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Ultrasensitive phase estimation with white light
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An improvement of the scheme by Brunner and Simon [Phys. Rev. Lett. 105, 010405 (2010)] is proposed in
order to show that quantum weak measurements can provide a method to detect ultrasmall longitudinal phase
shifts, even with white light. By performing an analysis in the frequency domain, we find that the amplification
effect will work as long as the spectrum is large enough, irrespective of the behavior in the time domain. As such,
the previous scheme can be notably simplified for experimental implementations.
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High-resolution phase estimation plays an important role in
all fields of science, where precise measurements of physical
changes smaller than a particle’s wavelength are required.
Usually, these phase estimations are realized with interfer-
ometers, which, by exploiting the quantum coherence of light,
have provided the basis for quantum metrology technologies
[1] for measuring small physical effects. Historically, the
first use was devised by Michelson in 1887 to measure
the absolute motion of the Earth through the hypothetical
ether [2]. A standard interferometric scheme exploits the
facts that a half-wave phase shift can change the pattern of
interference fringes (interchanging dark and bright ports) and
that the intensity distribution of the light fringes indicates the
amount of change in a physical variable that induces that
phase shift. The resolution in a standard interferometer is
dominated by the intrinsic quantum noise [3,4]. To increase
the resolution, researchers usually repeat the experiment
many times. Recently, in exploring quantum features in a
standard interferometer, some more sensitive phase estimation
methods have been realized [5-8]. In a recent paper, based on
quantum weak measurements and weak values [9], a promising
alternative to standard interferometry in ultrahigh-resolution
phase estimation has been proposed by Brunner and Simon
(BS) [10].

One of the cornerstones of quantum mechanics is the fa-
mous measurement disturbance guaranteed by the Heisenberg
uncertainty principle [11]; however, the concept of weak mea-
surement has “opened the door for investigation of all manner
of quantum phenomena previously deemed inaccessible” [12].
Weak measurement disturbs the measured system weakly and
only extracts partial information about the system. However,
combined with appropriate pre- and postselections of the
quantum state, strange weak values that lay outside the range of
the observable eigenvalues can be obtained. Theoretically, un-
orthodox predictions from weak measurements were initially
controversial [13,14]; experimentally, confirmation taken from
various quantum systems, such as quantum optics [15,16],
solid-state systems [17,18], and quantum dots [19], has been
outstanding. The weak perturbation in weak measurements
of a quantum system can be very useful in the analysis of
many interesting counterintuitive quantum phenomena, such
as macrorealistic hidden-variable theories [20-22], Hardy’s
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paradox [23-25], apparent superluminal travel [26-28], and
the three-box problem [29]. A more technical utilization
brought about by weak measurements and weak values is
small-signal amplification [12]. As compared to standard
interferometry, weak-value amplification not only provides the
same precision as when only pure real weak values are used,
but it can also exceed the precision when pure imaginary weak
values are involved [27,30]. The enhancement of a signal by
using pure imaginary weak values has been used to detect the
spin Hall effect of light [31] and tiny beam deflections [32-34].
The BS scheme, proposed to measure small longitudinal phase
shifts with a pulsed source, is based on pure imaginary weak
values. Brunner and Simon pointed out that this method
in combination with frequency-domain detection could in
principle outperform standard interferometry by three orders
of magnitude. Their theoretical analysis uses time-domain
analysis and a Fourier transform to show that a frequency shift
is measurable, given an imaginary weak value. In this Brief
Report, we treat the weak measurement just as interference
and analyze it only in the frequency domain. As a result, we
find that weak-value amplification of small longitudinal phase
shifts can be performed with classical thermal light with an
ultrabroad bandwidth.

A standard quantum measurement procedure normally
takes into account both the quantum system and the probe
apparatus and considers the wave packet collapse as a deco-
herence effect induced by the environment surrounding both
[35]. A general weak measurement can be obtained through
a change in a standard quantum measurement procedure in
one of two distinct ways [36]: One is to keep the coupling
strength the same as in a strong measurement but to change
the initial state of the probe; the second is to keep the
initial state of the probe but to reduce the coupling strength.
These general weak measurement procedures are depicted in
Fig. 1. The quantum system considered is the polarization
of a photon. Generally, the state after preselection can be
written as |[Y) = «|H) + B|V), where |H) (|V)) represents
the horizontal (vertical) polarization and |«|?> + |8 = 1.
The probe system can be another degree of freedom of the
photon [10,31-34] or an ancillary particle [16]. In the BS
scheme, the probe is considered as the time of arrival of
the single photon, expressed by [ dr g(1)|t), where g(¢) is
the associated probe wave function and is assumed to be
a Gaussian function g(¢) = (wo?)~"/*exp(—1*/20?), with &
denoting the probe spread. A weak correlation is introduced
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FIG. 1. (Color online) Schematic of general weak measurements
involving pure real weak values (the upper row) and imaginary weak
values (the lower row).

