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Lower bound on the coefficient of an exchangelike energy for a single
bound electron in a screened Coulomb potential
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The spurious self-interaction energy, which is one-half the integrated electrostatic interaction energy of a
normalized electronic charge distribution with the potential field generated by itself, is calculated analytically for
a 1s-like electron charge distribution governed by an attractive screened Hulthen-type model potential. The exact
result obtained is used, via an energetic cancellation constraint and a convenient Hölder’s integral inequality, to
deduce an analytical lower bound for the screening-dependent positive coefficient of a negative exchange-like
energy term applied routinely in the local-density approximation to density functional theory with Coulomb
potentials. The bare Coulomb case is investigated by Sobolev’s integral inequality as well.
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Introduction. While the exact density functional for the
ground-state energy of a bound electron in its quantum
mechanical 1s state in the Coulomb field of a point nucleus is
self-interaction free, the approximation based on local-density
approximation (LDA) of the density functional theory (DFT)
is not. Therefore, the elimination of the self-interaction is an
important issue [1–4]. The spurious self-interaction term is
one-half the integrated electrostatic interaction energy of a
normalized electronic charge distribution with the potential
field generated by itself. Considering the importance of
nucleus screening in the degenerate electron gases of different
solid-state systems, and in plasma physics, the theoretically
challenging question on the screening-dependence of bounded
parameters to be used in LDA turns out to be a realistic one. By
employing a well-known energetic constraint, here we derive a
lower bound to the coefficient of an exchange-like local energy
term.

Calculation. The model Hamiltonian of the present study
is given by

H = −1

2
∇2 − Z

�

e�r − 1
, (1)

where � is the screening parameter for the nucleus-electron
interaction. Hartree atomic units, h̄ = me = e2 = 1, are used
throughout this work. One may [5] take � = 1.75λTF, where
λTF = √

4kF /π in the Thomas-Fermi treatment of charge
polarization driven by a heavy point charge (Z) in an electron
gas with Fermi momentum kF . This is defined from the density
n0 via kF = (3π2n0)1/3. The complete [6] normalized 1s wave
function is

φ1s(r) =
[
Z(4Z2 − �2)

4π

]1/2
1

�r
[e−(Z−�/2)r − e−(Z+�/2)r ],

(2)

The critical (cr) screening parameter is �cr = 2Z, and the
binding energy becomes

E0(�) =
[

1

8
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2
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]

= −Z2
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(
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)2

. (3)

The maximum (m) in the electron density r2|φ1s(r)|2 occurs
at the radius

rm = 1

Z

1

2x
ln

1 + x

1 − x
, (4)

where x = �/2Z. There is a weak enhancement close to the
critical (x → 1) screening.

The self-interaction (Esi) energy, which is one-half of
the integrated electrostatic interaction energy of a properly
normalized spherical electronic charge distribution with the
potential field generated by itself, is defined by the usual
expression of electrostatics,

Esi = 1

2

∫
dr

∫
dr′ n(r)n(r ′)

|r − r′| , (5)

where the density is n(r) = [φ1s(r)]2 in terms of the 1s-like
wave function. In order to derive a closed expression for
the self-interaction in our model, we employ the convolution
(Faltung) theorem and get an alternative, convenient represen-
tation,

Esi = 1

2

4π

(2π )3

∫ ∞

0
dq q2

[
n(q)

4π

q2
n(q)

]
, (6)

where n(q) is the three-dimensional Fourier-Henkel transform
of n(r). This transformation of the density n(r) is easy to carry
out due to the result∫ ∞

0
dr

sin(qr)

r
e−ar = arctan(q/a). (7)

