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Coherent atomic soliton molecules for matter-wave switching
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We discuss the dynamics of interacting dark-bright two-dimensional vector solitons in multicomponent
immiscible bulk Bose-Einstein condensates. We describe matter-wave molecules without a scalar counterpart
that can be seen as bound states of vector objects. We also analyze the possibility of using these structures as
building blocks for the design of matter-wave switchers.
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Introduction.Solitons are robust wave packets able to main-
tain their shape when propagating in different media and under
mutual collisions. The existence of such elastically interacting
localized waves is an essential property of integrable nonlinear
equations that have an infinite number of conservation laws [1].
Integrable two-dimensional equations, such as Kadomtsev-
Petviashvili, Davey-Stewardson, Zakharov-Manakov, sine-
Gordon, and others have two-dimensional solitons with
complex interactions. Some nonintegrable systems may have
solitary waves—localized coherent structures with almost
elastic interactions. An interesting open question is the
construction of complex moleculelike coherent matter-wave
structures, i.e., superpositions of solitons leading to stable
bound states with moleculelike behavior.

In this Rapid Communication we present nontrivial nonlin-
ear phenomena in multicomponent Bose-Einstein condensates
(BECs) described by coupled two-dimensional nonlinear
Schrödinger equations (NLSEs). The balance of dispersion
and nonlinear interactions in BECs leads to different types
of nonlinear coherent excitations (see, e.g., the experimental
papers [2–8] or the reviews [9,10]). Soliton molecules have
been considered in the propagation of optical beams in
nonlinear media with saturable nonlinearities [11–14], it being
very difficult to construct even metastable long-living soliton
clusters with local interactions such as those present in
ordinary BECs.

Here we will construct soliton molecules using soliton-
bubble bound states (i.e., two-dimensional extensions of the
dark-bright soliton pair) as bricks to construct matter-wave
aggregates. These can also be viewed as a combination of
the extension of a Kadomtsev-Petviashvili soliton [15] and a
bright NLS soliton or as a vortex pair superimposed with two
density peaks.

Matter-wave trains with a finite number of one-dimensional
bright solitons are stable due to the presence of the trap [16].
However, the idea does not work for higher dimensions due to
the blow-up phenomenon [3]. With defocusing nonlinearities,
dark solitons always repel each other and cannot form bound
states [17].

We will show how multicomponent homonuclear BECs
in the immiscible regime allow for the construction of robust
solitonic molecules. These matter-wave clusters display phase-
dependent properties due to their coherent nature and can be
used for constructing nonlinear matter-wave switchers.

Physical system and model equations. We will consider
two-component BECs with atoms in two hyperfine states |1〉
and |2〉 in the immiscible regime and consider droplets of atoms
in component |2〉 to be phase separated from a component |1〉
assumed to have a much larger number of particles. When
tightly confined along one direction these systems are ruled in
the mean-field limit by

i
∂ψj

∂t
= −1

2
�ψj +

( ∑
k=1,2

gjk|ψk|2 − µ + δj

)
ψj , (1)

for j = 1,2. Without loss of generality we work in dimen-
sionless units, with chemical potential µ = 1, and δ1 = 0.
Immiscibility implies that g2

12 > g11g22. The normalization
for ψ2 is given by

∫
R |ψ2|2 = 2(a22/a0)N2, where a22 and

N2 are the s-wave scattering length and number of atoms in
|2〉. Finally, a0 = √

h̄/mω⊥ is the length scale in which spatial
units are measured.

