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Optical spectral singularities as threshold resonances
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Spectral singularities are among generic mathematical features of complex scattering potentials. Physically
they correspond to scattering states that behave like zero-width resonances. For a simple optical system, we
show that a spectral singularity appears whenever the gain coefficient coincides with its threshold value and
other parameters of the system are selected properly. We explore a concrete realization of spectral singularities
for a typical semiconductor gain medium and propose a method of constructing a tunable laser that operates at
threshold gain.
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Consider an infinite planar slab gain medium that is
aligned along the x axis and the electromagnetic wave given
by �E(z,t) = E ei(Kz−ωt)êx , where E is a constant, K is the
propagation constant, and êx stands for the unit vector pointing
along the positive x axis. It is easy to show that while traveling
through the gain medium the wave is amplified by a factor of
egL, where L is the width of the gain medium and g is the gain
coefficient. The latter is related to the imaginary part κ of the
the complex refractive index of the medium,

n = η + iκ, (1)

and the wavelength λ := 2πc/ω according to [1]:

g = −4πκ

λ
. (2)

Often, one places the gain medium between two mirrors to
produce a (Fabry-Perot) resonator. This extends the length
of the path of the wave through the gain medium and yields
a much larger amplification of the wave for the resonance
frequencies of the resonator.

In [2,3], we have outlined an alternative amplification
effect that does not involve mirrors. For the system we
consider, it requires adjusting L and g so that the system
supports a spectral singularity. This is a generic mathematical
feature of complex scattering potentials [4] that obstructs
the completeness of the eigenfunctions of the corresponding
non-Hermitian Hamiltonian operator. Physically, a spectral
singularity is the energy of a scattering state that behaves
exactly like a zero-width resonance [2,5–7]. In this Brief
Report, we first reveal the relationship between spectral
singularities and the well-known laser threshold condition [1],
and then explore the possibility of tuning the wavelength of the
spectral singularity by adjusting the pump intensity. This turns
the system into a tunable laser that operates at the threshold
gain.

It is easy to show that

�E(z,t) = E e−iωtψ(z)êx, �B(z,t) = −iω−1E e−iωtψ ′(z)êy

is a solution of Maxwell’s equations for the above system
provided that êy stands for the unit vector along the positive
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y axis; ψ is a continuously differentiable solution of the time-
independent Schrödinger equation:

−ψ ′′(z) + v(z)ψ(z) = k2ψ(z), (3)

where k := ω/c = 2π/λ and v is the complex barrier poten-
tial:

v(z) :=
{

k2ẑ for |z| < L
2 ,

0 for |z| � L
2 ,

ẑ := 1 − n2. (4)

Solving the Schrödinger equation (3) we find

ψ(z) =
⎧⎨
⎩

A−eikz + B−e−ikz for z � −L/2,

A0e
inkz + B0e

−inkz for |z| < L/2,

A+eikz + B+e−ikz for z � L/2,

(5)

where k ∈ R+, A− and B− are free complex coefficients, and
A0,B0,A+, and B+ are complex coefficients related to A− and
B−. For example,

(
A+
B+

) = M
(

A−
B−

)
, where

M := 1

4n

(
e−iLkf (n, − Lk

2 ) 2i(n2 − 1) sin(nLk)

−2i(n2 − 1) sin(nLk) eiLkf (n,Lk
2 )

)

is the transfer matrix, and for all z1,z2 ∈ C,

f (z1,z2) := e−2iz1z2 (1 + z1)2 − e2iz1z2 (1 − z1)2. (6)

Because v is an even function of z, the left and right reflection
and transmission amplitudes coincide. They are respectively
given by R = −M21/M22 = M12/M22 and T = 1/M22 [2].

The spectral singularities are the k2 values for which M22 =
0 [2], i.e., the real k values satisfying

f

(
n,

Lk

2

)
= 0. (7)

Because f is a complex-valued function, Eq. (7) is equivalent
to a pair of coupled real transcendental equations for three
unknown real variables Re(ẑ), Im(ẑ), and αk. In Ref. [3], we
outline a method of decoupling these equations. Here we give
a more direct solution that reveals some previously unknown
aspects of the problem.

