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Extraction of information from a single quantum
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We investigate the possibility of performing quantum tomography on a single qubit with generalized partial
measurements and the technique of measurement reversal. Using concepts from statistical decision theory, we
prove that, somewhat surprisingly, no information can be obtained using this scheme. It is shown that, irrespective
of the measurement technique used, extraction of information from single quanta is at odds with other general
principles of quantum physics.
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In a paper published 75 years ago [1], Einstein, Podolsky,
and Rosen (EPR) formulated their famous criterion for ele-
ments of reality as follows: “if, without in any way disturbing
a system, we can predict with certainty [...] the value of a
physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.” Is the wave
function of a single quantum system an element of reality?
A positive answer would entitle the wave function to an
“ontological” status, much like Schrödinger believed to be
the case, and in contradiction with the “epistemological” role
reserved by the standard Copenhagen interpretation. Clearly,
to think about the wave function as real, we would have to be
able to measure it on a single quantum system. The question
of whether this is possible was first raised in the context of
the so-called “protective” (weakly disturbing) measurements
in the early 1990s, where it was answered in the negative
[2]. The Copenhagen-school view of the wave function as
a mere mathematical tool for calculating probabilities was
saved.

However, protective measurements are not the only pos-
sibility. A different idea for measuring the wave function
is to employ reversible positive-operator valued measure
(POVM) measurements [3]. With the recent demonstration
of reversibility of the so-called “partial measurements” in
systems of phase qubits [4,5], this idea looks theoretically
attractive and experimentally feasible. Here we explore this
strategy and consider generalized partial measurements [6],
which have the property that they can be probabilistically
reversed for both results of the measurement. We then consider
a series of measurements followed by reversals and we address
the question of whether in this way it is possible to extract
(with a certain success probability) any information about
the qubit. We show by employing concepts from statistical
decision theory that this cannot be done — all the information
we get from the measurements is nullified by the very process
of undoing them. Therefore, we cannot measure the wave
function of a single quanta, and as such we are not entitled
to regard it as an element of reality. We further connect this
result to more general physical principles by examining the
consequences of being able to perform quantum tomography
on a single qubit for experiments such as EPR, quantum
teleportation, quantum cloning, and quantum key distribution.

For consistency, we first briefly review the properties of
generalized partial measurements [6] for a qubit in a basis with

states |0〉 and |1〉. We define two measurement operators, Mm

and Mm̄, corresponding to measurement results m and m̄, and
parameterized by two real numbers p and q, 0 � p, q � 1:

Mm =
√

1 − q|0〉〈0| +
√

1 − p|1〉〈1|, (1)

Mm̄ = √
q|0〉〈0| + √

p|1〉〈1|, (2)

which implement a POVM measurement with effects (ele-
ments) Em = M

†
mMm and Em̄ = M

†
m̄Mm̄ [7]. If the qubit is

in an unknown pure state |ψ〉, the probability of obtaining
the result m is Pm = 〈ψ |Em|ψ〉, and the probability of
obtaining the result m̄ is Pm̄ = 〈ψ |Em̄|ψ〉. The state after the
measurement is |ψm〉 = (1/

√
Pm)Mm|ψ〉 in the first case, and

|ψm̄〉 = (1/
√

Pm̄)Mm̄|ψ〉 in the second. The physical meaning
of the parameters p and q is that of probabilities for a qubit in
the state |1〉 respectively |0〉 to yield the result m̄; in the case
of Josephson-junction qubits, these can be directly related to
switching-current probabilities [6,8].

Generalized partial measurements can be probabilistically
reversed no matter which result, m or m̄, occurs under a
measurement. The reversal is nondeterministic (probabilistic)
in the sense that in both cases the reversal operation can also
fail. More precisely, if p and q are neither 0 or 1, the operators
Mm and Mm̄ can be inverted,

M−1
m = 1√

(1 − p)(1 − q)
XMmX, (3)

M−1
m̄ = 1√

pq
XMm̄X, (4)

where X is the Pauli-X matrix. The process of reversal is
schematically represented in Fig. 1. Either m or m̄ is obtained
after a measurement on |ψ〉. In the first case we apply X,
measure, and if we obtain m then we can put the system back
to the initial state |ψ〉 by applying another X gate. In the case of
the second occurrence m̄, we have a successful reversal only if
we again get m̄ when applying X followed by a measurement;
then we apply one more X gate and the system goes back
to the initial state. The probability of success is independent
of the initial state in both situations. In the case of the upper
path, the probability of obtaining the result m is Pm; this has to
be multiplied by the (conditional) probability P (m|m) of again
getting the result m after application of the gate X, which is
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FIG. 1. Schematic of a series of generalized partial measurements
and their reversal. The arrows indicate possible measurement-reversal
paths actually occurring.

