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Self-induced ac Stark shift in lasers
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The ac Stark effect is a well-known, well-established effect associated with the displacement of the atomic
energy levels in the presence of an electromagnetic (e.m.) field. As the origin of the e.m. field is irrelevant, a
self-induced ac Stark effect should be present in a laser. However, not only has this effect never been reported but
it is not included in any laser model. Here, we show that a self-induced ac Stark shift does exist in the theoretical
description of a two-level laser, provided that the reduced equations are derived not from the rotating-wave
approximation, but from the full density matrix formulation. Interesting fundamental consequences are discussed
and quantitative estimates of the self-induced frequency shift resulting from the laser field’s ac Stark shift are
obtained for a variety of lasers. We find that the effect is generally small but (at least in some cases) measurable
and that the transfer of laser amplitude noise into frequency noise may play a role in future, ultrahigh-precision
metrological applications.
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I. INTRODUCTION

The year 2010 marks the 50th anniversary of the exper-
imental realization of the laser and the beginning of a very
successful history. Nonetheless, lasers remain very complex
systems, which entail the synchronization of a large number
of oscillators under far-from-equilibrium conditions. Thus,
describing their behavior has represented a challenge, met by
a diversity of models each adapted to meet the corresponding
level of complexity.

Models range from phenomenological rate equations to
first-principle approaches based on Maxwell-Bloch equations
[1] for unidirectional single longitudinal and transverse mode
ring cavities, subsequently extended to multilongitudinal mode
regimes [2], to descriptions based on synchronous boundary
conditions [3], to the full spatial three-dimensional (3D)
description [4], which opens the path to a wide range
of investigations [5,6]. Adiabatic variable reductions have
been used to simplify the mathematical description, thereby
introducing a natural classification for the different kinds of
lasers [7].

Approximations have obviously played a crucial role in
model development: first and foremost the rotating-wave
approximation (RWA) and the slowly varying envelope ap-
proximation (SVEA) [8]. Furthermore, modern mathematical
techniques, which allow for a precise and rigorous evaluation
of the manifolds over which the dynamics evolve, have
improved the description of the laser threshold as a bifurcation.
The so-called improved adiabatic elimination has identified the
true directions in phase space corresponding to fast and slow
dynamics in Class B lasers [7], thereby allowing for a better
description of their dynamics through the Toda potential and
providing analytical quantitative predictions for the oscillation
frequency [9,10], as well as predicting anomalous frequency
shifts in a laser with an injected signal [11].

Center manifold techniques [12,13] allow for a parallel to
be drawn between threshold crossing in a spatially extended
laser and fluids, superfluids, and magnetic systems, predicting
the appearence of optical vortices [14] and thereby sparking a
flurry of activity in a field which remains still very active [15].

These same techniques have been instrumental in establishing
correct models for the long-term stability of spatiotemporal
systems, avoiding spurious results and reducing the numerical
computing time [16,17], or determining the stabilization
conditions [18] for the formation of spatiotemporal patterns
in large-aperture lasers (e.g., semiconductors).

One feature common to the various derivations of the
reduced form of the laser equations through center manifold
techniques is that the resulting Ginzburg-Landau equation
predicts an optical frequency which does not depend on
the amplitude of the laser field [14,18,19]. This result is
quite peculiar because (1) it drastically differs from what
is observed in all other nonlinear physical systems (starting
from the simple pendulum in a gravitational field) and
(2) a renormalization of the laser frequency is expected as
a consequence of the atomic level displacement which should
occur in the presence of an electromagnetic (e.m.) field. This
physical mechanism is very well known in spectroscopy and
atomic physics and takes the name of Rabi shift, light shift
or ac Stark shift, and it is routinely calculated in first-order
perturbation theory [20–22]. In lasers the complication is
that the e.m. field is not externally imposed, but, rather,
self-consistently generated, implying therefore a self-induced
ac Stark shift, if present.

A question naturally arises: Is there a physical reason why
lasers should possess such an uncommon independence of the
e.m. field frequency on its amplitude, or may this result be due
to a mathematical artefact introduced in all models which have
been used so far for their description?

Historically, laser models have been based on the de-
scription of a two-level atom, which are grounded on the
theory developed for spin systems. The problem of spin
nutation was extensively studied starting from the 1930s,
notably by Rabi and co-workers [23]. The first experimental
measurements of nutation involved suitably tailored static
magnetic fields, through which atoms moved with selected
speed, thereby generating—in the reference frame of the
atom—a variable magnetic (driving) field [24]. As an alter-
native, radio frequency (rf) generation offered a much more
flexible and accurate control of the driving signal without the
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need for velocity selection in the atomic sample. However, the
oscillating signal carried, as a complication, the appearance of
two spectral Fourier components in the rf field.

From a mathematical point of view, the problem is solved
in approximate form (the RWA) by choosing a reference
frame in which one Fourier component is stationary and the
other rotates at double its frequency. In this approximation,
the latter component is neglected since its average rapidly
tends to zero over the long time scales which characterize
the now quasistationary component. This approximation, born
within the framework of magnetic resonance, is extremely
common in quantum optics and atomic and laser physics and
is known to provide excellent results. Nevertheless, it remains
an approximation [20]. This fact was first pointed out by
Bloch and Siegert [25], and independently by Stevenson [26],
who evaluated its impact on the nutation of nuclear spins and
calculated the frequency shift resulting from the full account of
the rf terms; they concluded that for nuclear spin nutation the
correction was small (quantitatively of the order of a percent
[25]). The origin of what is now known as the Bloch-Siegert
(frequency) shift was thereby shown to reside in the neglected
Fourier component of the rf field, a contribution absent in the
original Rabi setup [24].

Consistently with the magnetic resonance observations
[25,26], light shifts are ubiquitous in atomic physics and
quantum optics, although, due to the much higher values
of (the optical) frequency, their relative amplitude is much
smaller than what is found in spin problems. Hence, one
should expect the ac Stark shift to play a role in laser physics.
From a computational point of view, however, its evaluation is
more challenging, due to the requirement of a self-consistent
calculation. Furthermore, the RWA, which fixes a priori the
frequency of the wave to which the rotating reference system
is pinned, represents an unsurmountable obstacle to a correct
calculation of an eventual frequency shift; thus it needs to be
eliminated.