Soliton molecules. In one-dimensional, one-component
NLS systems, the repulsive nature of the interaction between
dark solitons prevents them from generating bound states. The
interactions between bright solitons in the absence of external
effects (such as external confinement) depend on the phase
differences �φ = |φ1 − φ2|, going from attractive for �φ = 0
to repulsive for �φ = π . A critical intermediate regime for �φ

exists in which unstable bound states can be constructed.
A different possibility is constructing a vector object

including a dark soliton in one component and a bright soliton
in another component. This dark-bright pair could lead to
a stable bound state with a second vector soliton of the
same type when the repulsive interactions between the dark
components are balanced by the attractive interactions between
the “dropletlike” bright components [18]. However, when
passing to higher dimensions the phenomenology changes
essentially due to the fact that the transverse instability of the
dark soliton leads to the formation of vortex pairs of opposite
circulation. Therefore, the more natural building blocks for
a bound state are vortices of the first component hosting a
“droplet” of the second component. In the scalar case, all mov-
ing two-dimensional coherent states were found in Ref. [19].
These correspond to vortex pairs of opposite circulation and
rarefaction pulses. A similar phenomenology arises in the two-
component case in the miscible regime [20]. As the velocity
of the solitary wave increases, the distance between vortices
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of opposite circulation decreases to zero. The solutions at even
higher velocity are localized density perturbations without
zeros. In two dimensions the sequence of solutions terminates
with solutions approaching zero energy and momentum as the
velocity U approaches the speed of sound.

We will construct solitary waves with velocity U along the
x direction in two-dimensional, two-component BECs in the
phase-separation regime as solutions of Eqs. (1) in the frame
moving with the disturbance by solving

iU
∂ψ1

∂x
= 1

2
∇2ψ1 + (1 − |ψ1|2 − α|ψ2|2)ψ1, (2a)

iU
∂ψ2

∂x
= 1

2
∇2ψ2 + (	 − α|ψ1|2 − |ψ2|2)ψ2 (2b)

together with the boundary conditions |ψ1| → 1,ψ2 → 0,

as |x| → ∞. In the phase separation regime α = g12/g11 =
g12/g22 > 1. Here 	 = µ2/µ1, where µ1 and µ2 are the
dimensional chemical potentials of ψ1 and ψ2. We solve
numerically the discretized version of Eqs. (2) by a Newton-
Raphson algorithm combined with a secant algorithm to
find 	 for a given constraint on N2 = ∫ |ψ2|2 dx dy. We
obtain a family of solutions characterized by the velocity of
propagation U , energy E, and impulse p = (p1 + p2,0) given
by

E =
∫ [

1

2
|∇ψ1|2 + 1

2
|∇ψ2|2 + α|ψ1|2|ψ2|2

+ 1

2
(1 − |ψ1|2)2 + 1

2
|ψ2|4 − 	|ψ2|2dx dy

]
, (3a)

pj = Im

[∫
R2

[ψ∗
j − (2 − j )]

∂ψj

∂x
dx dy

]
. (3b)

with j = 1,2. The resulting families of solutions are plotted in
Fig. 1 for various choices of N2 together with the Jones-Roberts
(JR) dispersion relations [19] for one-component condensates.
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FIG. 1. (Color online) (a) Energy (E − Egs)-impulse
(p = p1 + p2) dispersion curve of solitary wave solutions of
Eqs. (2) for α = 1.2 and various choices of N2. The upper solid
line corresponds to N2 = 0, i.e., the JR dispersion curve, shown
for comparison. To ease comparison, we subtract the ground-state
energy Egs in the plot. The dashed black line and the dashed-dotted
line correspond to N2 = 8 and N2 = 20, respectively. (b) Velocity
as a function of momentum for N2 = 20; the red (monotonically
decreasing) curve corresponds to the JR case; the blue (passing
through the origin) curve correspond to nonzero N2.

FIG. 2. (Color online) Density plots of the first (left-hand side)
and second (right-hand side) components of a stationary bound state
solution for U = 0.1, N2 = 80. The white color indicates maximum
density. Streamlines of the first component are shown in the left-hand
panel. The spatial region shown is 60 × 40 healing lengths.

For a given speed U , solitary solutions with higher α have
lower energy and a higher impulse.