given by

P (m|m)
def= 〈ψm|XM†

mMmX|ψm〉
= P −1

m 〈ψ |M†
mXM†

mXXMmXMm|ψ〉
= (1 − p)(1 − q)P −1

m , (5)

where for the last equality we used Eq. (3). Therefore the
total probability of success along the m path |ψ〉 m→ |ψ〉 is
P|ψ〉 m→|ψ〉 = P (m|m)Pm = (1 − p)(1 − q). Similarly, for the m̄

path |ψ〉 m̄→ |ψ〉 we get

P (m̄|m̄)
def= 〈ψm|XM

†
m̄Mm̄X|ψm̄〉

= P −1
m̄ 〈ψ |M†

m̄XM
†
m̄XXMm̄XMm̄|ψ〉

= pqP −1
m̄ , (6)

where the last equality follows from Eq. (4). P|ψ〉 m̄→|ψ〉 =
P (m̄|m̄)Pm̄ = pq is then the probability of success for the

path |ψ〉 m̄→ |ψ〉.
We are now ready to address the problem of information

extraction from a single qubit. Let start by considering
precisely such a process (see Fig. 1). At first sight it looks
as if (with a certain probability of success) the unknown state
of a single qubit can be determined by performing a series
of measurements and reversing them. The probability of this
happening is, admittedly, very small but still finite. Suppose
we have a total of N successful reversals, out of which Nm

occurred via the upper-half paths |ψ〉 m→ |ψ〉 of the hexagons
in Fig. 1 and the other Nm̄ = N − Nm occurred via the lower

paths |ψ〉 m̄→ |ψ〉. What we want is to estimate the state,
that is, to find the two angles θ and ϕ parameterizing any
state |ψ〉 = cos(θ/2)|0〉 + exp(iϕ) sin(θ/2)|1〉 of a two-level
system. To do so we use the maximum-likelihood estimator
technique from statistical decision theory [9]. We first notice
that in the Bayesian sense, for both paths there exist conditional
probabilities [P (m|m) and P (m̄|m̄)] and priors [Pm and Pm̄].
Thus we have to define the so-called weighted likelihood,

L(Nm,Nm̄) = [Pm]Nm[Pm̄]Nm̄[P (m|m)]Nm[P (m|m̄)]Nm̄, (7)

which is the total probability (obtained as a product of
probabilities of each event) that the chain of nonfail events
in Fig. 1 has occurred. As before, to simplify the notations
we do not write explicitly the dependence on (θ,ϕ), but we
keep in mind, as in standard decision theory, the likelihood
that L(Nm,Nm̄) is a probability density function on this
two-parameter space. Then we should find the “maximum a

posteriori (MAP) estimate” [9], which in our case is the pair
(θ,ϕ) maximizing L(Nm,Nm̄), or equivalently, ln L(Nm,Nm̄).
The next step would be to study how sensitive our measurement
method is to variations of (θ,ϕ) around their true value; this
leads to the concept of Fisher information. But this standard
procedure does not lead anywhere, and the reason is that
L(Nm,Nm̄) has in fact no dependence on (θ,ϕ). Indeed, this can
be seen immediately by noticing that the exponent of both Pm

and P (m|m) [and Pm̄ and P (m|m̄), respectively] is the same.
[We know that the reversing procedure has been successful
each time the result m (respectively m̄) has been obtained after
a measurement, and by using Eqs. (5) and (6).] This means
that it is not possible to get any information about the state by
the chain of measurements depicted in Fig. 1.

How can this be? Where has the information about
switching into m or m̄ vanished? To understand what happens,
let us take the logarithm of the weighted likelihood, which we
call −S = ln L(Nm,Nm̄); we then obtain

S = Smeas + Srev (8)

where Smeas = −Nm ln Pm − Nm̄ ln Pm̄ represents the Shannon
information obtained from the measurements, and Srev =
−Nm ln P (m|m) − Nm̄ ln P (m|m̄) is the Shannon informa-
tion resulting from the reversals. But again, P (m|m) =
(1 − p)(1 − q)P −1