The purpose of this paper is to show that an ac Stark shift
does indeed occur in the theoretical description of a laser, based
on two atomic levels actively participating in the quantum
description (two more levels will be implicitly assumed to
allow for pumping and efficient relaxation, as in all standard
models). In order to obtain the ac Stark shift we avoid the
RWA and restart from a full density matrix formulation of the
problem. As an aside, we also obtain that the critical cavity
detuning associated with the occurrence of a spatial transverse
modulational instability is no longer strictly zero (as predicted
by current models [17,18]) but slightly differs from zero. Both
effects turn out to be very small, which explains their going
unnoticed up until now.

II. DERIVATION OF THE MODEL WITHOUT THE RWA

The Schrödinger equation for a two-level system in inter-
action with a classical e.m. field takes the form

ih̄ ∂tψ = (H0 − µ12E)ψ, (1)

where h̄ is Planck’s constant (divided by 2π ), H0 is the
unperturbed Hamiltonian, −µ12 is the dipole moment (with
the sign taking explicitly into account the negative electron
charge), and E is the electric field. Here and in the following

the symbol ∂t denotes the derivative with respect to time (the
second derivative will be ∂tt ). Looking for a solution of Eq. (1)
in the form

ψ = c1(t)φ1(−→r )e−i
E1
h̄

t + c2(t)φ2(−→r )e−i
E2
h̄

t (2)

where φ1,2(−→r ,t) are eigenstates of H0, we get

∂tρ11 = − i

h̄
E(ρ12µ

∗
12 − ρ∗

12µ12), (3a)

∂tρ22 = −∂tρ11, (3b)

∂tρ12 = i

h̄
[ρ12(E2 − E1) + µ12E(ρ22 − ρ11)], (3c)

where ρ11 = c1c
∗
1 and ρ22 = c2c

∗
2 are real and satisfy ρ11 +

ρ22 = 1, while ρ12 = c1c
∗
2 is complex. By introducing the two

real atomic variables

p = ρ12µ
∗
12 + ρ∗

12µ12, q = i(ρ12µ
∗
12 − ρ∗

12µ12), (4)

Eq. (3c) splits into

∂tp = ωgq, ∂tq = −ωgp − 2|µ12|2
h̄

E(ρ22 − ρ11), (5)

where h̄ωg = E2 − E1. Finally, introducing the phenomeno-
logical coefficients required for the semiclassical description
of the nonconservative processes we obtain

∂ttP = −ν∂tP − ω2
gP − 2|µ12|2ωg

h̄
EN,

∂tN = γ (Np − N ) + 2E∂tP

h̄ωg

+ d∇2N, (6)

∂ttE = c2∇2E − 1

ε0
∂ttP − σ

ε0
∂tE,

where N = N0 (ρ22 − ρ11) is the population inversion density
(N0 is the number of atoms per unit volume) and P =
N0(ρ12µ

∗
12 + ρ∗

12µ12) is the atomic polarization density. Np

stands for the pumping rate, d for the diffusion coefficient
and γ for the population decay rate. Finally, ν is the
polarization decay rate, σ the electric conductivity, ε0 the
vacuum permittivity, and c the speed of light in vacuum.

Note that performing the usual RWA and SVEA on Eqs. (6)
yields the well-known Maxwell-Bloch equations, omnipresent
in the laser literature for the past half-century [1].

With the following scalings:

∂t = ωg∂̃t , ∇ = ωg

c
∇̃, g = 2|µ12|2N0

h̄ε0ωg

,

P = ε0sP̃ , E = sẼ, σ = ε0ωgσ̃ ,

s2 = N0h̄γ

2ε0
, ν = ωgν̃, N = N0Ñ,

Np = N0Ñp, γ = ωgγ̃ , D = dω2
g

c2γ

(7)

and dropping the superscript, Eqs. (6) become

∂ttP = −ν∂tP − P − gEN,

1

γ
∂tN = [Np − N + E∂tP + D∇2N ], (8)

∂ttE = ∇2E − ∂ttP − σ∂tE.

Realistic boundary conditions are not involved in the existence
of a self-induced Stark shift effect, which is a pure bulk
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physical mechanism. Therefore, for the sake of simplicity,
a simple infinite geometry will be assumed for the amplifier
medium description [Eqs. (8)]. Then elementary calculations
show that N = Np and E = P = 0 is a stationary solution of
Eqs. (8), which is stable if and only if Np < Npc = σν

g
. Npc

corresponds to the laser threshold. Above this value, linear

stability analysis predicts that the traveling waves ei(t±−→
k .

−→r )

with k2 = 1 are the unstable perturbations with the highest
growth rate.

III. WEAKLY NONLINEAR MULTISCALE ANALYSIS

The following well-established analytical approach is
rigorously justified from a mathematical point of view [12,13]
and has been successfully used in numerous nonlinear
problems (for nonlinear optics cf. [14,18,19]). It is valid only
close enough to the laser threshold, Np − Npc = ε2µ, where
ε is a small parameter and µ is of order one. In this parameter
region, the amplitudes of E and P are expected to saturate
to a small value such that E and P can then be sought as
a O(1) power expansion in ε. In contrast, their phases are
known to rapidly oscillate in space and time. The main idea
behind the multiscale analysis is to describe the slow and fast

behavior with independent variables. Hence, the time variable
t is replaced by t0 for the fast components, t1 for the temporal
evolution with 1

ε
, t2 for 1

ε2 characteristic time scales, and
so on.

The following multiscale Ansatz is therefore introduced:

Np = Npc + ε2µ, ∂t = ∂t0 + ε∂t1 + ε2∂t2 + ε3∂t3 + · · · ,
∂z = ∂z0 + ε∂z1 , ∇⊥ = √

ε∇⊥ 1
2
,

E = εE1 + ε2E2 + ε3E3 + · · · , (9)

P = εP1 + ε2P2 + ε3P3 + · · · ,
N = Npc + ε2N2 + ε3N3 + · · · ,

where ∂s (s = t0,t1, . . . ,z0,z1, . . .) stands for partial derivative
with respect to s, and where ∇2

⊥ is the transverse Laplacian
(∂xx + ∂yy). For the space variables (e.g., z), we have not
used the full expansion ∂z = ∂z0 + ε1∂z1 + ε2∂z2 + . . . but a
truncated form [Eq. (9)] which yields the same result as the
complete one.

