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No singularities in observables at the phase transition in the Dicke model
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The Dicke Hamiltonian describes the simplest quantum system with atoms interacting with photons: N

two-level atoms inside a perfectly reflecting cavity, which allows only one electromagnetic mode. It has also
been successfully employed to describe superconducting circuits that behave as artificial atoms coupled to a
resonator. The system exhibits a transition to a superradiant phase at zero temperature. When the interaction
strength reaches its critical value, both the number of photons and atoms in excited states in the cavity, together
with their fluctuations, exhibit a sudden increase from zero. By employing symmetry-adapted coherent states,
it is shown that these properties scale with the number of atoms, their reported divergences at the critical point
represent the limit when this number goes to infinity, and, in this limit, they remain divergent in the superradiant
phase. Analytical expressions are presented for all observables of interest, for any number of atoms. Comparisons
with exact numerical solutions strongly support the results.
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The quantum description of a system of N noninteracting
two-level atoms under the action of a one-mode electromag-
netic field allowed Dicke [1] to predict the superradiance
phenomenon, where all atoms absorb and emit light collec-
tively and coherently [2]. For N = 1 (the Jaynes-Cummings
model), the system exhibits quantum features such as collapse
and revivals of the atomic inversion [3] and squeezing of the
radiation field [4].

The Dicke quantum phase transition has recently been
observed by employing a superfluid gas in an optical cavity [5].
While this breakthrough was achieved using time-dependent
fields dressing the system, it has been argued that super-
conducting circuit QED systems will exhibit a stationary
superradiant phase [6]. The description of these systems is
given in terms of the same Dicke Hamiltonian [7], with minor
modifications [8]. The theoretical description is obtained by
mapping the original Hamiltonian to a system of two bosons,
making a Holstein-Primakoff realization of the quasispin
operators that represent the collective atomic excitation, and
truncating the infinite series up to first or second order,
assuming that the expectation value of the number of excited
atoms (or the number of photons) is small compared with
the total number of atoms N [6–9]. This system exhibits a
transition to a superradiant phase at zero temperature. When
the interaction strength reaches its critical value, a divergence
is predicted in the expectation value of the number of photons
[7,8], the number of atoms in excited states [8], and their
fluctuations [7,9].

In this Rapid Communication, we show that, by employing
symmetry-adapted coherent states, these properties scale with
the number of atoms, their reported divergences at the critical
point represent the limit when this number goes to infinity,
and, in this limit, they remain divergent in the superradiant
phase, contrary to what is stated in some of the references
mentioned above [6–9]. The ground state of the Dicke model is
obtained using the tensorial product of spin-coherent and Weyl
states as a trial wave function. The Hamiltonian expectation
value is calculated, and its critical points found, showing the
existence of the quantum phase transition. The superradiant
phase is described by employing combinations of coherent
states that preserve the Hamiltonian C2 symmetry [10]. With

these, analytical expressions are obtained for all observables of
interest, which are valid for any number of atoms. Comparisons
with exact numerical solutions strongly support the results.

The Dicke Hamiltonian involves the collective interaction
of N two-level atoms with energy separation equal to h̄ω̃A

with a one-mode radiation field of frequency ω̃F . Its deduction
from the quantization of the electromagnetic field makes
the following assumptions: (i) The dipole approximation, or
long-wavelength limit, i.e. the electric field is evaluated at
the center of mass of the atoms and is independent of the
position. (ii) Only the two atomic levels are interacting with
the electromagnetic field. The lowest energy state is at least
metastable and, thus, the decay to other energy levels can
be neglected. The Dicke model Hamiltonian for N identical
two-level atoms immersed in a one-mode electromagnetic field
is given by

HD = a†a + ωA Jz + γ√
N

(a† + a)( J− + J+) , (1)

where ωA = ω̃A/ω̃F � 0 is given in units of the frequency
of the field, and γ = γ̃ /ω̃F is the (adimensional) coupling
parameter. The operators a and a† denote the one-mode
annihilation and creation photon operators, respectively, Jz

denotes the atomic relative population operator, and J± the
atomic transition operators.

The Dicke Hamiltonian has a dynamical symmetry associ-
ated with the projectors of the symmetric and antisymmetric
representations of the cyclic group C2, given by

PS = 1
2 (1 + eiπ�̂) , PA = 1

2 (1 − eiπ�̂) .

