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The ground states of some many-body quantum systems can serve as resource states for the one-way quantum
computing model, achieving the full power of quantum computation. Such resource states are found, for example,
in spin- 5

2 and spin- 3
2 systems. It is, of course, desirable to have a natural resource state in a spin- 1

2 , that is, qubit
system. Here, we give a negative answer to this question for frustration-free systems with two-body interactions.
In fact, it is shown to be impossible for any genuinely entangled qubit state to be a nondegenerate ground state
of any two-body frustration-free Hamiltonian. What is more, we also prove that every spin- 1

2 frustration-free
Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit
states. In other words, there cannot be any interesting entanglement features in the ground state of such a qubit
Hamiltonian.
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Quantum computers are distinct from classical ones, not
only in that they can solve hard problems that are intractable on
classical computers, factoring large numbers for example [1],
but also in that they can be implemented in architectures
such as one-way quantum computing [2–4] that have no
evident classical analogs at all. Unlike the quantum circuit
model [5–7], which employs entangling gates during the
computation, one-way quantum computation requires only
single-particle measurements on some prepared entangled
state, also known as the resource state. This quantum computa-
tion scheme sheds light on the role of entanglement in quantum
computation and provides possible advantages in physical
implementation of quantum computers. Moreover, from the
theoretical computer science perspective, although one-way
quantum computations are polynomial-time equivalent to the
unitary circuit model, they may have advantages over the
circuit model in terms of parallelizability [3,8,9]. For example,
the quantum Fourier transform [10], the key quantum part of
Shor’s factoring algorithm, is approximately implementable
in constant depth in the one-way model [11]. All these
nice facts about the one-way computing model make it
a worthy topic to pursue both theoretically [12–19] and
experimentally [4].

Quantum entanglement is believed to be a necessary
ingredient of quantum computation [20–22]. This is also the
case in the one-way quantum computing [23–26]. However,
the entanglement used in a one-way quantum computer is
cleanly separated in the initial preparation step from the whole
computation. Moreover, it usually has a regular structure and
is independent of the computation problem and inputs. This
allows us to focus on the preparation of some specific entangled
resource state.

An appealing idea is to obtain the resource state in
some strongly correlated quantum many-body system at low

temperature. This approach requires the resource state to be
the nondegenerate ground state of some gapped Hamiltonian,
which involves only two-body nearest-neighbor interactions.
In this way, the resource state can be effectively created via
cooling, and the procedure is robust against thermal noises.
We also want the Hamiltonian to be frustration free; that is,
the ground state minimizes the energy of each local term of
the Hamiltonian simultaneously, so that measurements in the
course of the computation leave the remaining particles in the
ground space.

The canonical resource state for one-way quantum com-
puting, known as the cluster state [2], does not naturally
occur as a ground state of a physical system [27]. As a
result, there have been significant efforts to identify alternative
resource states that appear naturally as ground states in spin
lattices [13,14,28–30]. In Ref. [29], a natural resource state
called triCluster is found in a spin- 5

2 system. Very recently,
a two-body spin- 3

2 Hamiltonian from a quantum magnet was
found whose unique ground state is also a universal resource
state for one-way quantum computing [30]. As two-level
systems are more widely available in practice than higher-level
systems, it is natural to ask whether there exists a universal
resource state in spin- 1

2 (qubit) system that naturally occurs.
In this Rapid Communication, however, we show that it

is not the case. Namely, a genuinely entangled qubit state
cannot be a nondegenerate ground state of any two-body
frustration-free Hamiltonian, as there is always a product of
single qubit states in the ground space. This indicates that
one-way computing with naturally occurring resource states
cannot be done with qubits. Therefore, the best one can hope
for is to find natural a resource state in spin-1 systems, the
existence of which remains an open question, or one needs
to resort to some other techniques, such as the perturbation
approaches [31,32].
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We also show that any two-body frustration-free Hamilto-
nian has a ground state that is a product of single- or two-qubit
states. This leads to a deeper understanding of the relationship
between frustration in the Hamiltonian and entanglement in the
ground state of qubit systems. Namely, frustration is necessary
for qubit systems to have nontrivial entanglement ground
states, and it is necessary only for qubit systems because it
is well known that the spin-1 Affleck-Kennedy-Lieb-Tasaki
(AKLT) state [33] is a unique ground state of a two-body
frustration-free Hamiltonian on a chain. We also emphasize
that our result is general as we do not require the interactions
to be nearest-neighbor on some lattice or require the system to
be gapped.

