltered as it propagates through the loop. In the limit
that ε goes to zero the light will eventually leak out of one of
the ports, and the time-integral of each port is taken to stand
for a single POVM projector. By replacing the three POVM
elements with d2 SIC elements a SIC-POVM is realized.

In our work, a SIC-POVM with elements |ψmn〉, m,n ∈
{0,1,2, . . . ,d − 1}, is generated from a carefully chosen
fiducial state |ψf 〉 by actions of the shift and phase operators,

FIG. 1. (a) POVM with three elements inside a storage loop.
(b) Compacted version of the POVM scheme to implement a
nine-element SIC-POVM for d = 3 over three round trips. The labels
refer to the interpretation of a click.

X and Z, via |ψmn〉 = XmZn|ψf 〉, where Z|j 〉 = e2πij/d |j 〉,
X|j 〉 = |j ⊕ 1〉, and d is the dimensionality of the Hilbert
space [13]. For a qutrit (d = 3), we use |ψf 〉 = 1√

2
(|0〉 + |1〉).

A compact measurement device is constructed with d + 1
gates, three Z, and one X (d = 3), which couple light for
all nine SIC elements in d round trips [see Fig. 1(b)].
The gates permute the measurement basis from each of the
nine elements to the fiducial state and are measured with
polarization-dependent reflections. For example, measuring
the |ψ20〉 element requires the action of X to rotate to |ψ00〉 =
|ψf 〉. A photon exiting after one round trip and after the third
Z gate represents such a measurement (i.e., Z3XZ3 = X).

Our signal photon is generated in spontaneous parametric
down-conversion (SPDC), and the idler photon is used
for timing information. As shown in Fig. 2(a) the qutrit is
encoded in the path and polarization of the signal: |0〉 = |V1〉,
|1〉 = |H1〉 and |2〉 = |V2〉; the state |H2〉 is not used. Using
wave plates and a calcite beam displacer (BD) we can prepare
arbitrary pure states of the qutrit. For convenience, where only
passive components are required, the qutrit now passes over
the top of the first mirror and enters a spiral loop, where it
can traverse the gates and measurements several times. In our
proof-of-principle experiment only one pass of the nine projec-
tors is realized, requiring three round trips of the loop shown in
Fig. 3.

The experimental implementations of the gates are shown
in Fig. 2(b). A liquid-crystal wave plate (LCWP) applies a 2π

3
phase shift between horizontal and vertically polarized light
to perform the Z̃ operation. This differs from the ideal Z

operation in that the second path does not experience any phase
shift [Z̃ = exp(−4πiδj2/3)Z]. Since the second path is never
directly measured (there is no j = 2 content in the fiducial
state), Z̃n|ψf 〉 = Zn|ψf 〉, and as long as Z̃3 = I is satisfied,
the loop functions properly. Three half-wave plates (HWPs)
and a BD facilitate the cycling through of the basis states
yielding the X operation. Note that the paths have switched
places after exiting the X gate and are returned to the correct
orientation before continuing through the spiral.

Measurement of the state is performed by a collection of
HWPs and a PPBS (a glass slide near Brewster’s angle) after
each Z gate. Since measurements are realized on the first path
alone, coherence between the paths is significant only for the X

gate. By balancing the components in each path and matching
the BDs in the qutrit generation with the X gate, coherence is

FIG. 2. (a) Qutrit encoding and our fiducial state for d = 3.
(b) The Z̃ gate applies a λ

3 phase shift between H and V polarization.
The X gate cycles through the three basis states.
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FIG. 3. SIC-POVM schematic where SPDC generates a signal photon to be encoded as a qutrit, and an idler photon provides timing
information to determine which of the three possible round trips the signal photon exited the spiral. HWPs ensure the correct rotations for state
measurements.

automatically ensured for the first two round trips of the loop.
The third round trip is balanced using custom thickness pieces
of BK7. The visibilities after the second and third round trips
dropped to 74% and 36%, respectively, due to the outcoupling
and other losses in the loop.

The outcomes for two different inputs are chosen to display
the characteristics of our SIC-POVM apparatus. Figures 4(a)
and 4(b) both reveal an exponential decay associated with

losses in the loop. Since input state 1√
2
(|0〉 + |2〉) is one of

the SIC elements, the overlap is expected to be 1
3 with the

sixth element and 1
12 with all other elements. For input state

|0〉 the first six outputs should have equal probability of 1
6 , and

the last three should be zero since this input is orthogonal to
these three SIC elements. Deviations from zero are due to poor
visibility at the X gate for the final round trip, which is caused
by the lack of collimation of the beam after traversing this far.

