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Robust PT -symmetric chain and properties of its Hermitian counterpart
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We study the properties of a parity- and time-reversal- (PT ) symmetric tight-binding chain of size N with
position-dependent hopping amplitude. In contrast to the fragile PT -symmetric phase of a chain with constant
hopping and imaginary impurity potentials, we show that, under very general conditions, our model is always in
the PT -symmetric phase. We numerically obtain the energy spectrum and the density of states of such a chain,
and show that they are widely tunable. By studying the size dependence of inverse participation ratios, we show
that although the chain is not translationally invariant, most of its eigenstates are extended. Our results indicate
that tight-binding models with non-Hermitian, PT -symmetric hopping have a robust PT -symmetric phase and
rich dynamics which may be explored in coupled waveguides.
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Introduction: Since the seminal paper by Bender et al.
[1] a decade ago, it has become clear that non-Hermitian
Hamiltonians with parity and time-reversal (PT ) symmetry
can have purely real spectra [2] and, with an appropriately
redefined inner product, they lead to orthogonal eigenvec-
tors [2], unitary scattering [3], and, therefore, a consistent
quantum theory. The theoretical work on continuum, PT -
symmetric, non-Hermitian Hamiltonians [4] since then has
been accompanied, most recently, by experiments in optics
where spontaneous PT -symmetry breaking in a classical
system has been observed in waveguides with aPT -symmetric
complex refractive index [5,6] and by theoretical studies of
distributed-feedback optical structures that can be mapped
onto a relativistic, PT -symmetric Hamiltonian [7].

Idealized lattice models have been popular in physics due
to their analytical and numerical tractability, the absence of
divergences [8], the availability of exact solutions [9], and
the ability to capture counterintuitive physical phenomena
[10]. As with the standard quantum theory, these models
have been based on Hermitian Hamiltonians. In recent years,
tight-binding models with a Hermitian hopping and PT -
symmetric, complex, on-site potentials [11], non-Hermitian
transitions [12], and PT -symmetric spin chains [13] have
been extensively explored. For a tight-binding chain with
PT -symmetric impurity potentials, a salient result is that its
PT -symmetric phase—the range of model parameters that
lead to a real spectrum—is extremely fragile [11]. This fragile
nature of the PT -symmetric phase precludes effects such as
the Anderson localization [14], impurity-bound states [15],
and the Luttinger-liquid behavior [16] in such a chain with a
non-Hermitian Hamiltonian.

In this Rapid Communication, we explore the properties
of a tight-binding chain of size N with PT -symmetric, non-
Hermitian, position-dependent hopping amplitudes. Our main
results are as follows: (i) We show that the system is always
in the PT -symmetric phase under very general criteria that
we derive. (ii) The energy spectrum and the resulting density
of states in such a chain are widely tunable and symmetric
around zero. (iii) Although the chain is not translationally

invariant, (a majority of) its eigenfunctions are delocalized.
Our results show that a robust PT -symmetric chain has non-
Hermitian hopping amplitudes and Hermitian potentials, and
that its Hamiltonian is similar to that of a chain with position-
dependent, parity-symmetric hopping [17].

Tight-binding model: We start with a Hamiltonian for an
N -site tight-binding chain,

HPT = −
N−1∑
i=1

(tic
†
i+1ci + t∗N−ic

†
i ci+1), (1)

where c
†
n(cn) is the creation (annihilation) operator at site n,

ti are the position-dependent hopping amplitudes, and the
asterisk denotes complex conjugation. The parity operator
on the chain is given by 〈m|P|n〉 = δm,N+1−n = δm,n̄, where
|m〉 represents a single-particle state localized at site m, and
m̄ = N + 1 − m is the reflection counterpart of site m; it
follows that HPT , although not Hermitian, is PT symmetric.
We consider only the single-particle sector and, since periodic
boundary conditions are incompatible with the PT symmetry,
use open boundary conditions. Numerical results indicate that
the spectrum of HPT is purely real when the hopping elements
have the same sign; in the following, we analytically derive
the criteria that guarantee this robustness.