First, we use (6) to express (7) in the form

e−2inLk −
(

1 − n

1 + n

)2

= 0. (8)
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Noting that the boundaries of the gain region have a
reflectivity of

R :=
(

n − 1

n + 1

)2

, (9)

we can write (8) as e−2iLkn = R. Next, we substitute (1) in
this equation and use (2) to express its left-hand side in terms
of g. This gives

e−2gLe−4iLkη = R2. (10)

Taking the modulus of both sides of this equation yields

e−2gL = |R|2. (11)

This is precisely the laser threshold condition [1]. In other
words, a spectral singularity and the associated zero-width
resonance appear at the threshold gain:

g = gth := 1

2L
ln

1

|R|2 . (12)

We wish to stress that the threshold condition (11) is only
a necessary condition for having a spectral singularity. It is by
no means sufficient. A necessary and sufficient condition is
Eq. (8) that we can express as

kL = − 1

2in
lnR. (13)

A key observation that reveals the discrete nature of spectral
singularities is that, as a complex-valued function, lnR has
infinitely many values; in view of (1) and (9),

lnR = ln |R| + 2i

[
tan−1

(
2κ

η2 + κ2 − 1

)
− πm

]
, (14)

where m is an arbitrary integer. Using (1) and (9), we also find

|R| = (η − 1)2 + κ2

(η + 1)2 + κ2
. (15)

Because η > 0, this equation implies |R| < 1. Furthermore,
in view of (12), we have

g = gth = 1

L
ln

[
(η + 1)2 + κ2

(η − 1)2 + κ2

]
. (16)

Next, we return to Eq. (13). Because kL is real, the imaginary
part of the right-hand side of this equation must vanish. This
gives

η ln |R| + 2κ

[
tan−1

(
2κ

η2 + κ2 − 1

)
− πm

]
= 0. (17)

Furthermore, we can express (13) as

kL = ln |R|
2κ

. (18)

Because kL > 0 and |R| < 1, (18) implies κ < 0. According
to (2), this corresponds to the situation that the medium has
a positive gain coefficient. This is a remarkable manifestation
of the conservation of energy, because whenever we arrange
the parameters of the system so that a spectral singularity
is generated, the system begins emitting radiation. This can
happen only for a gain medium, i.e., when g > 0. In [3], we

could only demonstrate this graphically. Here we have derived
it rigorously.

Equation (17) determines the location of spectral singu-
larities in the η-κ plane. In view of the inequalities η > 0,
κ < 0, |R| < 1, and the fact that tan−1 is an odd function
taking values in (−π

2 , π
2 ), we can satisfy (17) only for m � 0.

It is also instructive to note that solving for ln |R| in (17),
substituting the result in (18), and using k = 2πν/c, we find
the following expression for the frequency ν of the spectral
singularity:

ν = νφm

η
− νφ

πη
tan−1

(
2κ

η2 + κ2 − 1

)
, (19)

where νφ := c
2L

. The first term on the right-hand side of (19) is
the usual resonance frequency of a resonator of length L with
perfectly reflecting boundaries. It is important to note that
because κ and η are frequency-dependent quantities, there
will be certain frequencies for which they satisfy (17). A
spectral singularity will arise if and only if at least one of
these frequencies coincides with one of the values fulfilling
(19). It turns out that if we fix all the physical parameters of
the system this can happen only for a single critical frequency,
i.e., a particular mode number m.

In order to explore this phenomenon suppose that the gain
medium is obtained by doping a host medium of refraction
index n0 and that it is modeled by a two-level atomic system
with lower and upper level population densities Nl and Nu,
resonance frequency ω0, and damping coefficient γ . Then its
permittivity (ε := ε0n

2) is given by

ε = ε0

[
n2

0 − ω2
p

ω2 − ω2
0 + iγ ω

]
, (20)

where ε0 is the permittivity of the vacuum, ω2
p := (Nl −

Nu)e2/(mε0), and e and m are the electron’s charge and
mass, respectively [1,8]. In view of (1), (2), and (20), we can
express ω2

p in terms of the gain coefficient g0 at the resonance
frequency ω0. Introducing λ0 := 2πc/ω0 and

κ0 := −λ0g0

4π
, (21)

and using

ε/ε0 = n2 = (η + iκ)2, (22)

and (2), we have

ω2
p

ω2
0

=
2γ κ0

√
n2

0 + κ2
0

ω0
= −cg0γ

ω2
0

√
n2

0 +
(

cg0

2ω0

)2

. (23)

For example for a semiconductor gain medium [1] with

n0 = 3.4, λ0 = 1500 nm,
(24)

γ

ω0
= 0.02, g0 = 40 cm−1,

we have κ0 = −4.7747 × 10−4 and
ω2

p

ω2
0

= −6.4935 × 10−5.