Replacing Eq. (9) into Eq. (8) leads to a hierarchy of linear
equations which can be successively solved provided that the
solvability conditions are satisfied. After some manipulations,
we find that the Taylor expansions

E1 = Fei(t0−z0) + Bei(t0+z0) + c.c..

E2 = 0, P1 = σ (Fei(t0−z0) + Bei(t0+z0)) + c.c.,

P2 = σ (ν + 2i)

σ + ν
(∂z1Fei(t0−z0) − ∂z1Bei(t0+z0)) + c.c.,

N1 = Npc,

N2 = µ − σ

[
F 2

R(2, − 2)
ei(2t0−2z0) + F ∗2

R(−2,2)
ei(−2t0+2z0) + B2

R(2,2)
ei(2t0+2z0) + B∗2

R(−2, − 2)
ei(−2t0−2z0) + 2(|F |2 + |B|2)

+2

(
FB

R(2,0)
ei(2t0) + F ∗B∗

R(−2,0)
ei(−2t0)

)
+ 2

(
FB∗

R(0, − 2)
ei(−2z0) + F ∗B

R(0,2)
ei(+2z0)

)]
(10)

are the solution of Eq. (8) up to O(ε3) provided that

∂tF = a0F − a1∂zF + a2∂zzF − (a3|F |2 + a4|B|2)F

+[a5 + a6∂z + a7∇2
⊥]∇2

⊥F,
(11)

∂tB = a0B + a1∂zB + a2∂zzB − (a3|B|2 + a4|F |2)B

+[a5 − a6∂z + a7∇2
⊥]∇2

⊥B,

with

a0 = 1

2

gµ

σ + ν
, a1 = ν

σ+ν
,

a2 = σν

2(σ + ν)3
[4 − i(σ + ν)]

a3 = σg

2(σ + ν)

3γ + 4i + 8Dγ

γ + 2i + 4Dγ
,

a4 = σg

(σ + ν)

3γ + 4i + 8D(γ + i)

(1 + 4D)(2i + γ )
, a5 = − i

2
a1,

a6 = − 4 i a7, a7 = − ν

8(σ + ν)3
[4σ + iν(σ + ν)],

(12)

where F and B are the envelopes of the forward and
backward electric field traveling wave solutions. They are the
order parameters of the laser bifurcation and enter into the
expression of all the physical variables, Eqs. (10). F and B

depend on the slow variables t1, t2, t3,...,z1,x 1
2
,y 1

2
even though

this dependence is not explicit in Eqs. (11) due to the scale
aggregation procedure. F ∗ (B∗) stands for the complex conju-
gate of F (B). R(p,q) = ip

γ
+ 1 + Dq2 is an auxiliary function

whose purpose is to strongly simplify the expression of N2.
The following remarks are in order:
(1) The previous asymptotic analysis is always valid close

enough to the laser threshold Npc and is especially well suited
to describe Class A laser dynamics [7]. For Class B and C
lasers, a range of validity still exists close enough to the
threshold, i.e., for µ � γ and µ � ν.

(2) Considering the population inversion as a critical mode
(i.e., assuming γ � ε) extends the range of validity of the
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previous description. The computations are more complex,
but the conceptual results we are discussing here are not
qualitatively modified.

(3) a2r = Re(a2) > 0 so that diffusion prevents small
longitudinal wavelength instabilities from occurring. Higher
order spatial derivatives with respect to z are not required.

(4) a7r = Re(a7) < 0, and thus spatial transverse instabili-
ties at small wavelengths are damped.

(5) The coefficients a3 and a4 are given by

a3 = σg

2(ν + σ )

[8 + γ 2(3 + 20D + 32D2)] − 2iγ

4 + γ 2(1 + 4D)2
(13)

and

a4 = σg

(ν + σ )

[8 + 3γ 2 + 16D + 8Dγ 2] − 2iγ (1 + 4D)

(1 + 4D)(4 + γ 2)
.

(14)

The real parts of a3 and a4 are always positive. Thus, the
nonlinear cubic terms stop the linear exponential growth and
there is no need for an expansion to order (ε4).

(6) Up to O(ε3), the Taylor expansion for N can be
structured in the following way:

N = Np − 2σ (|F |2 + |B|2)︸ ︷︷ ︸
I

− σ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 2

R(2, − 2)
ei(2t0−2z0) + F ∗2

R(−2,2)
ei(−2t0+2z0)

+ B2

R(2,2)
ei(2t0+2z0) + B∗2

R(−2, − 2)
ei(−2t0−2z0)

+2

(
FB

R(2,0)
ei(2t0) + F ∗B∗

R(−2,0)
ei(−2t0)

)
+2

(
FB∗

R(0, − 2)
ei(−2z0) + F ∗B

R(0,2)
ei(+2z0)

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

II

+O[(Np − Npc)3]. (15)

Part (I) only depends on the slow space and time coordinates.
In contrast, part (II) does depend on the fast variables t0
and z0. In particular, the last terms in part (II) correspond
to stationary spatial modulations at twice the wave vector
and are responsible for spatial hole burning. As expected, the
amplitude of this spatial grating decreases with D [through the
linear dependence of R(0, ± 2) on D].

(7) The ratio between cross- and self-saturation (a4r/a3r ),
which controls the stability of the traveling waves relative
to the standing waves, depends on the γ and D parameters.
Easy computations show that, whatever the value of these
parameters, a4r > a3r and the traveling waves are definitely
the most stable solution.

(8) For insulating active media, the electric conductivity σ is
vanishingly small. Equations (8) are no longer self-consistent
because of the lack of an energy dissipation mechanism.
Hence, realistic boundary conditions with nonvanishing trans-
mission coefficient become essential. Fortunately, they can be
taken into account in the previous analysis by simply replacing
ε0
σ

with the photon cavity lifetime.