This symmetry allows the classification of the eigenstates in
terms of the parity of the eigenvalues λ = j + m + ν of the
excitation number operator

�̂ =
√

Ĵ 2 + 1/4 − 1/2 + Ĵz + a†a,

with j = N/2, j + m is the number of atoms in their excited
state, and ν is the number of photons.

To obtain analytical expressions, the variational procedure
described in [11] is employed. We use as a trial state the direct
product of coherent states in each subspace: Heisenberg-Weyl
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states |α〉 for the photon sector [12,13] and SU(2) or spin states
|ζ 〉 for the particle sector [14,15], i.e., |α, ζ 〉 = |α〉 ⊗ |ζ 〉. Due
to the symmetry properties of the Dicke Hamiltonian, it is
convenient to replace m by λ − j − ν: explicitly, it is given by
the expression

|α, ζ 〉 = N−1/2
coh

∞∑
λ=0

λ∑
ν=max[0, λ−2j ]

αν

√
ν!

(
2j

λ − ν

)1/2

× ζ λ−ν |ν〉 ⊗ |j, λ − ν − j 〉 , (2)

where the ket |ν〉 is an eigenstate of the photon number
operator, |j,m〉 is a Dicke state with j denoting the eigenvalue
of J 2, and m is the corresponding eigenvalue of Jz. The trial
state contains N = 2j particles distributed in all the possible
ways between the two levels and up to an infinite number of
photons in the cavity. The normalization is

Ncoh = (1 + |ζ |2)N exp |α|2. (3)

The expectation value of the Dicke Hamiltonian with
respect to |α, ζ 〉, when divided by the total number of particles,
is called the energy surface of the Dicke Hamiltonian. It is a
function of four variables and two parameters,

E(q, p, θ, φ) = 1

2N
(p2 + q2) − 1

2
ωA cos θ

+
√

2γ√
N

q sin θ cos φ , (4)

where use has been made of the harmonic-oscillator realization
of the field and of the stereographic projection for the quasispin
sector

α = 1√
2

(q + i p) , ζ = tan

(
θ

2

)
exp(−i φ) , (5)

where (q,p) correspond to the expectation values of the
quadratures of the field and (θ,φ) determine a point on the
Bloch sphere.

The minimum and degenerate critical points are obtained
by means of the catastrophe formalism [16]. The minimum
critical points are, for ωA � 4 γ 2, θc = 0 , qc = 0 , and pc =
0 ; and for 0 � ωA < 4 γ 2, θc = arccos( ωA

4 γ 2 ), φc = 0, qc =
−√

2N γ

√
1 − ω 2

A

16γ 4 cos φc , and pc = 0 . The first group
contains the minimum critical points in the normal phase and
the second one describes the minimum critical points in the
superradiant phase. The phase transition occurs at ωA = 4 γ 2

c ,
i.e., γc = √

ωA/2. In dimensional units, γ̃c = √
ω̃Aω̃F /2, in

agreement with Refs. [8,9].
The associated energies and expected number of photons

〈N̂ph〉 = |αc|2 and of excited atoms 〈ne〉 = 〈N
2 + Jz〉 = N

2 (1 −
cosθc) are

Enormal = −2N γ 2
c , Esuper = −N γ 2

[(
γc

γ

)4

+ 1

]
.

〈N̂ph〉normal = 0 , 〈N̂ph〉super = N γ 2

[
1 −

(
γc

γ

)4
]

, (6)

〈ne〉normal = 0 , 〈ne〉super = N

2

[
1 −

(
γc

γ

)2
]

.

These mean-field expressions exactly coincide with those
presented in [9] and reproduce with precision the numerical
results, even for a relatively small number of particles. The
mean-field results fail badly, however, in the description of the
fluctuations of these observables, a limitation also found in
the Tavis-Cummings model, where the counter-rotating terms
are absent [17]. The reason is that, in the superradiant phase,
the state |α, ζ 〉 breaks the C2 symmetry of the Hamiltonian,
mixing all λ values, and has an expectation value of 〈q̂〉 = qc

different from zero, implying that (�q)2 = 1/2.
To go beyond this mean-field treatment, to obtain a

symmetry-adapted description of the ground state of the Dicke
model in the superradiant phase, which would preserve the C2

symmetry of the Hamiltonian, we perform a projection over
the λ’s in Eq. (2), which is equivalent to requiring that the
sum be carried over λ even or odd. This represents a gener-
alization of the restoration of the Hamiltonian symmetry in
the Lipkin-Meshkov-Glick (LGM) [18] and Tavis-Cummings
Hamiltonians [17]. The two resulting orthogonal states with
λ even or odd |αc, ζc,±〉 are even or odd under eiπ�̂. Their
normalizations are