Substituting these values in (20) and using (22), we can express
δη := η − n0 and κ as functions of ω and use them to plot a
parametric curve C representing the dispersion relation (20).
See Fig. 1. Next, we return to Eq. (17) and consider it as an
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FIG. 1. (Color online) Plots of the curves of spectral singularities
Cm (full and dashed thick purple curves) and the dispersion relation
C (thin blue curve) for a gain medium with specifications (24).
The spectral label m of the Cm that are displayed ranges over
1400,1500,1600, . . . ,2500 for the thick full (purple) curves from
bottom to top, and 3000,4000,5000, . . . ,10 000 for the thick dashed
(purple) curves. As one increases m these curves approach the δη axis
from below. The thin dashed (gray) lines are the coordinate axes.

implicit function for each value of m. Figure 1 also shows
the graph of these functions for several values of m. These
are the curves of spectral singularities that we label by Cm.
As seen from Fig. 1 for sufficiently large values of m (i.e.,
m � 1374), Cm intersects C at two points. One of these (pm+)
has a positive δη coordinate and corresponds to a frequency
ωm+ that is larger than ω0. The other (pm+) has a negative δη

and corresponds to a frequency ωm− that is smaller than ω0.
We can compute the coordinates (δηm±,κm±) of pm±, find ωm±
and km± := ωm±/c, and use (18) to determine L. This gives
rise to a set of values Lm± for the length of the gain medium
that would allow for the existence of a spectral singularity.
For the gain medium (24), setting m = 1374 we find a pair
of spectral singularities with extremely close wavelengths to
λ0, namely λ = 1499.9 and 1500.2 nm. These correspond to
L = 303.074 and 303.133 µm, respectively.

Next, we consider the more realistic situation that L is
fixed and the gain coefficient g0 is adjustable. This is simply
done by changing the pump intensity. It is not difficult to see
that spectral singularities appear for specific discrete values
of g0 and λ. This may be viewed as means for producing a
tunable laser that would function at the very threshold gain.
To implement this idea we insert (23) in (20) and use (22)
and λ = 2πc/ω to express δη and κ as functions of g0 and
λ. Substituting the resulting expressions in (17) and (18) and
using k = 2π/λ we obtain a pair of equations for g0 and λ

for each value of the mode number m. The solution of these
equations yield the desired values of g0 and λ for which a
spectral singularity appears.

As we see from Fig. 1, the relevant range of values of δη

and κ is several orders of magnitude smaller than n0. This
shows that we can obtain reliable approximate forms of (17)
and (18) by neglecting quadratic and higher order terms in δη

and κ . Applying this approximation to (22) and using (20),
we have

δη ≈ −κ0f1, κ ≈ κ0f2, (25)

where

f1 := 1 − ω̂2

(1 − ω̂2)2 + γ̂ 2ω̂2
, f2 := γ̂ 2ω̂

(1 − ω̂2)2 + γ̂ 2ω̂2
, (26)

ω̂ := ω/ω0 = λ0/λ, and γ̂ := γ /ω0. In view of (25), the
above-mentioned approximation scheme is equivalent to ne-
glecting terms of order two and higher in κ0. Inserting (25) in
(18) and using k = 2π/λ, we find

κ0 ≈ −ρ0

2

(
f1

n2
0 − 1

+ πLω̂f2

λ0

)−1

, (27)

where ρ0 := ln[(n0 + 1)/(n0 − 1)]. In light of (21), (27) is
equivalent to

g0 ≈ 2πρ0

(
λ0f1

n2
0 − 1

+ πLω̂f2

)−1

. (28)

Next, we substitute (25) in (18), neglect the quadratic and
higher order terms in κ0, and use (27) and (26) to simplify the
result. This yields, after some lucky cancelations,(

2πLn0

λ0
− ρ0

γ̂ 2

)
ω̂2 − πm ω̂ + ρ0

γ̂ 2
≈ 0.