A. Self-induced ac Stark shift

We now investigate some solutions of Eqs. (11). Homoge-
neous traveling waves (HTW) correspond to

F = Rtwei(�t),

B = 0,
or

F = 0
B = Rtwei(�t) (16)

with

R2
tw = a0

a1
, � = −a3iR

2
tw, (17)

where a3r stands for the real part of a3 and a3i for its
imaginary part. The linear stability analysis, not explicitly
performed here, shows that the HTW solutions are always
stable. Equations (17) clearly show that the frequency � of
the HTW envelope does depend on the electric field intensity
R2

tw. Taking into account the relationship between the electric
field E and the envelopes (F and B), Eqs. (10), as well as the
scalings, Eqs. (7), we obtain for the angular frequency ωe of
the electric field in the HTW regime (in physical units):

ωe = ωg

(
1 + −a3i

s2
|E|2

)
= ωg + �|E|2, (18a)

� =
[

σ

σ + ε0ν

][
2

4 + (
γ

ωg

)2(
1 + 4

dω2
g

c2γ

)2

]
�s, (18b)

�s = 2|µ12|2
h̄2ωg

, (18c)

where �s is exactly the usual ac Stark shift. The fact that
� is proportional to �s but not equal to it follows from the
self-induced nature of the physical mechanism. Indeed, the
feedback of the atomic displacement onto the electric field,
absent when the latter is an external parameter, introduces the
prefactor of �s found in the expression for �. Note that the
frequency shift has only one sign (blue shift).

B. Occurrence of transverse patterns and cavity
detuning threshold

Up until here, the longitudinal boundary conditions (cavity
mirrors) have not been taken into account in the model. We
now consider a forward traveling wave (F �= 0,B = 0) in a
ring cavity with length (in scaled units)

L = 2π (n + δ) with n ∈ N and − 1
2 < δ < + 1

2 .

(19)

The z-periodic boundary conditions are accounted for by
setting

F (t,x,y,z) = A(t,x,y)e−iQz with Q = − δ

n + δ
,

(20)

where A obeys

∂tA = αA − a3|A|2A + β∇2
⊥A + a7∇4

⊥A, (21)

with

α = a0 + iQa1 − Q2a2,
(22)

β = a5 − iQa6 = − i

2
a1 − 4Qa7.
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Equation (21) admits a homogenous solution of the form

A = Rhe
iωht with R2

h = αr

a3r

, ωh = αi − βiR
2
h .

(23)

Linear stability analysis provides the most unstable eigenvalue,
associated with phase invariance symmetry:

λ = −βra3r + βia3i

a3r

k2 + O(k4), (24)

where k is the wave vector of the transverse perturbation. The
coefficient of k2 in the previous expansion vanishes for

Qc = − a1a3i

8(a7ra3r + a7ia3i)
. (25)

Note that Qc vanishes with a3i . Thus, in the usual mathematical
description of the instability where frequency renormalization
is absent (a3i = 0), a spatially transverse structure develops
as soon as the detuning δ changes its sign. Instead, in the
presence of frequency renormalization, Qc, as well as the
critical cavity detuning, no longer vanishes. From a physical
point of view, the picture is quite obvious. In the absence
of frequency renormalization, the mismatch between cavity
length and resonance condition, introduced by detuning, can
only be counterbalanced by the growth of a transverse com-
ponent in the wave vector when δ < 0. When the frequency
renormalization is taken into account, the self-adjustment
of the frequency as a function of the field amplitude can
compensate, in certain parameter ranges, for the mistuning
from the cavity resonance. Thus, the appearance of transverse
structures no longer coincides with the crossing of the perfect
tuning condition (δ = 0).

IV. PHYSICAL DISCUSSION

In this section we concentrate on a close examination
of the laser frequency displacement, self-induced by the ac
Stark shift (Sec. III A), and focus on quantitative estimates
of their magnitude �ω = ωe − ωg in various kinds of lasers.
Thus, we specialize the discussion by introducing explicitly
the cavity losses, K , and the dipole relaxation rate [or full
width at half maximum (FWHM) linewidth of the transition],
γ⊥, which replaces the quantity ν used in the mathematical
discussion.

The nonlinear multiscale analysis (Sec. III), an asymptotic
form of expansion, rigorously holds only near threshold.
However, we will extrapolate the predictions of Eq. (18a) in
order to obtain order-of-magnitude estimates and to gauge the
extent of the influence of the ac Stark shift on laser operation.
Along the same line, we stretch somewhat the validity of the
predictions (Sec. III A) obtained for the traveling wave solution
(unidirectional emission in a ring laser) to obtain quantitative
estimates in standing wave (Fabry-Perot) cavities. We justify
this extension by analogy with a detailed investigation con-
ducted in [27] showing a close correspondence between the
dynamics of lasers (and other optical nonlinear systems) in
different kinds of configurations (e.g., ring and Fabry-Perot
cavities).

Close examination of Eqs. (18a)–(18c) shows that the
self-induced term is composed by the usual, field-induced
ac Stark shift—well known in atomic physics and quantum
optics (�s)—multiplied by two terms. The first can be recast
using the substitution mentioned at the end of Sec. III: K = σ

ε0
,

which allows us to rewrite the first bracketed term in Eq. (18b)
as 1

1+ γ⊥
K

. Its interpretation is immediate in the context of a

laser: this factor introduces a weight coefficient defined as the
fraction of the coherence time of the intracavity field (K−1)
over which the atomic dipole is excited (γ −1

⊥ ). Contrary to
what happens in the case of an atom excited by an externally
generated e.m. field (where its coherence time is irrelevant
as long as it is longer than the dipole’s), the self-induced
nature of the laser e.m. field requires the presence of a measure
of its influence on the emitting (i.e., field-generating) dipole.
Indeed, if on the one hand the e.m. coherence time is extended
in a laser by the cavity action, nonetheless, its influence on
each emitting dipole cannot exceed the latter’s coherence
time.

Another way of illustrating the influence of this prefactor
rests on the relative widths of the cavity and emission
resonance lines. In the usual derivation of the laser equations
(not including the ac Stark effect) the oscillation frequency,
in single mode operation, is the result of the so-called mode
pulling [28]: the resonance linewidths of e.m. field and active
medium, respectively, act as filters which pull the actual laser
frequency toward their respective centers according to their
relative inverse widths (quality factor). Frequency pulling is
the result of the competition between the active medium and
the cavity in the feedback mechanism leading to lasing. Thus,
it is not surprising to find in the self-induced ac Stark shift
a similar weighting factor, which can be recast in the first
bracketed term of Eq. (18b) as K

γ⊥
(if K � γ⊥). Since lasers are

characterized by a cavity whose resonance width is typically
much smaller than that of the active medium, one expects the
self-induced ac Stark shift to be weaker than the externally
induced one [the first bracketed term in Eq. (18b)].