N± = 2N−1[
1 + (

γc

γ

)2]N
[1 ± F (N,γ,γc)], (7)

where we have defined

F (N,γ,γc) =
(

γc

γ

)2N

exp

{
−2Nγ 2

[
1 −

(
γc

γ

)4
]}

. (8)

From these, analytical expressions can be found for all the
observables of interest [10]. Those for the even and odd energy
surfaces are

〈H 〉±
N

= γ 2

{
−3 +

(
γc

γ

)4

+ 2

1 ± F

[
1 −

(
γc

γ

)4
]}

. (9)

It should be noted that F (N,γ,γc) → 0 when N → ∞ very
rapidly. For example, F (100,1.03γc,γc) < 10−5. It implies
that the two states with different parity C2 become degenerate.
Notice that the origin of this degeneracy is the restoration of
the C2 symmetry, not its breaking.

The expectation value of the population of atoms in the
two-level system is

〈Ĵz〉±
N

= −1

2

(
γ

γc

)2
(

1 −
1 − (

γc

γ

)4

1 ± F

)
, (10)

and the expectation value of the number of photons is given
by

〈N̂ph〉±
N

= γ 2

[
1 −

(
γc

γ

)4
]

1 ∓ F

1 ± F
. (11)

When F → 0, both expressions coincide with the mean-field
ones, given in Eqs. (6), as expected.

The quadrature components of the electromagnetic field
change the value of λ in one unit, so their expectation values
with respect to the projected states are equal to zero. For the
same reason, the expectation values of matter observables
〈Jx〉 and〈Jy〉 are null. The symmetry projection makes all
the difference with respect to the mean-field estimations,

051601-2



RAPID COMMUNICATIONS

NO SINGULARITIES IN OBSERVABLES AT THE PHASE . . . PHYSICAL REVIEW A 83, 051601(R) (2011)

0.2 0.4 0.6 0.8
γ

0.2

0.4

0.6

0.8

1.0

1.2
q 2 N

FIG. 1. (Color online) Squared fluctuations of the first photon
quadrature (�q)2/N at resonance ωA = 1, calculated through numer-
ical diagonalization of the matrix Hamiltonian for N = 10, 20, 30,

and 50 (thin continuous lines (red)) and from Eq. (12) (thick
dashed line (black)). As N increases, the exact quantum dispersion
approaches that calculated through adapted states: the upper thin
curve corresponds to N = 10, while the lower thin line corresponds
to N = 50. All the quantities plotted are dimensionless.

where these expectation values grow with the number of
particles.

The expectation values of squared quadratures of the one-
mode electromagnetic field are given by

〈q̂2〉±
N

= 1

2 N
+ 2γ 2

[
1 −

(
γc

γ

)4
]

1

1 ± F
,

(12)
〈p̂2〉±

N
= 1

2 N
− 2γ 2

[
1 −

(
γc

γ

)4
]

F

F ± 1
.

The expectation value of the operators Ĵ 2
x and Ĵ 2

y are〈
Ĵ 2

x

〉
±

N2
= 1

4N

{
1 +

[
1 −

(
γc

γ

)4
]

(N − 1)

1 ± F

}
,

(13)〈
Ĵ 2

y

〉
±

N2
= 1

4N

{
1 +

[
1 −

(
γc

γ

)−4
]

(N − 1)F

F ± 1

}
.

In Fig. 1, the squared fluctuations of the quadrature (�q)2 at
resonance (ωA = 1) are presented, divided by the total number
of particles N , as a function of the coupling strength γ . The
thin continuous (red in color version) lines were calculated by
numerical diagonalization of the Hamiltonian for N = 20, 40,
60, and 100, while the thick dashed (black) line was obtained
employing Eq. (12). It is clear that the fluctuations scale with
the number of particles.

In Fig. 2, the squared fluctuations of the atomic observable
(�Jx)2 at resonance (ωA = 1) are presented, divided by the
square of the total number of particles N as a function of
the coupling strength γ . The thin continuous (red in color
version) lines were calculated by numerical diagonalization of
the Hamiltonian for N = 20, 40, 60, and 100, while the thick
dashed (black) line was obtained employing Eq. (13). In this
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FIG. 2. (Color online) Squared fluctuations of the atomic transi-
tion operator (�Jx)2/N 2 at resonance ωA = 1, calculated through
numerical diagonalization of the matrix Hamiltonian for N =
10, 20, 30, and 50 (thin continuous lines (red)) and from Eq. (13)
(thick dashed line (black)). As N increases, the exact quantum
dispersion approaches that calculated through adapted states: the
upper thin curve corresponds to N = 10, while the lower thin line
corresponds to N = 50. All the quantities plotted are dimensionless.

case the fluctuations scale with the square of the number of
particles.