In contrast with the JR solutions, there is a stationary
solitary wave with nonzero energy Egs corresponding to
the ground state of the system, with all the mass of the
second component forming a radially symmetric “bubble” in
the center of the depleted first component. As the velocity
increases from zero, the bubble becomes oblate in the direction
of the motion, with the velocity field of the first component
being that of a dipole (see Fig. 2).

There is a point on the dispersion curve where the velocity
reaches its maximum—the inflection point. As the energy and
momentum increase, the velocity decreases and the solutions
become pairs of vortices of opposite circulation in the first
component with the second component filling the vortex cores.
In general, bubblelike solutions for small E can be seen as a
bound state of a JR rarefaction pulse and a mobile “filling”
of the second component. Figure 1(b) shows that there is
a maximum velocity for the propagation of these solutions
(different from the sound speed). This is a signature of the
mass of the second component, the heavier being the second
component, the smaller being this velocity.

We have simulated the evolution of two bubbles set on
a colliding course. Initially they are separated by a large
distance, so that individually they are accurately represented
by the solutions we found. Several possible outcomes of
such collisions are summarized in Fig. 3. Almost identical
slow colliding bubbles may form a bound stationary state
even when they collide with an offset. Bubbles moving with
large velocities may scatter at a π/2 angle, resembling the
collision of two pairs of well-separated vortices of opposite
circulation. Almost elastic collisions between these structures
were observed when the velocities or masses of the bubbles
were very different. A bound state is more likely to be formed
when bubbles have similar phases of the second component
and move slowly. In such collisions, a small fraction of the
mass is emitted as sound waves. The outgoing bubbles are
solitary waves as verified by energy-impulse calculations.

Our simulations of Eqs. (1) were done using two high-
order schemes: a fourth order in space finite differences with a
fourth-order Runge-Kutta scheme in time (FD) and a Fourier
pseudospectral method (FS) [21], with �x = �y = 0.25 and
�t = 0.01 (FD), 0.005 (FS).

Dynamic molecules. These solitonic molecules may have
complex oscillatory internal modes: The states formed by
vortices with a bright filling exchange parts of the mass,
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FIG. 3. (Color online) Density snapshots of the second com-
ponent in coherent bubble-droplet pair collisions, before (left-hand
column) and after (right-hand column) the collision. (a), (b) Identical
incident bubbles with U = 0.1, N2 = 40, p = 6.36, E = 2.99 form
a bound state. (c), (d) Incident bubbles with the same speed
U1 = U2 = 0.2 but different sizes emulate an elastic collision (left-
hand bubble: N2 = 40, E = 5.6, p = 14.9; right-hand bubble: N2 =
50, E = 7.7, p = 20.1). (e)–(f) Identical bubbles (parameters being
U = 0.2, N2 = 40, E = 5.6, p = 14.9) emulate the collision of two
pairs of well-separated vortices. (g), (h) Identical bubbles (same as
those in third row) collide with an offset of eight dimensionless
units and form a bound state. The spatial region spanned is x ∈
[−50,50], y ∈ [−30,30]. All quantities displayed are dimensionless.

leading to a periodic beating, as we will show, simulating
the evolution of initial conditions:

ψ1 = tanh

(
r+
wd

)
e−iθ+ tanh

(
r−
wd

)
eiθ− , (4a)

ψ2 = e
−

(
r+
wb

)2

, (4b)

with r± =
√

(x ± D
2 )2 + y2, θ± = atan[y/(x ± D

2 )], wd and
wb are, respectively, the widths of the vortex cores and the
“bright” component of these multidimensional dark-bright
solitons, and D is the separation between the centers of the
“dark” parts. The choice of Gaussian and hyperbolic tangent
profiles for the bright component and vortices, respectively,
is more realistic from the experimental point of view than
numerically calculated eigenstates. We consider N2 = 5 as
the number of particles of the bright component. We also
impose wb = 1.0 and that the diameter of the bright part fits
exactly within the vortex size at one half of the maximum
amplitude, which yields wd = 2.3, calculated by the condition
|ψ1(wd+D