Only for m � µ := 2ρ0

πγ̂

√
2πLn0
ρ0λ0

− 1
γ̂ 2 does this equation have

real solutions. These give the frequency (wavelength) of the
spectral singularities. Substituting them in (28), we find the
corresponding g0 values. The approximate values of λ and
g0 obtained in this way allow for a more effective numerical
solution of the exact Eqs. (17) and (18).

As a concrete example, we take L = 300 µm for the gain
medium described by (24) and obtain the wavelength of the
spectral singularities that are produced as we change g0 in
the range 0–115 cm−1. These turn out to correspond to the
mode numbers 1355–1365 which are consistent with the result,
m � µ ≈ 1320, of our approximate calculations. The cor-
responding λ and g0 values are given in Table I. The
spectral singularity with lowest g0 value (40.4 cm−1) has
a wavelength that is extremely close to λ0 = 1500 nm. It
corresponds to m = 1360. As we increase g0 from 40.4 to
115 cm−1, there appear 10 more spectral singularities with
wavelengths ranging between 1482 and 1520 nm. These should
in principle be detectable, if we gradually increase the pump
intensity. For example a periodic change of g0 in the range

TABLE I. Wavelength λ of the spectral singularities for the gain
coefficient g0 ranging over 0–115 cm−1 and L = 300 µm.

m λ (nm) g0 (cm−1) m λ (nm) g0 (cm−1)

1355 1519.832 110.2 1361 1495.662 43.8
1356 1515.380 82.5 1362 1494.582 45.7
1357 1512.058 66.3 1363 1489.203 61.5
1358 1507.651 50.9 1364 1484.927 81.7
1359 1504.363 43.8 1365 1481.736 101.1
1360 1500.000 40.4
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FIG. 2. (Color online) Logarithmic plots of the reflection (thick
dashed curves) and transmission (thin full curves) coefficients as
functions of λ for L = 300 µm and g = 81.7/cm (top graph) and
g = 82.5/cm (bottom graph).

70–90 cm−1 should produce periodic emissions of radiation
at the wavelengths λ = 1484.927 nm (for m = 1364 and
g0 = 81.6821cm−1) and λ = 1515.380 nm (for m = 1356 and
g0 = 82.4918 cm−1) with no emitted wave of comparable
amplitude at the resonance wavelength 1500 nm. This is a
remarkable feature of the spectral singularity related resonance
effect. Using the above values of λ and g0 to compute the
reflection and transmission coefficients |R|2 and |T |2, which
give the amplification factor for the emitted electromag-
netic energy density, we obtain |R|2 ≈ |T |2 ≈ 1.1 × 106 and

3.1 × 105, respectively. In other words we obtain an amplifica-
tion of the background electromagnetic energy density at these
wavelengths by a factor of |R|2 + |T |2 ≈ 2.2 × 106 and 6.2 ×
105, respectively. It turns out that these numbers are extremely
sensitive to the value of λ but not g0. Using the less accurate
values 81.7 and 82.5 cm−1 for g0 and the same values for λ, we
find |R|2 ≈ |T |2 ≈ 1.0 × 106 and 2.8 × 105. But, as we can
see from Fig. 2, changing the above values of λ by 0.01 nm
reduces |R|2 and |T |2 by three to four orders of magnitude.
This shows that the detection of spectral singularities would
require a spectrometer with a band width of 0.01 nm or
smaller.

To summarize, we have explored spectral singularities of a
simple optical system and shown that the equation (10) that
determines spectral singularities reduces to the laser threshold
condition g = gth, if we take the modulus of both sides of this
equation. Equating the phase of both sides of this equation
gives rise to an independent condition for the existence of
the spectral singularities that involves an integer (mode)
number m. It turns out that this equation and the threshold
condition can be satisfied only for particular values of the
physical parameters of the system and this corresponds to a
single value of m and a corresponding critical wavelength.
We have also explored the idea of tuning this wavelength
by adjusting the pump intensity for a typical semiconductor
gain medium. A remarkable feature of the spectral singularity
related resonance effect is that if we increase the pump
intensity so that the gain exceeds the threshold value, this effect
disappears. This marks a clear distinction between the zero-
width resonances associated with spectral singularities and the
usual resonances that we encounter in optical resonators.
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