Let us consider a similarity transformation [4] of the non-
Hermitian Hamiltonian, HPT → H = M−1HPT M , where
M = diag(m1, . . . ,mN ) is a diagonal matrix. It is straight-
forward to show that the transformed matrix H is Hermitian,
H = H †, if and only if

m∗
k+1mk+1

m∗
kmk

=
(

tN−k

tk

)
> 0. (2)

We note that this constraint only applies to a diagonal M . Thus,
the PT -symmetric Hamiltonian HPT is similar to a Hermitian
Hamiltonian H if and only if the phases of the hopping
amplitudes (tk,tN−k) are the same for all k = {1, . . . ,N − 1}.
When the hopping elements are real, it implies that tk and
tN−k must have the same sign; when they are complex,
tm = |tm| exp(iθm), it implies that θk = θN−k . The eigenvalue
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spectrum of the non-Hermitian Hamiltonian HPT is purely
real, as long as these general requirements are satisfied. Since
H = M−1HPT M = H †, it follows that the eigenvalues En of
H and HPT are the same, and that the orthogonal eigenvectors
of H , H |vn〉 = En|vn〉, and the (nonorthogonal) eigenvectors
of the PT -symmetric Hamiltonian, HPT |un〉 = En|un〉 are
related by |un〉 = M|vn〉. This relation provides the requisite
inner product under which the eigenvectors |un〉 of HPT are
orthonormalized. We note this transformation corresponds
to the positive-definite, self-adjoint, invertible metric η−1 =
MM† [13].

The hopping amplitudes for atomic orbitals can be, in
general, complex [18]. However, for optical lattices, cou-
pled waveguides, or superlattices, the hopping amplitude,
determined by the overlap of adjacent on-site (Gaussian or
exponential) ground-state wave functions, is positive [18].
A truly non-Hermitian Hamiltonian HPT may be realized
in systems with asymmetrical hopping due to an in-plane
field or a voltage bias [19]. Its Hermitian counterpart H ,
with position-dependent, parity symmetric hopping, may be
realized in evanescently coupled waveguides where the wave-
packet evolution and two-particle quantum correlations are
exquisitely sensitive to the hopping [17].

Note that Eq. (2), although dependent upon the under-
lying Hamiltonian HPT , does not uniquely determine the
transformation matrix M or the Hermitian matrix H . For
simplicity, we choose M to be real and m1 = 1 which
implies, via mk+1 = mk

√
tN−k/tk , that mN = 1. The resulting

real matrix M commutes individually with the parity- and
time-reversal operators. Since numerical diagonalization of
a Hermitian matrix H is faster and more accurate than its
non-Hermitian counterpart HPT , in numerical calculations we
use its Hermitian counterpart H with entries

Hmn = −|tmtN−m|1/2(δm,n−1e
iθm + δm−1,ne

−iθN−n ), (3)

where we recall that θN−n = θn. In the following, we discuss
basic properties of such a chain, with focus on the energy
spectrum and nature of wave functions of H when the hopping
is not uniform

Energy spectrum and density of states: We start with
numerical results for an N = 500 site chain with hopping
amplitude given by tk = t0k

α , where t0 sets the hopping-
energy scale. When α = 0, we have a uniform tight-binding
chain, the energy spectrum is given by En = −2t0 cos(kn),
where kn = nπ/(N + 1) for an open chain, and the density
of states ρ0(x) = θ (1 − |x|)/2πt0

√
1 − x2 diverges near the

band edges x = ±1, where x = E/(2t0) and θ (x) is the
Heaviside function. The left-hand panel in Fig. 1 shows
the cosine spectrum for α = 0 (black solid line), a linear
spectrum that is obtained when α = 1 (green dotted line),
and nonlinear spectra obtained when α = 2 (red dashed line)
and α = −1 (blue dotted-dashed line). As is expected for a
tight-binding model, the energy spectra are symmetric around
zero [20]. These results show that the energy spectrum of the
PT -symmetric chain can be widely tuned. We note that when
α < 0, the eigenstates near the top and the bottom of the energy
band are localized at the two ends of the chain.

The right-hand panel in Fig. 1 shows the corresponding
(un-normalized) densities of states ρα(E). It is clear that the
density of states changes dramatically from ρ0(E) (black solid
line) when α �= 0. When α = 1, due to the linear spectrum, the
density of states is constant. It develops a single peak at E = 0
and tapers off to a finite value at the band edges when α > 1.
In contrast, when α < 0, it develops two symmetrical peaks
and vanishes at the band edges for N → ∞. We emphasize
that when α �= 0, the system is not translationally invariant
and therefore the quantum number n is not associated with the
momentum.