m and P (m̄|m̄) = pqP −1
m̄ , and in the

asymptotic approximation of a large number of events,
Nm = (1 − p)(1 − q)N and Nm̄ = pqN ; therefore we have
S = −N [pq ln pq + (1 − p)(1 − q) ln(1 − p)(1 − q)]. What
happens is that the information resulting from reversal cancels
exactly the information obtained via measurement (up to a
constant). The remaining part is independent of the parameters
θ and ϕ, and thus, overall, the measurement procedure from
Fig. 1 is completely insensitive to the state parameters. One
recognizes also that S is the total conditional information
(conditioned on the success of the reversal procedure) as-
sociated with the two paths, S/N = −P|ψ〉 m→|ψ〉 ln P|ψ〉 m→|ψ〉 −
P|ψ〉 m̄→|ψ〉 ln P|ψ〉 m̄→|ψ〉. At p = q = 1/2 this quantity reaches its
maximum value of ln 2. This entropy is all that remains after
a chain of such events representing the physical records of
a string of m’s and m̄’s (the information about which path
the system actually took) that the experimentalist can write in
the log notebook. The surprising fact is that although all the
measurements have been performed on a qubit prepared in a
certain state, there is no information left in the environment
about this state. We also note that for the definition of standard
estimation measures such as Fisher metric, all possible results
need to be accessible. The sum of the corresponding proba-
bilities is 1, and the information thus defined is positive. But
here we eliminate by postselection the situations in which the
scheme fails; therefore we have to use conditional information,
which generally is not guaranteed to be positive. In our
case, the part containing the (θ,ϕ) dependence is negative
and exactly cancels Smeas. It simply has the meaning of an
additional piece of information that logically contradicts some
already-acquired knowledge. Finally, one can legitimately
ask, what if we simply ignore the information coming from
reversal? For example, in Eq. (7) what if we write only the
first two terms? The answer is that it can be done but at one’s
own peril. Then the value of θ obtained has no connection with
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the real one, and the procedure is in no way better than just
guessing.

Finally, we point out that all the results derived above can be
immediately generalized for any number of effects (although
a simple physical implementation of such a measurement is
not obvious). Define the measurement operators as Mk =√

qk|0〉〈0| + √
pk|0〉〈0| and the corresponding effects Ek =

M
†
kMk , such that

∑
k qk = ∑

k pk = 1, therefore ensuring that∑
k Ek = I . If none of the qk’s and pk’s are zero, then for

each result k the measurement operator admits an inverse
M−1

k = (pkqk)−1/2XMkX. Then in Fig. 1 we can have more
than two paths (each indexed by k). The weighted likelihood
Eq. (7) can be immediately generalized to this situation, and the
proof of information cancellation along each path k is similar.

We are now ready to address the following issue. Is the
impossibility result above specific to the measurement scheme
we have described, or do there exist more general physical
principles from which it can be derived? In the following
we discuss the relation between extraction of information
from single quanta and the complementarity principle, the
no-signaling principle, quantum teleportation, the no-cloning
theorem, and quantum cryptography.

Take first the complementarity principle. Instead of using
in Eqs. (1) and (2) the basis {|0〉,|1〉} (the eigenvectors of the
Pauli-Z operator) one can equally well use any other basis. For
example, the elements of the basis |±〉 = (|0〉 ± |1〉)/√2 are
eigenvectors of the Pauli-X operator. It is perfectly possible to
have a series of measurements and reversals along Z, followed
by a similar series along X. Still, it is not possible to claim that
this is a joint measurement of two complementary observables,
so no obvious contradiction is obtained.

Let us turn now to the EPR experiment. Suppose we have a
maximally entangled Bell state between Alice’s and Bob’s
qubits, |�+〉 = (1/

√
2)(|00〉 + |11〉). Applying Mm or Mm̄

on Alice’s qubit results in (1/
√

2 − p − q)[
√

1 − q|00〉 +√
1 − p|11〉] or in (1/

√
p + q)[

√
p|00〉 + √

q|11〉], which
have concurrence [10] 2

√
(1 − p)(1 − q)/(2 − p − q) and

2
√

pq/(p + q), respectively. Both of these quantities are
strictly smaller than 1 if p �= q. Suppose now that we have
obtained m for the measurement on Alice’s qubit. If p is close
enough to 1 and q �= 1, to a satisfactory good approximation
we can claim that the state of Bob’s qubit is |0〉. Now we
reverse the measurement (because p is large, the probability
for succeeding is small but not zero). The interesting thing that
happens in this case is that we have restored the state |�+〉, i.e.,
we managed to create a maximally entangled state from a state
with almost zero entanglement. Thus partial measurements and
their generalizations can be used to amplify entanglement!
Furthermore, we can now perform a projective measurement
in the |±〉 basis on Alice’s qubit, which leaves Bob’s qubit
in the same state |+〉 if Alice got + or |−〉 if Alice got –.
It seems now that Alice can predict the values of the two
noncommuting observables Z and X (the first to a controllable
degree of approximation, the second exactly) of Bob’s qubit!
Unlike in the original EPR argument where two sets of qubits
are required for the argument, here this is achieved using only
one pair.

Another important observation is that if it were possible to
determine the state of a single quantum object, the EPR pair

could be used to signal faster than light. Alice could encode
information as a direction in space and perform a von Neumann
measurement along it. Bob is then left with a qubit oriented
along the same direction, and he can determine this state by
using the measurement-and-reversal procedure. By reductio
ad absurdum, extracting information from a single object is
not possible.