It is worth noting that our discussion is also closely related
to a problem in quantum computational complexity theory,
the quantum analog of 2-satisfiability (abbreviated as quantum
2-SAT [34]). We discussion the relation in detail in the next
section.

The frustration-free Hamiltonian. We start our proof by
assuming that there does exist such a naturally occurring state
of n qubits, denoted by |�〉. We also assume for simplicity
that the state is genuinely entangled, meaning that it is not
a product state with respect to any bipartition of the n-qubit
system.

Given any density matrix ρ, we define its support supp(ρ)
to be the subspace spanned by the eigenvectors of nonzero
eigenvalues of ρ. For any two qubits i,j , the two-particle
reduced density matrix of these two qubits of state |�〉 is
denoted as ρij .

For any state |�〉, define a two-body frustration-free
Hamiltonian H� that has |�〉 in its ground space to be the sum
of projections �ij onto the orthogonal space of the supp(ρij ).
That is,

H� =
∑

ij

�ij . (1)

As H� is constructed from state |�〉, we call it the two-body
frustration-free Hamiltonian of |�〉.

Clearly H� is two-body and frustration-free, as |�〉 is in
the ground space and minimizes the energy of each local term.
Note that the ground space of H� is given by

S(|�〉) =
⋂

ij

supp(ρij ⊗ Iīj ), (2)

where Iīj is the identity operator on qubits other than i,j .
Generally, a frustration-free Hamiltonian H = ∑

Hk needs
not to be a summation of projections. However, we can always
find one whose local terms are indeed projections and has the
same ground space as H . More specifically, one can choose �k

to be the projection onto the orthogonal space of the ground
space of Hk and consider

∑
�k instead. Therefore, we only

consider frustration-free Hamiltonians that are summations of
projections in this Rapid Communication. It is also not hard
to see that any two-body frustration-free Hamiltonian H ′ that
has |�〉 as a ground state also contains S(|�〉) in its ground
space. In other words, H� has the smallest possible ground
space among all frustration-free Hamiltonians having |�〉 as a
ground state.

There is a natural correspondence between a two-body
frustration-free Hamiltonian H and the quantum 2-SAT

problem. Classically, a 2-SAT problem asks whether a logical
expression in the conjunctive normal form with two variables
per clause, for example, (x0 ∨ x1) ∧ (¬x1 ∨ x2) ∧ (x2 ∨ ¬x0),
is satisfiable, where xi are Boolean variables and ∧, ∨ ,¬ are
logical AND, OR, NOT operations, respectively. There is a
well-known polynomial time classical algorithm that solves
2-SAT while the related 3-SAT problem is believed to be
much harder (NP-Complete [35]). In Ref. [34], it was proved
that the quantum analog of the 2-SAT problem, which asks
whether a set of projections on two-qubit subsystems has
a simultaneous ground state, is also efficiently solvable on
a classical computer. It was also shown there that quantum
4-SAT is one of the hardest problems in QMA1 (a quantum
analog of NP [35]), meaning that it is probably hard even for
quantum computers. The relation between a frustration-free
Hamiltonian and its corresponding quantum SAT problem is
evident. The Hamiltonian H is indeed frustration-free, thereby
having 0 ground energy, if and only if the quantum SAT
problem defined by the set of projections in the Hamiltonian
H is satisfiable. In the case of two-body Hamiltonian H� ,
the corresponding Quantum 2-SAT problem is defined by
�ij ’s. If for each term �ij , the rank of it is either 0
or 1, the corresponding quantum 2-SAT problem is called
homogeneous [34], a concept that is used in the following.

Now we go back to the Hamiltonian problem and show
that |�〉 cannot be a unique ground state of any two-
body frustration-free Hamiltonian by proving the following
theorem.

Theorem 1. Given an n-qubit state |�〉 that is genuinely
entangled and any two-body frustration-free Hamiltonian H

having |�〉 as its ground state, there always exists a product
state of single qubits also in the ground space of H for n � 3.