We now focus on α = 1 or equivalently tk = t0k for
k = {1, . . . ,N − 1}. The band edges in this case are given by
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FIG. 1. (Color online) (a) The left-hand panel shows energy spectra for the robust PT -symmetric chain, Eq. (1), with N = 500 sites and a
position-dependent hopping amplitude tk = t0k

α with α = {0,1,2, − 1}. The energy is normalized by its maximum value. When α = 0 (black
solid line), we recover the well-known tight-binding chain dispersion En/(2t0) = − cos(kn). When α = 1 (green dotted line), we get a linear
spectrum. When α > 1 (red dashed line), the energy spectrum develops an inflection point at zero energy. In contrast, when α = −1 (blue
dotted-dashed line), the energy spectrum is linear at the origin, has a steep slope near the band extrema, and develops two symmetrical inflection
points. (b) The right-hand panel shows corresponding (un-normalized) densities of states ρα(E). When α = 2 > 1 (red dashed line), ρα=2(E)
develops a maximum at zero energy and it monotonically decreases to a finite value at the band edges. When α = −1 < 0 (blue dotted-dashed
line), the density of states shows a two-peak structure. When α = 0 (black solid line), we recover the well-known result ρ0(E) that diverges at
the band edges. These results show that the energy spectrum and density of states are widely tunable through the exponent α.
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±E0 = ±(N − 1)t0 and the uniform level spacing is �E =
En+1 − En = 2t0. It follows from Eq. (1) that the recurrence
relation satisfied by the coefficients of an eigenfunction |ψγ 〉 =∑N

k=1 f
γ

k |k〉 of HPT is

−t0
[
kf

γ

k+1 + (N + 1 − k)f γ

k−1

] = Eγ f
γ

k . (4)

It is easy to check that f G
k = CN−1

k−1 = (N − 1)!/(k − 1)!(N −
k)! satisfies Eq. (4) with eigenvalue EG = −(N − 1)t0. Thus
the ground-state wave function is |ψG〉 = ∑N

i=1 f G
k |k〉. Note

that for k ∼ N/2 	 1, the Stirling approximation implies that
the ground-state wave function is Gaussian near the center
of the chain, f G

k ∼ exp[−(k − N/2)2/2N2]. The first excited-
state wave function is given by f 1

k = (N + 1 − 2k)f G
k . It has

an energy −(N − 3)t0, and the Stirling approximation shows
that in the large N limit, it carries over to the wave function
for the first excited state of a simple harmonic oscillator. It
is straightforward, but tedious, to construct the higher excited
states. We emphasize that for every eigenstate with energy
−E < 0, the eigenstate with energy +E > 0 is given by its
staggered version: fk → (−1)kfk [20].

When α �= {0,1} an analytical solution for the eigenvalue
spectrum HPT , or equivalently H , is unknown. However, the
results in Fig. 1 for α > 0 can be qualitatively understood with
the simplest example of a nontrivial, symmetric, tridiagonal
matrix H with real entries {a,b,b,a} above the diagonal.
The matrix H is similar to a PT -symmetric Hamiltonian
HPT of a five-site chain with hopping parameters {t1,t2,t3,t4}
with a = −√

t1t4 and b = −√
t2t3. The eigenvalues of such

a matrix are given by En = {±√
a2 + 2b2, ± a,0}. For a

position-dependent hopping tk = t0k
α , when α = 0 the slope

of the energy spectrum at the band edge is smaller than that
at the origin, when α = 1 we get the linear spectrum, and for
α > 1, the slope of the spectrum at the band edge is larger than
that at the origin.

Localized and extended wave functions: The PT -
symmetric chain with a position-dependent hopping is not
translationally invariant, and when α �= {0,1} its eigenfunc-
tions are not analytically known. To study the evolution of the
spatial extent of a normalized wave function |ψ〉 = ∑N

i=1 fi |i〉
with increasing system size N , we calculate the inverse
participation ratio (R) [21]

Rψ (N ) =
N∑

i=1

|fi |4. (5)

If the R remains finite as N → ∞, the wave function is
localized whereas for an extended state, R(N ) ∝ 1/Nη →
0, where η > 0; for a uniform tight-binding chain, α = 0,
the R(N ) = 3/N for all eigenstates. Note that the Rs for
eigenstates with energies ±E are the same. The left-hand
panel in Fig. 2 shows the evolution of the maximum and
minimum values of R for a chain with N = 10–5000 as a
function of α � 0. Note that since the chain size and the Rs
span decades, we use the logarithmic scale in Fig. 2. When
α = 0 (black solid circles) we obtain the analytical result,
R(N ) = 3/N . When α > 0, we see that both the minimum
and maximum Rs decay with increasing chain size, max R ∝
N−ηα and min R ∝ N−γα , where 0 < ηα < γα < 1, and both
exponents ηα and γα are monotonically decreasing functions
of α. These results strongly suggest that all eigenstates of
the Hamiltonian H with position-dependent hopping t ′k =
t0 [k(N − k)]α/2 are extended when α � 0. The right-hand
panel shows corresponding results for α � 0. The minimum
R is essentially independent of α. On the other hand, in sharp
contrast with the previous results, we see that the maximum R
quickly saturates to a nonzero value and indicates a localized
state. Thus, when α < 0, the system has both extended and
localized eigenfunctions. We note that these exponentially
localized states, at the two ends of the chain, are essentially
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FIG. 2. (Color online) (a) The left-hand panel shows the minimum and maximum values of inverse-participation ratio (R) for an N -site
chain with Hamiltonian H , Eq. (3), as a function of position-dependent hopping tk = t0k