A second weighting factor appears in Eq. (18b): the second
square bracketed term includes various laser parameters, such
as the spontaneous linewidth (γ ), the unperturbed emission
frequency (ωg), the diffusion coefficient d, and the speed of
light (in vacuum). One should expect this term to affect the
resulting � coefficient depending on the characteristics of
the laser. Direct substitution of the physical parameters (cf.
Table I) shows that the bracketed term is equal to 0.5 (with
three significant figures) for all types of lasers considered
in the table. In the calculations, we have used values for
the diffusion coefficient ranging from d ≈ 10−5 m2 s−1 for
gases to d ≈ 10−2 m2 s−1 for semiconductors. Thus, we can
safely conclude that this term contributes only a factor 1

2 to the
self-induced ac Stark shift.

One final physical illustration of the interplay between
the Stark shift and the lasing process convincingly shows
that a limiting action must take place for lasing to occur.
When driving a sample (e.g., atomic vapor) with an external
field, one can induce a frequency shift that can be as large
as desired (the limitation coming from external factors such
as available power, etc.). Thus, it is in principle possible to
induce a light shift which exceeds the spontaneous emission
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linewidth. In the case of the laser the latter situation becomes
problematic. In coherently pumped lasers (e.g., molecular
ones) the issue of the pump-induced Stark shift is an important
one since the latter may detune the dressed transition outside
the absorption linewidth (if the pump frequency is not adjusted
accordingly), thus reducing the effective pumping (see the
brief discussion at the end of Sec. IV A). Thus, in order
to maintain a high pumping efficiency in a molecular laser
(the most sensitive to this perturbation due to the narrow
linewidth of typical molecular transitions) one is forced to
either limit the pump strength or to tune its frequency with
increasing power. When the ac Stark shift is self-induced this
is not possible, as the frequency and amplitude are coupled
and self-determined by the feedback mechanism. Thus, one
immediately sees that if the ac-Stark-shift-induced frequency
deviations are not negligibly small compared to the linewidth,
then an automatic limiting mechanism would kick in as the
self-induced detuning would reduce the effectiveness of the

lasing process. One should expect, in principle, to even find
an asymmetry between red and blue detuning (laser frequency
smaller or larger than the emission line center, respectively)
in this limiting mechanism, since a red-detuned emission
would be shifted toward resonance by the ac Stark shift (thus
increasing the output power and the resulting frequency shift),
while a blue-detuned one would be shifted away from it (thus
reducing the output power and the resulting shift). In practice,
as we will see in the following section, the frequency shifts
are so small that the linewidth envelope can be considered to
be constant over the frequency interval, thereby removing the
potential asymmetry between red and blue detuning.

In conclusion, overall inspection of Eq. (18b) suggests that
at least in most lasers the self-induced ac Stark shift should
induce a frequency shift substantially smaller than what one
expects for the equivalent effect in the corresponding atomic
species. In the following section we examine a number of
specific lasers and draw some pertinent conclusions.

TABLE I. Laser classes according to classification in [7]; λ, chosen laser wavelength; B, spontaneous emission probability (Einstein
coefficient); µ, dipole moment for the lasing transition; γ⊥, transition’s homogeneous linewidth (FWHM); K, cavity loss rate [29]; �s , ac
Stark shift induced by an external e.m. field; �, self-induced ac Stark shift in a laser.

Class Type λ (µm) Ba(s−1) µ12
b(C m) γ⊥ (rad s−1) K (s−1) �s

c(m2 s−1 V−2) �d(m2 s−1 V−2)

A He-Nee 0.6328 1.40 × 106 2.05 × 10−30 2 × 108 3 × 106 2.54 × 10−7 1.88 × 10−9

A Dye (Rhodamine 6G)f 0.62 3 × 108 2.91 × 10−29 1 × 1013 3 × 107 5.01 × 10−5 7.51 × 10−11

A Ar+ g 0.514 2.90 × 109 6.82 × 10−29 4.4 × 109 1.5 × 107 2.29 × 10−4 3.89 × 10−7

B Nd:YAGh 1.06 4.35 × 103 2.49 × 10−31 7.5 × 1011 2 × 107 6.31 × 10−9 8.41 × 10−14

B Nd:YAG microcavityi 1.06 4.35 × 103 2.49 × 10−31 7.5 × 1011 1 × 1010 6.31 × 10−9 4.15 × 10−11

B CO2
j 10.6 8 × 102 3.36 × 10−30 1.5 × 108 3 × 107 1.14 × 10−5 9.5 × 10−7

B Semiconductor (GaAs)k 0.895 2.71 × 108 4.81 × 10−29 1 × 1013 8 × 1010 1.98 × 10−4 7.86 × 10−7

B Ti:sapphirel 0.78 4.14 × 105 1.52 × 10−30 6.2 × 1014 1 × 107 1.73 × 10−7 1.40 × 10−15