Performing the resulting straightforward integrations in
Eq. (6), we arrive at

Esi(Z,x) = 1

2
Z

(
1 − x2

x4

) 4∑
i=1

fi(x), (8)

where the parameter-dependence of Esi is now ex-
plicit. Here f1(x) = (1 − 2x2) ln(1 − x2), f2(x) = x ln[(1 −
x)/(1 + x)], f3(x) = 2(x2 − 2) ln(1 − x2/4), and f4(x) =
2x ln[(2 + x)/(2 − x)]. In the unscreened (x → 0) limit we
get Esi(Z,x → 0) = (5Z/16), while at the critical screening
(x → 1, from below) the result tends to zero as Esi(Z,x →
1) = (2Z ln 2)(1 − x).
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The exchange-like (ex) energy in our one-electron model is
defined, in a complete analogy [n0 ⇒ n(r)] with well-known
result established for a degenerate homogeneous electron gas
with density n0, as a simple volume integral of a local energy
density

ELDA
ex (Z,x) = − 4π

∫ ∞

0
dr r2 n(r)[β n1/3(r)], (9)

where n(r) = [φ1s(r)]2 as we noted above. In the exchange-
only approximation one has β = (3/4)(6/π )1/3 in a spin-
polarized electron gas. In order to get an analytical result
after substitution from Eq. (2), we use Hölder’s (h) integral
inequality [7] and write

∣∣ELDA
ex (Z,x)

∣∣ � βh

(∫ ∞

0
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4/3
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)1/p

×
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0
4πr2

[
φ

4/3
1s (r)

]q
dr

)1/q

, (10)

where p = (3/2) > 1 and q = 3, thus p−1 + q−1 = 1 as
required. In such a way we can determine a lower bound for β

via the cancellation constraint [ELDA
ex (Z,x) + Esi(Z,x)] = 0.

The first integral, the one with p = 3/2, is fortunately just
the normalization condition. The second integral, the one that
depends on the square of n(r), is performed by applying first
a partial integration and then a repeated use of the integral∫ ∞

0

e−ar − e−br

r
= ln(b/a) (11)

to finish the resulting integration. For the right-hand side (H )
of Eq. (10), we obtain

H (Z,x) = βh Z

[
1

π

(
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x2

)2
]1/3

[F1(x) − F2(x)]1/3,

(12)
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2
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+ ln
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F2(x) = (1 − x)

(
3 ln

2 − x

2
+ ln

2 + x

2 − 2x

)
. (14)

The application of Eq. (8) and Eq. (12) to our cancellation
constraint results in a βh(x), i.e., in a screening-dependent
(x = �/2Z) coefficient. It will be illustrated below in Fig. 1.

In the unscreened (x → 0) limit we get [H (Z,x →
0)/βhZ] = (1/2)π−1/3 from the closed expression, thus
βh(x → 0) = (5/8)π1/3 � 0.92 in the Coulomb (−Z/r)
potential case. This lower bound is close to the β =
(3/4)(6/π )1/3 � 0.93 value deduced for a spin-polarized
electron gas. We add, for completeness, that in the � = 0
case, the direct evaluation of Eq. (9) with hydrogenic density
results in a value of βo = (20/27)π1/3 � 1.085, which is an
optimal (o) value [8] by construction. The optimal value is
very close to the so-called best (b) coefficient, βb � 1.092,
derived from a sophisticated variational treatment [9] with a
finite-range charge density of unit norm. Notice that the best
coefficient depends on the particle number (N ) monotonically.
For instance, βb � 1.23 for two (N = 2) electrons.

It may be of some general interest to note here that in the
unscreened (� = 0) case we can easily apply another integral
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FIG. 1. The solid and dashed curves in the upper panel refer to
Esi(x)/Z and H (x)/Z, respectively. These energies from Eqs. (8)
and (12) are given in atomic units. The lower panel is devoted
to the βh(x) = Esi(x)/H (x) ratio, which represents the screening
dependence of the coefficient of an exchange-like energy term.

inequality, Soboliev’s [10,11]. Thus, instead of Eq. (10), we
have

4π

∫ ∞

0
r2φ

q

1s(r)dr

�
{
C(p,m)