through birefringence (which could be any other apparatus that
has polarization-dependent phase shift effects) and can lead to
state changes of the probe in real space—that is, the times of
arrival of the |H) pulse and the | V) pulse are shifted with 2t
(the upper row in Fig. 1). After weak correlation, postselection
on the system state can derive the so-called weak value [9]
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where |¢) = w|H) + v|V) (in which |u|? 4 |v|?> = 1) repre-
sents the postselection state, A denotes the observable to be
measured, and A|H) = |H), A|V) = —|V). An appropriate
selection of states |¢) and |¢) can yield weak values that
lay outside the range of the observable’s eigenvalues [9]
or that are complex numbers [30]. The BS scheme takes
V) = f(IH) +ilV).lp) = [( ie'“|H) + e |V)) as in-
put and yields a pure imaginary weak value A,, = i cote with
postselection probability sin?e. The spectrum of the probe
then equals sin’*(wt — €)|g(w)|?, where g(w) is the Fourier
transform of g(¢). The center of the probe spectrum will
be shifted by 27/(c%€). This shift in the light spectrum is
very helpful in phase estimation when performing a spectral
analysis. It is found that there is an amplification of the small
longitudinal phase shifts. In BS’s analysis, with a pulsed laser,
the amplification is inversely proportional to the square of the
temporal width of the pulses. However, through an analysis in
only the frequency domain, we find that the amplification will
work as long as the spectrum is large enough, irrespective of
the behavior in the time domain.

In our analysis for this Brief Reports, the frequency of
light is treated as the probe, and the system state is set the
same as in the BS scheme. In the frequency wave function
representation, the probe wave function is given by f(w) =
(w82~ 14 exp[—(w — o)? / 262]. The state of the system-probe
combination after weak correlation can be written as

(1)

/dw—f(w)[emlH) +ie V) ]lw). ()

Although the weak measurement does not change the fre-
quency distribution (the lower row in Fig. 1), there will be a
spectrum shift when postselection of the system state has been
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performed. Postselection of the polarization state on basis |¢)
collapses the probe state to

1 i ) :
P)=—= / do f(@)[¢T) + TN jw),  (3)
vT 2/
with postselection probability

T = 0.5{1 — exp(—8°7?) cos[2(wpT + €)]}. 4)

The imaginary weak value is given by A, = icote. The
frequency distribution is given by

F () = (PP, )
the center of which is
r_ JoF(wdo

= = Aw, 6
D= T e TR ©)
where the frequency shift is
82 2 2
Aw = — exp(—46-17) sin[2(woT + €)]. @)

2T

In the weak measurement limit, T is extremely small. By
taking the first-order approximation, we then get 7 — sin’ ¢
and Aw — 182 cote. (The factor of 2 difference relative to
the result of the BS scheme is because of a slightly different
convention for the spread of the pointer.) This frequency shift
is measurable by currently available spectrometers taking into
consideration alignment errors. Therefore, the imaginary weak
value amplification can be used to detect a small time delay t,
which could in principle outperform standard interferometry
by three orders of magnitude [10].

In Fig. 2, we compare the working ranges of a standard
interferometer and of weak measurements. The spectral width
is 100 nm for a typical white-light source. For such a large
spectral width, postselection probabilities will quickly tend
to 0.5 because of decoherence. For this reason, white light
can not be used in a standard interferometer. However, a weak
measurement works at the limit where 7 is significantly smaller
than the decoherence time characterized by § (the red box
and the inset in Fig. 2). For weak measurement, cooperation
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FIG. 2. (Color online) Variation of the postselection probability
7 with time delay 7, where € is set at 0.01 radian and the spectral
width is 100 nm. The red box and the inset identify the working range
of weak measurements.
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FIG. 3. (Color online) Amplification effect involving imaginary weak values (see the text for details).

between preselection and postselection can discard most of
the nondecohered part, which is dominant and acts as noise,
while the measured signal contained in quantum systems is
ultrasmall.

In Fig. 3, we depict the amplification arising through
imaginary weak values. The top left corner displays the
variation in spectral shifts with the time delay for different €.
(The blue solid, red dotted, and gray dashed lines correspond
to € = 0.01, 0.05, and 0.10, respectively. The spectral width
is set to be 100 nm.) A smaller €, which indicates greater
orthogonality, will be more suitable for measuring small phase
shifts. However, it can not be set to zero, as this corresponds to
a zero count in the weak measurement limit. The variation of
the spectral shifts with time delay for different spectral widths
is depicted in the top right corner. (Here, the blue solid, red
dotted, and gray dashed lines correspond to spectral widths
of 10, 50, and 100 nm, respectively. The value of € is set to

0.01.) A larger spectral width is significantly more suitable for
amplification. The lower two graphs present the variation in
the amplification factor with spectral width (lower left corner,
for different values of €) and € (lower right corner, for different
spectral widths), where the time delay is fixed at 10 as.

In conclusion, an improvement of the BS scheme [10] has
been proposed. Although the proposed system does not involve
real space, we derived a purely imaginary weak value and real
frequency shift in the frequency domain and analyzed the am-
plification in measuring ultrasmall longitudinal phase shifts.
We noted that the original BS scheme can be significantly
simplified and that this improved method can be realized in
experiments by using only classical white light.
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