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Comment on “Semiquantum-key distribution using less than four quantum states”
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For several decades it was believed that information-secure key distribution requires both the sender and
receiver to have the ability to generate and/or manipulate quantum states. Earlier, we showed that quantum key
distribution in which one party is classical is possible [Boyer, Kenigsberg, and Mor, Phys. Rev. Lett. 99, 140501
(2007)]. A surprising and very nice extension of that result was suggested by Zou, Qiu, Li, Wu, and Li [Phys.
Rev. A 79, 052312 (2009)]. Their paper suggests that it is sufficient for the originator of the states (the person
holding the quantum technology) to generate just one state. The resulting semiquantum key distribution, which
we call here “quantum key distribution with classical Alice” is indeed completely robust against eavesdropping.
However, their proof (that no eavesdropper can get information without being possibly detected) is faulty. We
provide here a fully detailed and direct proof of their very important result.
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A two-way quantum key distribution (QKD) protocol in
which one of the parties (Bob) uses only classical operations
was recently introduced [1]. A very interesting extension in
which the originator always sends the same state |+〉 (while
in [1] all four BB84 states are sent) was suggested by Zou et al.
[2]. In both those semiquantum-KD (SQKD) protocols, the
qubits go from the originator Alice to (classical) Bob and back
to Alice. Bob either reflects a received qubit without touching
its state (CTRL), or measures it in the standard (classical) basis
and sends back his result as |0〉 or |1〉 (SIFT).

We prefer to call the originator in [2] Bob (and not Alice),
and to call the classical party Alice: usually in quantum
cryptography, Alice is the sender of some nontrivial data, e.g.,
she is the one choosing the quantum states. The originator
in [2] does not have that special role, as the state |+〉 is always
sent (and we could even ask Eve to generate it). The classical
person is then the one actually choosing a basis and knowing
which of the three states (|0〉, |1〉, or |+〉) is sent back to the
originator, thus it is natural to name that classical person Alice.
We call the originator Bob, and we call the SQKD protocol of
Zou et al. “QKD with classical Alice.”

QKD with classical Alice [2] is indeed completely robust
against eavesdropping. However, their proof (that no eaves-
dropper can get information without being possibly detected),
is faulty. Their result is stated in Theorem 5 which relies,
after many steps, on their Lemma 1. Since the Lemmas are
correct and only parts of the proofs are wrong, it is not
at all easy to pinpoint errors. We explicitly single out two
interwoven problems in Lemma 1: (a) They state (Lemma 1,
first lines) that “Alice’s final state ρ ′A is a product state” (in
SQKD Protocol 2), prior to saying “If the attack (UE,UF )
induces no error on CTRL...”. Using our terminology, this
means that The originator’s final state ρ ′B is a product state
(in the classical Alice protocol), however, this statement is
inaccurate; in order to prove that Bob’s final state is a product
state one must make use of the fact that the attack induces no
errors on CTRL bits. (b) They state (Proof of Lemma 1, first
lines): “Because Alice sends a qubit only after receiving the
previous one, the qubits she received are in a tensor product
form, i.e. ρ ′A = ρ ′

1
A ⊗ · · · ⊗ ρ ′

N
A ”. Using our terminology,

this means that Because the originator (Bob) sends a qubit
only after receiving the previous one, the qubits he received
are in a tensor product form, i.e. ρ ′B = ρ ′

1
B ⊗ · · · ⊗ ρ ′

N
B . That

is not true in general. Consider, for instance, an attack on two
consecutive qubits: if Eve has a one-qubit probe initialized as
|0〉 and uses each of the two incoming qubits from Bob as
a control bit to apply a controlled-NOT gate (such that the
NOT is applied onto her probe), then her probe keeps the
parity of the two qubits sent by Bob; if the classical party
(Alice) reflects both qubits (CTRL), the final global state
is 1

2 [[|00〉B + |11〉B]|0〉E + [|01〉B + |10〉B]|1〉E] and, once
Eve’s state is traced out, the resulting state in Bob’s hands
is not a product state.

We now prove that the final result is indeed correct:
robustness can be proven, directly, as follows. The originator
Bob keeps in a quantum memory all qubits he received
from Alice. When N qubits have been sent and received,
classical Alice announces publicly the qubits she reflected;
the originator Bob then checks that he received |+〉 on those
positions (CTRL). For the qubits measured by Alice, a sample
is chosen to be checked for errors (TEST).