C He-Nem 1.15 4.4 × 106 8.93 × 10−30 1 × 109 5 × 108 8.81 × 10−6 1.47 × 10−6

C He-Nen 3.39 9.60 × 105 2.11 × 10−29 1.2 × 109 1 × 109 1.44 × 10−4 3.27 × 10−5

C He-Xeo 3.51 4.6 × 106 4.85 × 10−29 4.4 × 108 1 × 109 7.89 × 10−4 2.74 × 10−4

C NH3
p 374 1.22 × 10−3 8.69 × 10−31 2 × 105 2 × 106 2.70 × 10−5 1.23 × 10−5

aPrimary quantity obtained directly from cited sources or from the fluorescence or natural lifetime (cf. GaAs and NH3 for only exceptions).
bDerived from Eq. (26) (except GaAs and NH3, where it is obtained as a primary quantity from the cited source).
cEstimated from Eq. (18c).
dEstimated from Eq. (18b).
eSpontaneous emission probability B and γ⊥ from [30]; K estimated for a 50-cm-long Fabry-Perot cavity with 1% outcoupling.
fλ : peak wavelength; B and γ⊥ from [30]; K estimated for a 1-m-long ring cavity with 10% outcoupling.
gB from [31]; γ⊥ estimated on the basis of [32]; K estimated for a 1-m-long Fabry-Perot cavity with 10% outcoupling.
hB from [30]; γ⊥ from [28,33]; K estimated for a 75-cm-long Fabry-Perot cavity with 10% outcoupling.
iSame parameters as for bulk laser but with a 1.5-mm-long Fabry-Perot cavity.
jFor a longitudinal discharge low-pressure (≈20 Torr) CO2 laser: B from [34]; γ⊥ from [35]; K estimated assuming a 1-m-long Fabry-Perot
cavity with mirror reflectivity of 80%.
kB derived by inverting Eq. (26); µ12 and γ⊥ from [36]; K from [37]. Notice that the cavity losses are of the same order of magnitude for
edge emitters (bulk lasers) or VCSELs: the cavity length is approximately three orders of magnitude smaller for the VCSEL, but the mirror
reflectivity is three orders of magnitude larger. Thus the self-induced ac Stark shift is equivalent in the two kinds of lasers.
lλ: peak wavelength; B derived from [38]; γ⊥ derived from [33]; K estimated assuming a 1-m-long ring cavity with ≈3% outcoupling.
mB from [30]; γ⊥ assumed close to the value for the λ = 3.39 µm transition [39], in qualitative agreement with [28]; K assumed half the value
as for λ = 3.39 µm, given the ratio between the oscillator strengths of the two transitions [30].
nB from [30]; γ⊥ from [39]; K experimentally estimated in [39].
oB,γ⊥, and K from [39].
pB derived by inverting Eq. (26); µ12 given for a different transition in [40], but since the lifetimes do not vary very strongly in the various
branches [41], we safely use this value. Note that we used the conversion 1 debye = 3.34 × 10−30 C m; γ⊥ from [42] at pressure P = 2 Pa; K

derived from an intermediate value of cavity linewidth [42]. The outcoupling is of the order of 0.4% [42].
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A. Analysis for various kinds of lasers

We have chosen a sample of different kinds of laser,
representative of the various dynamical classes [7], selected
to consider devices which are of very widespread use, as
well as lasers which have niche applications or historical
importance (Table I). At the same time, we have tried to cover
a range of lasers going from extremely insensitive to relatively
sensitive ones as far as the self-induced ac Stark shift is
concerned.

The dynamical class [7] to which each laser belongs is listed
in the first column of Table I, while the emission wavelength
appears in column 3. For lasers emitting on several lines we
have chosen the most representative one (or several interesting
ones, as for He-Ne). For others we have opted for the emission
peak (tunable lasers), for a typical wavelength (semiconductor
or CO2), or even a particularly interesting wavelength (as in
the case of the NH3 laser, where we have chosen a far infrared
(FIR) line with sufficiently high gain to operate in the so-called
bad-cavity limit [29]).

Equation (18b) requires knowledge of the spontaneous
emission rate (γ ), which we obtain either directly from the
sources cited in Table I or using the spontaneous emission
probability (Einstein coefficient B).

The dipole moment, µ12, for the transition can be obtained
from the standard relation between the Einstein B coefficient
(spontaneous emission) and its corresponding microscopic
expression (cf., e.g., [22]):

µ12 =
√

πε0h̄c3B

ω3
g

. (26)

The laser linewidth (FWHM) values, γ⊥, have been ob-
tained from the cited sources while the cavity losses K have
for the most part been estimated on the basis of the cavity
characteristics specified in Table I.

Four kinds of lasers stand out for their particularly small
self-induced ac Stark shift (�): the He-Ne laser emitting
on the red line, the dye laser (for Rhodamine 6G, but in
general all dyes have similar values the emission linewidth,
γ⊥), the Nd:YAG laser, and the Ti:sapphire laser. The last
three are characterized by a particularly large value of γ⊥,
originating from the fact that the relaxation processes in a
solid (and similarly in a liquid) are very broadband due to
the strong contribution of lattice vibrations (phonons) to the
linewidth. The very short coherence time of the oscillating
dipole, compared to that of the intracavity field, very strongly
suppresses the self-induced ac Stark shift, as is easily recog-
nized by comparing the corresponding values of �s and �:
the latter is reduced by a factor ranging between five and
eight orders of magnitude with respect to the former. The most
spectacular reduction belongs to the Ti:sapphire laser, whose
trademark is exactly one of the largest possible linewidhts [33],
which make of it the workhorse of ultrashort pulses. In this
setting, the microcavity Nd:YAG laser holds a special position
and will be discussed later.

Notice that we have not explicitly considered the case
of a Nd:glass laser, whose emission line, even broader than
that of its counterpart based on a crystalline matrix, is inho-

mogeneously broadened. Indeed, for the present discussion
the contribution to self-induced frequency shift comes from
the homogeneous component of the linewidth, since the
inhomogeneous one is basically responsible for multimode
operation. This same consideration holds for the other kinds
of lasers we have considered (He-Ne at λ = 6328 Å, or
the laser line of the Ar+ laser) whose overall linewidth is
inhomogeneously broadened: in these cases we have indicated
the homogeneous linewidths (FWHM).

At the opposite end of the range of values for the self-
induced ac Stark shift (�) we find the near-IR to mid-IR
lasers (He-Ne on the IR transitions and He-Xe) and the very
FIR ammonia laser line. For the first three we remark that
the reduction going from �s to � is less than one order
of magnitude, while for the latter it attains the theoretical
minimum permitted by Eq. (18b): the factor 1/2. This comes
from the fact that this laser operates under the so-called
bad-cavity regime [29], where the cavity losses are so high
that the e.m. field coherence time is shorter than that of the
active medium. The NH3 laser wavelength confirms that we
are nearly dealing with a maser, characterized by an active
medium linewidth narrower than that of the cavity.

The other three lasers of the C class, however, maintain
a self-induced ac Stark shift comparable to the atomic one,
in agreement with their belonging to this dynamical class,
where the time constants for intracavity e.m. field, atomic
polarization, and population inversion are all of the same order
of magnitude. Thus, one would expect these lasers to be most
susceptible to the influence of the self-induced frequency shift.