[
4π

∫ ∞

0
[∇φ1s(r)]pdr

]1/p}q

, (15)

where q = 8/3 and m = 3, the space dimension. Via the 1 <

p < m and q = mp/(m − p) constraints, one gets p = 24/17.
The best constant, denoted in Ref. [10] as C(p,m), is given by

C(p,m) = 1√
π

1

m1/p

(
p − 1

m − p

)(p−1)/p

×
[

�(1 + m/2)�(m)

�(m/p)�(1 + m − m/p)

]1/m

. (16)

Using φ1s(r) from Eq. (2) with � = 0, after a straightforward
calculation we derive, as another lower bound, βs � 1.02. This
value is somewhat better than the value deduced via Hölder’s
integral inequality. It is close (from below) to the optimal
value of βo � 1.085. Our finding gives further credit to the
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well-known [12,13] power of Sobolev’s inequality in mathe-
matical physics.

From here on, we return to the result based on Hölder’s in-
equality. At critical screening (x → 1, from below) the asymp-
totic result obtained from Eq. (12) behaves as [H (Z,x →
1)/βhZ] = [8(ln 4 − 3 ln(3/2))/π ]1/3(1 − x)2/3. Thus, based
on our energetic constraint, the corresponding coefficient
becomes βh(x → 1) � 1.83(1 − x)1/3. This shows that the
tendency to zero from above is surprisingly slow. There
is, therefore, a certain stability of βh(x) against screening.
Notice that the expectation value for the ground-state energy
vanishes as ∼(1 − x)2. Clearly, the tendency of βh(x) to
zero at vanishing binding is an expected general result.
Direct numerical evaluation of Eq. (9) in this limit (x → 1)
should result in a vanishing character for the coefficient
as well.

Our βh(x) ≡ Esi(Z,x)/H (Z,x) coefficient, a lower bound
in an exchange-like, local-density approximation, is exhibited
in Fig. 1 (lower panel) as a function of the convenient variable
x = (�/2Z); x ∈ [0,1]. The curve shows that at moderate
screening, say x = 0.5, the deviation from the limiting βh

(x = 0) = 0.92 value is small. However, the general character
of βh(x) heralds that care is needed when one applies local
forms of approximate density functional theory with an
unmodified coefficient under screening conditions for a weakly
bound state. In this frequent and important case, one can [14]
use a physically motivated partitioning of the total density into
a well-localized inner and more diffuse outer parts.

Concluding remarks. Wigner’s pioneering [15] estimation
for the maximal correlation energy per electron in a dilute
electron fluid (F ) is eF (rs) = −(0.75/rs) � −1.21n

1/3
0 , where

rs = (9π/4)1/3k−1
F in three dimensions. Wigner’s coefficient

(βF
W � 1.21) is a rigorous upper bound [4] in this essentially

single-electron limit. With the lower bound (βs � 1.02)
derived here for an atomic case, we mark the borders for
a coefficient in LDA of DFT for a single bound electron.
The optimal (βo � 1.085) and variationally [9] established
(βb � 1.092) values are almost exactly in the middle of the
range limited by these borders.

If we measure the limiting values in terms of the exchange
coefficient βp = (3/4)(3/π )1/3 of a homogeneous paramag-
netic (p) electron gas, we obtain for illustration (βs/βp) �
1.38 and (βF

W/βp) � 1.64. The energy per particle in the
famous Wigner lattice (L) can [4] be approximated by eL(rs) =
2eF (rs) + 0.6/rs , where the first term is the interaction energy
of a point-like electron with a charge-compensating sphere
and the second term is the self-energy of the sphere. This
commonly applied [16,17] lattice-energy yields βL

W � 1.45,
which is slightly smaller then an N -independent [9,18] upper
(u) bound βu � 1.68.

The lower bound derived here on the screening-dependent
coefficient of an exchange-like energy for a single (N = 1)
bound electron in a screened Coulomb potential could be
important, for instance, in application of LDA to DFT
in plasma physics. Around critical screening, i.e., at the
appearance of a bound state, care is needed to avoid localized
states supported by a spurious attractive exchange-like
potential term based on LDA.
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