As H� has the smallest ground space, we only need to
prove the theorem for H� instead of the general H . Also, it is
equivalent to prove that S(|�〉) is of dimension at least 2 and
contains a product state of single qubits.

Proof of the theorem. We prove this theorem by induction.
Before doing so, we examine the following fact. Let |�〉
and |�〉 be two n-qubit states that can be transformed into
each other by invertible local operations. That is, there are 2
× 2 nonsingular linear operators L1, . . . ,Ln, such that |�〉
= L|�〉, where L = L1 ⊗ · · · ⊗ Ln. This is equivalent to
saying that |�〉 and |�〉 can be transformed to each other
via stochastic local operation and classical communication
(SLOCC) [36,37]. Noticing the fact [38] that |�〉 is a ground
state of H if and only if |�〉 is a ground state of

H ′ =
∑

ij

(Li ⊗ Lj )†�ij (Li ⊗ Lj ), (3)

and the trivial fact that L maps product states to product
states, we only need to discuss states that are representatives
of equivalent classes induced by such local transforms L.
Equivalently, it suffices to consider SLOCC equivalent classes.

For three-qubit genuinely entangled states, there are only
two different SLOCC equivalent classes [37], represented
by the |W 〉 and |GHZ〉, respectively, where |W 〉 = (|001〉
+ |010〉 + |100〉)/√3, and |GHZ〉 = (|000〉 + |111〉)/√2. For
the |W 〉 state, one has

S(|W 〉) = span{|W 〉,|000〉}; (4)
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therefore, the product state |000〉 is in the ground space. While
for |GHZ〉,

S(|GHZ〉) = span{|000〉,|111〉}, (5)

both product states |000〉 and |111〉 are in the ground space.
This then proves the theorem for the three-qubit case.

Now we proceed to the four-qubit case. Note that |�〉 is
genuinely entangled, meaning all ρij must be of rank at least
2; that is, the dimension of the supp(ρij ) is at least 2 and the
rank of �ij is at most 2. We discuss two cases here.

Case 1. If for some pair of qubits, say (3,4), the rank of
their reduced density matrix ρ34 is 2, then the pair of qubits
3,4 can be encoded as a single qubit. Therefore, we can reduce
our problem to a similar one of smaller system size.

To be more precise, suppose ρ34 is supported on two
orthogonal states |ψ0〉34 and |ψ1〉34. Define an isometry

V : |0〉3′ → |ψ0〉34,|1〉3′ → |ψ1〉34, (6)

which maps a single qubit to two qubits. That is, we have used
qubit 3′ to encode the two qubits 3,4. Define |�〉 = V †|�〉 so
that |�〉 is a ground state of H if and only if |�〉 is a ground
state of H ′ = V †HV . One can easily verify that H ′ is still a
two-body frustration-free Hamiltonian and |�〉 is a genuinely
entangled state of three qubits. This reduces to a case already
proved and there is product state |α1〉 ⊗ |α2〉 ⊗ |α3′ 〉 which is
also a ground state of H ′.

Let |β34〉 be V |α3′ 〉, a two-qubit state of qubits 3,4. If it
is a product state, then we are done. If it is entangled, as ρ34

is supported on a two-dimensional space, there always exists
a product state |β3〉 ⊗ |β4〉 ∈ supp(ρ34) [39]. Consider now
the bipartition between qubits 1,2 and qubits 3,4. As |β34〉 is
entangled, any projection term that concerns two qubits from
different partitions will have trivial constraints on qubits 3
and 4. Therefore, the product state |α1〉 ⊗ |α2〉 ⊗ |β3〉 ⊗ |β4〉
is also a ground state of H .