2 )|2 = | 1
2ψ1(∞)|2. We have chosen gij = −1, with

j = 1,2, to illustrate that the results are valid even in the
boundary of the immiscibility region. In this configuration
the two nonlinear structures move along a rectilinear path,
keeping the distance D = 4.5 fixed. The bright component of
the pair first tunnels to the empty vortex core and then beats
periodically between the two cores, similarly to the bright
soliton oscillation in a double-well potential [see Fig. 4 (top)].
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FIG. 4. Top: Propagation of a vortex pair of opposite circulation
in component |1〉 with a bright soliton in component |2〉 nested into
one of the cores. The pseudocolor plot shows the density of the bright
component. The snapshots are taken in the center-of-mass system
with a separation of 6.25 time units, each showing a spatial window
of 23.5 × 9.5 units of a larger simulation region (100×100). The
initial separation between both cores is D = 4.5. Bottom: Switching
curve Nmax vs. D. Inset: Evolution of wd for the lower vortex core in
the simulation displayed in the top.

The vortex cores significantly change their size along the whole
dynamics, the effective potential wells being dynamically
modified along the direction of propagation owing to the
intercomponent and intracomponent interactions (see the inset
in Fig. 4). Initially [point (a)], the vortex is empty, and
therefore features a minimum width. As the bright component
starts to fill up the vortex core, it becomes broader owing
to the repulsive interaction between different atomic species,
reaching a maximum width for t = 37.5 [point (b)]. When the
bright component in a vortex decreases, it narrows again [see
point (c) for t = 75].

The bottom plot in Fig. 4 shows the variation of the
maximum of the bright population within the initially empty
core Nmax (normalized to the total number of particles in
the bright component) as a function of D. As it can be
appreciated in the graph, when the cores are close enough,
most particles oscillate between both cores. A small fraction

t

x

y

FIG. 5. (Color online) Density isosurface plot of the beating
process of the bright field hosted by two equally charged vortices.
Dark cores rotate, keeping the distance to its center of mass unaltered.
A periodic beating of the bright component (blue surface) is observed
in between both cores, as it can be inferred from the white contours
within the inner slices. In this plot, D = 3.5, the grid size is
100 × 100, the spatial range is x,y ∈ [−10,10], α = 1, and the time
interval t ∈ [0,150].
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of particles remains in the empty vortex, because of the
overlapping between modes in both cores. As D increases over
a certain threshold, the tunneling between cores is suppressed
due to the nonlinearity-induced asymmetry of the effective
potentials and the value of Nmax quickly decreases to zero.
Thus, this switching curve, having an intermediate regime
of partial tunneling in which it is possible to control Nmax

efficiently, allows for the design of a “matter-wave switcher.”
It is also possible to control both Nmax and the beating period
by slightly tuning the interespecies coupling coefficients
(g12,g21), making the switcher completely reconfigurable.
Control of g12 and g21 has been demonstrated previously in
experiments [22]. The beating persists for times longer than the
condensate lifetime, indicating that the nonlinear matter-wave
switching process is very robust.

A second interesting configuration corresponds to a pair
of vortices of equal charges and the same initial conditions
described previously in the discussion of the results shown in
Fig. 4. For this system, the vortices orbit following circular

trajectories while the bright component tunnels between the
vortex cores and thus follows a spiralling trajectory (see Fig. 5).
This beating is very stable and does not affect the circular
vortex trajectories.

Conclusions. We have discussed the dynamics of interact-
ing bubble-droplet pairs in quasi-two-dimensional immiscible
BECs. We have found robust bubblelike solitons without a
scalar counterpart that can be used to construct coherent atomic
soliton molecules. The study of the dynamics of these stable
objects has revealed the possibility of constructing nonlinear
matter-wave switchers. Our ideas could be tested in future
experiments.
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