It is worthwhile to study the superradiant phase in the limit
γc/γ → 0, which is exactly solvable [19,20]. The expectation
values discussed above become 〈N̂ph〉 → N γ 2,〈ne〉 →
N/2,(�q)2 → 2N γ 2 + 1

2 , (�p)2 → 1
2 ,ξ 2

x = 4(�Jx)2/N →
N, and ξ 2

y = 4(�Jy)2/N → 1.

In this limit, both the average number of photons and the
fluctuations in the q quadrature scale with the number of
particles N and with γ 2. The average number of excited atoms
goes to N/2 and with it 〈ne〉/N → 1/2. This clarifies why
any Taylor expansion of this quantity around zero, truncated
to second or third order, can not reproduce the asymptotic
behavior.

The squeezing in spin observables is given by ξi =√
4(�Ji)2/N , where Ji are the perpendicular components

to the average angular-momentum vector 〈 �J 〉 [21]. There is
squeezing when ξi < 1. For the Dicke model 〈 �J 〉 = 〈Jz〉k̂,
and the perpendicular components of the angular momentum
are Jx and Jy . The squared squeezing observables ξ 2

i are,
in the limit 〈ne〉/N << 1, very close to the fluctuations of
the quadratures of the atomic degrees of freedom studied
in [9]. In a similar fashion as with the number of excited
atoms, the squeezing parameter ξ 2

x scales with the number
of atoms.

It is worth mentioning that Eqs. (12) and (13) show that
(�p)2 and ξy have some squeezing around γc, as found in [9].
This is an effect of order 1/N , which becomes negligibly small
when the number of atoms grows. The excitation energy of the
first excited state is also of this order. These aspects will be
analyzed in detail in a forthcoming publication.

What is the origin of the divergences in the number of
photons and its fluctuation at the critical value of γ reported in
[7–9]? It is found in the normal phase when the limit N → ∞
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is assumed, obtaining a Hamiltonian bilinear in two kinds of
bosons without memory of the number of particles, except for
the ground-state energy, which has a constant displacement
−N ωA/2. A Bogoliubov transformation allows the exact
diagonalization of this Hamiltonian, and the expectation values
of the number of photons, the number of atoms in excited
states, and their fluctuations all diverge at γc. It agrees with
the exact results reported above when the number of atoms N

goes to infinity. But, in contrast to what is found in [7–9],
we have shown that, at the superradiant phase, they will
remain divergent with N for any γ > γc. This finding relies on
the use of symmetry-projected SU(2)×U(1) coherent states.
The expectation values obtained by employing a truncated
Hamiltonian completely disagree with the numerically exact
ones at the superradiant phase because the assumption 〈ne〉 	
N is not valid for γ 
 γc, and the C2 symmetry of the
Hamiltonian is not preserved.

In summary, we have presented analytic expressions for the
ground and first excited states of the Dicke Hamiltonian in
the superradiant phase that have the appropriate C2 symmetry.
From these, analytical expressions for all expectation values
of interest were obtained, valid for any number of atoms. The
procedure was the following: The expectation value of the

Hamiltonian with respect to the tensorial product of Weyl and
SU(2) coherent states defines an energy surface depending
on phase space variables and parameters, the critical points of
which were determined. The minimum critical points yield the
expressions (6), which give the minimum energy of the system
together with information about the quantum phase transition
present in the Dicke Hamiltonian.

At the phase transition, the expectation values of the number
of photons, the number of atoms in excited states, and their
fluctuations exhibit a sudden increase from zero. It was shown
that these properties scale with the number of atoms, that their
reported divergences at the critical point represent the limit
when this number goes to infinity, and that, in this limit, they
remain divergent in the superradiant phase. This implies that
no singular behavior in the number of photons, the number of
excited atoms, their fluctuations, squeezing, and quadratures
will be found around the phase transition in future experiments.
The presence of entanglement [22] and chaos [19] at the phase
transition in the Dicke model should also be analyzed from
this perspective.
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