Finally, let us consider the case of quantum teleportation.
We show that if it were possible to extract information from
a single quantum object, then this scheme would allow for
remote cloning of a state using just two bits of information.
This time, Alice has two qubits, the first in the unknown
state |ψ〉 = cos(θ/2)|0〉 + exp(iϕ) sin(θ/2)|1〉, and the second
entangled with Bob’s only qubit, in a Bell state |�+〉. Then
Alice performs a controlled-NOT (CNOT) gate (on her second
qubit conditioned on the first) followed by a Hadamard gate
on the first qubit [7]. The result of this is

|ψ〉|�+〉 → 1
2 [|00〉|ψ〉 + |01〉X|ψ〉 + |10〉Z|ψ〉
+ |11〉XZ|ψ〉]. (9)

Suppose now that Alice is doing partial measurements on her
qubits with strengths q = 0 and p close to 1, and the result of
both measurements is m. Alice informs Bob about this, and
Bob would be able to do a single-qubit partial-measurement
tomography, which allows him to determine (within a certain
degree of approximation and a lot of good luck) the state of
his qubit. Note that a large amount of information can be
encoded in the variables θ,ϕ (depending on the precision we
want) and that it took 2 bits of classical communication for
Bob to be able to “decode” it. Moreover, even if only one
bit of information can be communicated (corresponding to
a measurement by Alice of her second qubit), Bob could still
determine with arbitrary precision the value of θ ! From Eq. (9)
it follows immediately that if Alice obtains 0, the resulting state
is cos(θ/2)|+〉|0〉 + exp(iϕ) sin(θ/2)|−〉|1〉, while if she gets 1
the resulting state is cos(θ/2)|+〉|1〉 + exp(iϕ) sin(θ/2)|−〉|0〉.
Bob now measures his probabilities of obtaining 0 and 1
and he uses the classically transmitted bit of information to
decide which one of these probabilities to associate with the
amplitudes cos(θ/2) and exp(iϕ) sin(θ/2). Moreover, Alice
can also in principle recover her state exactly. As a result, Bob
ends up again with a qubit maximally entangled with Alice’s
second qubit, but also with some classical information about
the qubit which in principle could allow him to build another
qubit in approximately the same state. Note that this procedure
would not contradict directly the no-cloning theorem (which is
proved using only unitary transformations), and it would allow
us to build a relatively simple probabilistic cloning machine.
However, it is still forbidden by quantum mechanics, as we
have shown above; to get any true information, one needs to
have an ensemble. Somehow, quantum physics does not like
to provide all the information at once. Much like a hero in a
treasure-hunting novel, Bob gets one little clue at a time (each
time he measures an element of the ensemble).

Let us now examine the problem of quantum key distribu-
tion. We want to show that if extracting information from a
single qubit were possible, this would provide a hacking strat-
egy for quantum key distribution protocols. Take, for example,
the Bennett 1992 protocol [7]. Alice generates a random string
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{a} = {0,1} of classical bits, and if a = 0 she sends the qubit
|0〉 to Bob, while if a = 1 she sends |+〉. Bob generates his own
random classical bits {a′} and measures Z on the qubit sent by
Alice if a′ = 0 (in which case he obtains the result –1 only if
a = 1) or X if a′ = 1 (in which case he obtains the result –1
only if a = 0). After discussing over a classical channel, Alice
and Bob keep only the qubits for which the result –1 has been
obtained. The corresponding classical bits {a} and {a′} will be
anticorrelated a = 1 − a′ and a shared secret key is obtained.
If, however, Eve intercepts the qubit, she could perform an
approximate partial-measurement quantum tomography. If she
fails, she does nothing and Bob will interpret the result as the
qubit being lost in the communication channel; if she succeeds,
she learns approximately the state of the qubit (the value of a)
and she can forward the qubit to Bob. Together with the value
of Bob’s result (which is publicly broadcasted), she could infer
the value of a′, that is, she would find the key shared by Alice
and Bob without any of them noticing.

Finally, if there is no element of reality for wave functions,
perhaps there could be one for entanglement [11]? Suppose we
are interested in two-qubit systems and we use an ancilla as a
probe. If instead of an ensemble we have just two qubits, can
we measure their entanglement? The results above show that
the answer is negative. One still has to erase all the classical
information in order to reverse the measurements.

In conclusion, we proved that it is not possible to extract
even probabilistically any information from a single qubit
prepared in an unknown state by using a generalized version of
partial measurements. We also examine how this result is con-
nected to general principles such as no-signaling, no-cloning,
complementarity, the possibility of quantum teleportation, and
the security of quantum key distribution.
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