α . When α = 0 (black solid circles), we obtain the
analytical result R(N ) ∝ 1/N . The α = 1 (blue dotted-dashed line) and α = 2 (red dashed line) results show that the Rs decrease monotonically
with increasing chain size. These results strongly suggest that all eigenstates are extended when α � 0. (b) The right-hand panel shows the R
results for α � 0. The α = −1/2 (blue solid circles) and α = −1 (red open squares) results show that the minimum R is essentially independent
of α. The maximum R saturates to a nonzero value and indicates the presence of localized eigenstates with energies ±E. These results show
that when α < 0, the system has both extended and localized states.

050101-3



RAPID COMMUNICATIONS

YOGESH N. JOGLEKAR AND AVADH SAXENA PHYSICAL REVIEW A 83, 050101(R) (2011)

10
−4

10
−2

10
0

10
0

10
2

10
4

N
um

be
r 

of
 s

ta
te

s 
w

ith
 th

e 
R

 

 

10
−4

10
−2

10
0

10
0

10
2

10
4

10
−4

10
−2

10
0

10
0

10
2

10
4

R

10
−4

10
−2

10
0

10
0

10
2

10
4

α =1
N=500

α =1
N=5000

α = −1
N=5000

α = −1
N=500

FIG. 3. (Color online) The evolution of the inverse-participation-
ratio (R) distribution with the chain size N . Note the logarithmic scale.
The top left-hand and bottom left-hand panels show that when α = 1,
as N increases, the entire distribution of Rs shifts to lower values.
It suggests that all eigenstates of the Hamiltonian H , Eq. (3), are
extended in the absence of disorder. The top right-hand and bottom
right-hand panels show that when α = −1, as N is increased, although
most of the Rs shift to lower values, they saturate to a nonzero value
for the states shown in the red oval. These eigenstates are localized
at the two ends of the chain, and each finite value of the R is fourfold
degenerate. Thus, when α < 0, the system has both extended and
localized eigenstates in the absence of disorder.

degenerate in energy; so are their staggered counterparts [20].
Thus, there are at least four eigenstates that have the same
nonzero R. The qualitative difference between α > 0 and
α < 0 cases can be attributed to the hopping: When α > 0, the
hopping amplitude increases from ∼t0N

α/2 at the two edges
to ∼t0N

α at the center of the chain, whereas when α < 0, the

hopping amplitude decreases from ∼t0/N
|α|/2 at the edges to

∼t0/N
|α| at its center.

A better insight into the number of localized states is
provided by the dependence of the R distribution on the size
N of the chain. Figure 3 shows the histogram of Rs for
α = 1 (left-hand column) and α = −1 (right-hand column).
When α = 1, as N is increased tenfold from N = 500 (bottom
left-hand panel) to N = 5000 (top left-hand panel), the entire
R distribution shifts to smaller values. In contrast, when
α = −1, even as N is increased tenfold, the R values for a few
(localized edge) states, indicated by the red oval, are un-
changed while the Rs for the rest shift to lower values.

Discussion:PT -symmetric lattices with a uniform hopping
and imaginary impurities have an extremely fragile PT -
symmetric phase [11]. In this Rapid Communication, we
have presented a tight-binding model with non-Hermitian,
PT -symmetric hopping, Eq. (1). We have shown that, under
very general circumstances, this model is always in the
PT -symmetric phase, and its Hamiltonian is similar to a Her-
mitian Hamiltonian with position-dependent nearest-neighbor
hopping, Eq. (3) [17]. These results are unaffected by the
presence of ubiquitous, on-site, Hermitian disorder since it
does not induce PT -symmetry breaking.

Given the robust nature of the PT -symmetric phase in
this chain, we have explored its energy spectrum, density of
states, nature of eigenfunctions, and their dependence on the
functional form of the hopping amplitude tk = t0k

α . We find
that when α = 1 the energy spectrum is linear and gives rise to
a constant density of states. We show that the energy spectrum
is widely tunable by changing α. We find that when α < 0 the
system has both localized and extended eigenfunctions in the
absence of disorder, whereas when α > 0, all eigenfunctions
are extended. The effect of a Hermitian on-site disorder, then,
is identical to that in a regular tight-binding model [14,21].
Thus, the physics of the robust PT -symmetric chain with
non-Hermitian hopping is extremely rich.
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