FIG. 4. Comparison of SIC element frequencies: raw data, theory, and two correction methods for (A) an input of a SIC state itself, in this
case |0〉 + |2〉, and (B) an input of basis state |0〉. The SIC-POVM elements are listed in the order experienced by the photon. Statistical noise
and systematic errors are included in the error bars. The theoretical values for the last three elements in (B) are zero. Using the other SIC states
as inputs produces graphs that are effectively permutations of (A) after corrections. The raw data in the nine graphs go together to form the
nine columns the device’s “instrument matrix” [18].
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Because of decay, the raw data does not have the expected
shape and therefore must be corrected.

Our PPBS reflected 13% of the vertical and 3% of the
horizontal polarization. These reflectances lead to significant
deviation from the ideal low-coupling limit of vanishingly
low reflectivity so as not to significantly alter the input state.
With 6500 photons per second, a 10% reflectivity gave ∼70
photons per second in typical bins, and with stability limiting
a reasonable run time to 200 s, our simulation predicted errors
on the order of the least significant figure and the altered-
to-unaltered state fidelity ratio being greater than 90%, so
we concluded that any lower reflectivity was impractical in
the present setup. We compared two methods for correcting
for such effects. In one, we fully modeled the experiment to
determine the best-fit density matrix for a given data set. This
density matrix allows us to recover the SIC-POVM elements,
plotted as the “Inverted” data in Fig. 4. In another, we use
only an experimentally determined normalization correction:
We scaled each POVM output to the count rate observed for a
completely mixed input state to account for the state-dependent
loss. The resulting POVM elements are plotted as the “Expt.
Norm” data in Fig. 4. Although both methods appear to account
for the imperfections adequately, the experimental correction
has smaller statistical uncertainties.

Systematic errors are estimated by a Monte Carlo simu-
lation of a 1◦ misalignment of the manually set HWPs. The
figures show that there is good agreement between theory
and experiment for the first four or five measurements. The
remaining measurements deviate more significantly because
the beam does not remain collimated for the full 5 m of
the three pass loop and this affects both the fiber coupling
and the X gate efficiency.

To test the QLTP, Eq. (1) requires the SIC-POVM outcomes,
PVM outcomes for a particular projection of all nine SIC
elements, and for comparison, the PVM outcome of the input
state directly. (See [17] for another test of the Born rule.) In
addition to the SIC-POVM, a tomography apparatus was built
beside the qutrit generation so that the beams could be diverted

from the SIC-POVM to the tomography setup. The first set of
measurements are the PVM outcomes for each SIC element.
This information is gathered by preparing each of the SIC
in the qutrit generation and performing PVMs, for example
projecting onto 1√

2
(|0〉 + i|2〉). Data acquisition time was 50 s,

coincidence window was set to 4 ns, and the accumulation
of coincidences in both orthogonal ports summed to 105.
This measurement was done nine times, once for each SIC
element. Next, an input state was prepared and tomography
was performed on it with the same settings. The PVM of
interest was also performed. Finally, we send the state into the
SIC-POVM and collect for 200 s to accumulate 3 to 6 × 104

coincidences, depending on the input.
Using the experimentally corrected SIC-POVM outcomes,

we tested the QLTP for several input states. For example, for
the input 1√

2
(|0〉 + |2〉), the QLTP predicted the probability

of measuring 1√
2
(|0〉 + i|2〉) to be 0.526 ± 0.009(stat) ±

0.03(sys), while in a direct measurement we found 0.506 ±
0.004 ± 0.002. For the input |0〉, the QLTP predicted the prob-
ability of measuring 1√

2
(|1〉 + |2〉) as 0.01 ± 0.0002(stat) ±

0.009(sys), while in a direct measurement we found 0.005 ±
0.0004 ± 0.001. These results are consistent with the QLTP.

The technique we presented here can be used to measure any
desired linear-optical POVM, and existing technology would
permit such measurements to be done with high accuracy. We
have shown that the ability to characterize quantum systems
using SIC-POVMs enables tomography to be performed in
the most mathematically compact manner possible, and that
representation in terms of SIC-POVM elements enables the
Born rule to be recast as a simple generalization of the classic
Bayesian sum rule. This offers both a different way to measure
quantum states and a different way to think about them.
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