The remaining three kinds of lasers (Ar+, CO2, and
semiconductor) fall into an intermediate range of frequency
shifts and will be examined in further detail in the following.

The actual frequency shift which may be attained in a laser
depends not only on the coefficient � but also on the value
of the electric laser field E present in the cavity. Thus, a
realistic analysis must take into account typical (maximum)
values of E field attainable to estimate the resulting frequency
shift. For ease of comparison between the different laser types,
we have chosen to quantify the electric field value necessary
to obtain a frequency shift �νacS = �ω

2π
= ωe−ωg

2π
= 1 MHz

[from Eq. (18b)]. This arbitrary value is chosen of the order
of the linewidth of a strong dipole transition, a quantity
easily measurable and directly related to the induced ac Stark
shift.

Table II repeats, in the first four columns, some basic
information for the lasers we have considered in Table I. The
fifth gives the value of the intracavity laser electric field E

giving rise to a �νacS = 1 MHz frequency shift, followed by
the corresponding power density P (or intensity) (column 6),
and by the power P necessary to obtain the desired frequency
shift (column 7) assuming an intracavity beam radius r =
200 µm (a value that does not make sense for semiconductor
lasers but is kept for coherence in the table entries—see the
following discussion in the text for semiconductor lasers). The
last column gives the typical (maximum) value of the output
power Pt which can be obtained from each of these lasers.
These values are somewhat arbitrary and can be discussed and
amended, but they are useful to identify those lasers for which
measurable frequency shifts may occur.
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Comparison of the values for P and Pt shows that for a
number of these lasers the frequency shift is negligibly small
and that in most cases it would be even not be measurable. This
is the case of the red-emitting He-Ne laser, whose intracavity
power Pi ≈ 102Pt may at most reach a frequency shift of a
couple of hertz for its highest power. In the same category fall
the dye laser (Pi ≈ 10Pt , and thus �νacS � 1 Hz), the Nd:YAG
laser (Pi ≈ 10Pt , and thus �νacS < 1 Hz for bulk), and the
Ti:sapphire laser (Pi ≈ 30Pt , and thus �νacS � 0.1 mHz).

The case of the microchip (or microcavity) Nd:YAG needs
a more detailed discussion. The typical spot size in microchip
lasers gives a value for r ≈ 50 µm, which decreases by more
than an order of magnitude its value for P given in Table II,
while the typical reflectivities are rather of a few percent,
giving another factor of 2 when converting from Pt to P .
With this in mind, we obtain a self-induced frequency shift
�νacS ≈ 2 Hz, a value that is slightly larger than the one for
the bulk laser. It must also be kept in mind that several different
kinds of crystals (at different wavelengths) have been studied
for microchip lasers, thus offering a wider palette of power
density values and possible self-induced ac Stark shift; we
also remark that these devices are still being developed and
that power values larger than the one we have adopted may be
found (cf., e.g., [43–45]).

With a intracavity enhancement factor of approximately 5,
CO2 lasers may attain a frequency shift of the order of
1 MHz at the highest power levels reported in Table II, for
low-pressure laser configurations. As such, the shift should be
easily measurable, even though it is understandable that it may
have gone undetected if not looked for. One of the applications
of these lasers has consisted in coherent pumping of molecular
lasers, a use for which a frequency shift may be important,
given the narrow linewidth of most molecular lines. However,
the power levels involved (of the order of Ppump � 101 W)
predict shifts �νacS ≈ 10 kHz, thus reducing their potential

impact on pump efficiency. In the case of frequency-stabilized
CO2 lasers (used to pump molecular lasers [42], but also for
other precision applications) traces of frequency shifts may
be present in the error signal. More details on the impact of
the self-induced ac Stark shift on frequency-stabilized systems
will be given (in the case of an IR He-Ne laser) in Sec. IV B.

For semiconductor lasers we need to separately consider
two configurations and estimate anew the values of P : edge
emitters and VCSELs. By assuming the same material proper-
ties, the typical cross-sectional surface of an edge emitter is of
the order of S � 40 µm2 (supposing a 2 × 20 µm rectangular
waveguide), thus providing a reduction in the power P , for
a frequency shift �νacS = 1 MHz, relative to the value of P

estimated in Table II, by a factor >3000. Coupled to the minor
cavity enhancement factor (≈1.5 considering nλ=895 nm ≈ 3.6,
and thus a reflectivity value for a single crystal facet Rm =
0.32, with the second facet supposed high-reflection coated)
the laser output power sufficient to induce �νacS = 1 MHz
is of the order of Pout ≈ P × S × (1 − Rm) ≈ 2.9 × 10−1 W.
For a powerful edge emitter, Pt ≈ 1 W, and we thus estimate
�νacS ≈ 3 MHz.

For VCSELs a typical cross-sectional surface is rather
S � 7 µm2 (assuming a 3-µm-diameter circular VCSEL).
Since the cavity reflectivity is very high in these lasers
(Rm ≈ 0.999) and the factor � is the same as for edge emitters
(cf. see Table I), we estimate Pout ≈ P × S × (1 − Rm) ≈
7 × 10−5 W for �νacS = 1 MHz. For a powerful VCSEL,
Pt ≈ 0.1 W, we expect a self-induced ac Stark frequency
shift component �νacS ≈ 1.5 GHz. A question arises as to
whether this estimate is consistent with the cavity linewidth,
since a dynamical (i.e., self-induced, power-dependent) shift
which detunes the laser out of resonance would automatically
limit the power output. From a reasonable estimate of the
VCSEL’s free spectral range (FSR ≈ 3 × 1013 s−1 for a cavity
length l = 10 µm – roundtrip, optical path length) and finesse

TABLE II. E, electric field amplitude; P , power density; and P, power to obtain an ac Stark frequency shift [cf. Eq. (18a)] with
�ω = ωe − ωg = 2π × 1 MHz. All quantities are given as intracavity values: the cavity enhancement factor must be taken into account to
compare to the output power.