Without loss of generality, we assume Eve uses a unique
probe space for the attacks on all qubits and that her initial state
|E0〉 is pure. The analysis is now done bitwise, by induction.
It is assumed that the Bob + Alice + Eve global state prior to
Eve attacking qubit number i is a tensor product state |ψBA

i−1〉 ⊗
|Ei−1〉, where |ψBA

i−1〉 is in Bob + Alice’s hands and Eve’s
current state |Ei−1〉 is independent of all bits measured by
Alice (SIFT). That induction hypothesis obviously holds for
i = 1, before the first qubit is sent [3]. Eve knows that Bob
only sends |+〉 and she is free to send whatever state she
wants to Alice. Without loss of generality (WLG) (although
she is assumed classical) Alice may delay measuring by using
a one-qubit probe and an XOR gate to SIFT [1]. The global
state before she decides whether she sifts or reflects can now
be written ∣∣ψBA

i−1

〉 ⊗ [|00〉BA|E′
0〉 + |10〉BA|E′

1〉],
where |E′

b〉 are two unnormalized states of Eve’s probe.
In particular, if Eve “does nothing” (|E′

0〉 = |E′
1〉), Bob +
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Alices’s state for the ith qubit is |+ 0〉. On the qubit coming
back, Eve applies the unitary Vi ; if Alice sifted, the global state
before Eve applies Vi is |ψBA

i−1〉 ⊗ [|00〉BA|E′
0〉 + |11〉BA|E′

1〉].
Once Eve has applied Vi , it must be such that Vi |0〉B |E′

0〉 =
|0〉B |F ′

0〉 else the TEST (in the classical basis) can detect
an error, and similarly Vi |1〉B |E′

1〉 = |1〉B |F ′
1〉. Due to the

linearity of quantum mechanics, if classical Alice reflects
(CTRL), the resulting final state must be∣∣ψBA

i−1

〉 ⊗ [|00〉BA|F ′
0〉 + |10〉BA|F ′

1〉].
Replacing now |0〉B by [|+〉B + |−〉B]/

√
2 and |1〉B by

[|+〉B − |−〉B]/
√

2 gives

∣∣ψBA
i−1

〉 ⊗
[
|+ 0〉BA

|F ′
0〉 + |F ′

1〉√
2

+ |− 0〉BA

|F ′
0〉 − |F ′

1〉√
2

]
;

for |−〉B to have probability 0 of being measured by Bob,
|F ′

0〉 = |F ′
1〉 must hold; letting |Ei〉 = √

2|F ′
0〉 = √

2|F ′
1〉, the

final global state is |ψBA
i 〉 ⊗ |Ei〉 with |ψBA

i 〉 = |ψBA
i−1〉 ⊗

|ψ ′BA
i 〉, where |ψ ′BA

i 〉 = (1/
√

2)[|00〉BA + |11〉BA] if Alice
shifts, and |ψ ′BA

i 〉 = |+ 0〉BA if she reflects.
This completes the induction proof and we deduce that

after all N qubits have been processed, the final global state

is |ψBA
N 〉 ⊗ |EN 〉 and Eve’s state |EN 〉 is independent of all

Alice’s choices, and thus of her information bits. That proves
the robustness of the protocol.

We proved here that the very nice protocol suggested by
Zou et al. (which we call here “QKD with classical Alice”) is
completely robust. We would like to emphasize that the results
in [2] hold. As for Lemma 1, its statement can be slightly
improved by moving the sentence “Alice’s final state... is a
product state... in SQKD Protocol 2.” to right after “... the
following conditions:”. Proving Lemma 1, however, is another
matter, and it is unclear to us how the original proof can
be adjusted. Interestingly, it follows directly from our proof
above that the final Bob + Alice state |ψBA

N 〉 is |ψBA
0 〉 ⊗⊗N

i=1 |ψ ′BA
i 〉, where |ψBA

0 〉 is the Bob + Alice state before
the protocol, and the |ψ ′BA

i 〉 are exactly those states announced
by [2] in their Lemma 1, which thus proves it for the “one-state”
protocol.
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