Case 2. If all of the supp(ρij ) are of rank 3 or 4, we
employ the homogeneous 2-SAT and completion techniques
in Ref. [34] to finish the proof. The completion procedure
adds possibly new projection terms to the frustration-free
Hamiltonian without changing the ground space. For any three
qubits, say 1,2,3, the procedure takes two rank-1 Hamiltonian
terms, say �12 and �23, and generates a possibly new
constraint �13. See Fig. 1 for an illustration. We briefly review
the specific rule for obtaining �13 from �12 and �23 and
refer the interested readers to Ref. [34] for the proof and
details. Let �12 = |φ〉〈φ|, �23 = |θ〉〈θ |, and �13 = |ω〉〈ω|,
where |φ〉,|θ〉,|ω〉 are two-qubit pure states. Denote, for
example, φα,β as the amplitude 〈α,β|φ〉. Then relation is
given by ωα,γ = φα,βεβ,δθδ,γ , where ε = |0〉〈1| − |1〉〈0| and
the summation of repeated indices is implicit [34].

The key point here is that the construction of H� guar-
antees that no new constraint could ever be added during
the completion procedure. Therefore, H� corresponds to a
quantum 2-SAT that satisfies all the conditions (homogeneous
and completed) in Lemma 2 of Ref. [34] and it follows from
the lemma that there is a product of single-qubit states in the
ground space of H� .

This proves the theorem for the four-qubit case and the
general n-qubit case can be proved by the same induction.

2

1

3

Π12

Π23

Ω13

FIG. 1. An illustration of completion procedure.

Entanglement versus frustration for a qubit system. We
have shown a no-go theorem for one-way quantum computing,
which says that in order to do one-way quantum computing
with a natural ground state, one has to go to higher-dimensional
particle systems other than two-level systems. Interestingly,
little extra work will give a better understanding for the
relationship of entanglement and frustration for qubit systems,
which we now show.

Theorem 2. For any two-body frustration-free Hamiltonian
H of a qubit system, there always exists a ground state, which
is a product of single- or two-qubit states.

Let
⊗m

i=1 |�i〉 be a ground state. If |�i〉 is a genuinely
entangled state of more than two qubits, there cannot be
any nontrivial constraint interacting the qubits of |�i〉 and
the remaining qubits in the system. We can therefore apply
Theorem 1 to that part of the system and replace |�i〉 with a
product state to get another ground state.

This theorem indicates that frustration is a necessary
condition for genuine many-body ground-state entanglement
in any qubit system.

In the language of quantum 2-SAT, the above theorem states
that if a quantum 2-SAT is satisfiable, there will be a ground
state that is the product of single- or two-qubit states. This is a
much simpler form than the recursive construction in Ref. [34].

If we further require some symmetry of the Hamiltonian,
say, a certain kind of translational invariance, there could be
only two phases for a nondegenerate frustration-free system
with qubits at zero temperature: One is a product state phase,
and the other is a dimer phase [40]. This relationship of
entanglement and frustration is not true in a spin-1 (qutrit)
system. For instance, the famous AKLT state [33] is a
nondegenerate ground state of a two-body frustration-free
Hamiltonian on a chain. Interestingly, the AKLT state and
some of its variants on a chain are indeed powerful enough
to process single-qubit information in the one-way quantum
computing model [13,19,28,41].

Summary and discussion. We have shown that it is impos-
sible for a genuinely entangled qubit state to be a unique
ground state of any two-body frustration-free Hamiltonian
H , because there is always a product state of single qubits
also in the ground space of H . This indicates that one-
way computing cannot be done on naturally occurring qubit
systems. Furthermore, we use a similar technique to prove
that every spin- 1

2 frustration-free Hamiltonian with two-body
interaction always has a ground state that is a product of single-
or two-qubit states. These results are strong in the sense that
they are independent of the lattice structure and therefore
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valid for any lattice geometry with natural nearest-neighbor
interactions in the Hamiltonian.

A direct consequence also follows for condensed-matter
theory. Namely, without frustration, there is no genuine
many-body entanglement in a spin- 1

2 system with two-body
interaction. This is not the case for frustration-free higher
spin systems or spin- 1

2 systems with more than two-body
interactions. These observations are also closely related
to the study of quantum computational complexity theory,
which shows that quantum 2-SAT is easy, but quantum
2-SAT with large-enough local dimensions or quantum
3-SAT might be much more difficult [34,42]. Our result also
simplifies the structure of the solution space of quantum 2-SAT
given in Ref. [34]. However, a full characterization of the
solution-space structure needs further investigation. We

hope that our result helps in further investigations of
local Hamiltonian problems and in linking the fields
of condensed matter, quantum information, and computer
science.
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