Class Type λ (µm) � (m2 s−1 V−2) E (V m−1) Pa (W m−2) P b (W) P c
t (W)

A He-Ne 0.6328 1.88 × 10−9 5.8 × 107 4.4 × 1012 5.6 × 105 < 0.05
A Dye (Rhodamine 6G) 0.62 7.51 × 10−11 2.9 × 108 1.1 × 1014 1.4 × 107 ≈1
A Ar+ 0.514 3.89 × 10−7 4.0 × 106 2.1 × 1010 2.7 × 103 ≈10
B Nd:YAG 1.06 8.41 × 10−14 8.6 × 109 9.9 × 1016 1.3 × 1010 102–103

B Nd:YAG microcavity 1.06 4.15 × 10−11 3.9 × 108 2.0 × 1014 2.5 × 107 ≈0.25
B CO2 10.6 9.5 × 10−7 2.6 × 106 8.8 × 109 1.1 × 103 102–103

B Semiconductor (GaAs)d 0.895 7.86 × 10−7 2.8 × 106 1.1 × 1010 1.3 × 103 0.1–1
B Ti:sapphire 0.78 1.40 × 10−15 6.7 × 1010 6.0 × 1018 7.5 × 1011 ≈1
C He-Ne 1.15 1.47 × 10−6 2.1 × 106 5.7 × 109 7.1 × 102 < 0.1
C He-Ne 3.39 3.27 × 10−5 4.4 × 105 2.6 × 108 3.2 × 101 < 0.1
C He-Xe 3.51 2.74 × 10−4 1.5 × 105 3.0 × 107 3.8 × 100 < 0.1
C NH3 374 1.23 × 10−5 7.2 × 105 6.8 × 108 8.5 × 101 ≈0.1e

aP: power density. The calculation is done supposing a top-hat intensity distribution [30] and P = 1
2 ε0c|E|2.

bP : power on a laser beam (supposed cylindrical) of radius r = 200 µm.
cTypical value of the maximum output power obtained from each kind of laser.
dFor semiconductor lasers the mode volume is much smaller and the value of P given is not very significant.
eIndirectly deduced from [42], assuming an intracavity beam size r ≈ 1 cm, thus output power in the hundreds of mW (and intracavity power
approximately 200 times larger, due to the weak outcoupling [42]).
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F ≈ 1000, we obtain a cavity linewidth �νc ≈ 30 GHz. The
predicted shift is more than one order of magnitude smaller
and therefore does not pose difficulties in the interpretation of
the data.

One last potentially interesting case is that of the so-
called nanolaser. Currently, a large amount of work is being
devoted to the realization and study of cavities with extremely
high finesse (e.g., F > 15 000 [46]) and extremely small
dimensions. Assuming a cavity with circular radius r < 1 µm
and the given finesse, one expects for a Pout ≈ 2 µW laser a
self-induced ac Stark frequency shift of the order of 1 MHz
(using the cavity parameters from [46]). Given the very low
power level assumed in this calculation, this shift, although not
large in absolute terms, promises effects which may become
sizeable with advances in nanolaser construction.

As a final comment on semiconductor lasers, we emphasize
the fact that we are limiting our discussion to the analysis of
the self-induced ac Stark shift based on the predictions of a
two-level model. It is well known that the band structure of a
semiconductor laser is much more complex and that numerous
other effects (e.g., thermal) contribute to frequency shifts.
Nonetheless, our approach highlights a possible contribution
to the frequency shift in semiconductor lasers, which to
our knowledge has not yet been taken into account. The
values we obtain from our predictions suggest that at least
for small-size systems (VCSELs and nanolasers) there may
be some interesting physics to be further investigated, even
though the quantitative relevance of the values we are giving
here may be limited.

Class C lasers display the lowest power levels (due to the
largest values of � in Table II) for achieving sizeable self-
induced frequency shifts. In spite of this, however, a shift
�νacS = 1 MHz cannot be achieved in either He-Ne (both IR
lines) or He-Xe laser. Indeed, coupled to high gain, these lasers
possess a low saturation and cannot provide a very large output
power. A comparatively large output power, Pout = 150 mW,
is reported for a He-Ne laser operating at λ = 3.39 µm [47],
but its cavity configuration (i.e., beam radius) is such that the
electric field strength is smaller than what assumed in Table II
for more conventional lasers. Commercial He-Ne lasers are
also expected to display a relatively weak (�νacS � 200 Hz)
self-induced ac Stark frequency shift [48], with larger values
appearing for the λ = 3.39 µm, in agreement with Table II.

The ammonia laser operating at λ = 374 µm holds a special
place in this discussion. We have already seen that its large
cavity losses render � ≈ �s

2 , which in practice represents the
upper limit for the self-induced ac Stark shift. This fact is not
sufficient to compensate for a dipole moment strength which
is nearly two orders of magnitude lower than that of the He-Xe
laser, thus resulting in a required power P over ten times that
of the He-Xe.

One interesting aspect of ammonia (and many FIR) lasers—
as of many coherently (i.e., laser-) pumped devices—is that
the issue of the Stark shift is often discussed. However, what
is addressed there is not the self-induced effect that we are
discussing in this paper, but the level shift induced by the
pumping laser. Since the latter is often strong (stronger than
the pumped laser line) it is important, in these lasers, to avoid
inducing such a large Stark shift as to detune the transition
out of resonance (cf., e.g., [42]). We remark that for the λ =

374 µm wavelength of NH3 the self-induced ac Stark shift may
be of the order of a hundred kilohertz (cf. see Table I for cavity
losses, i.e., conversion between output and intracavity power
levels, and Table II for a laser power estimate). Other kinds
of Stark shifts are discussed in the context of other lasers.
This is the case of the Ar+ laser, which displays a sizeable
Stark shift originating from the high electron density in the
very powerful electrical discharge [32]. Once again, this has
nothing to do with the effect we are calculating here and should
not be confused with our results.

B. Metrological applications

The conclusion to be drawn from the previous section is that
no matter which laser we consider, the self-induced ac Stark
frequency shift is small, at least relatively to the intrinsic stabil-
ity of each laser. In absolute terms, the estimates for VCSELs
give values which are orders of magnitude larger than those of
Class C lasers, but by taking into account the intrinsic sources
of frequency shifts in semiconductors, it is not surprising that
such shifts may not have been experimentally reported.

Considering, however, the precision required in metro-
logical work, the small shifts we are predicting become
relevant. Using the manufacturer’s data from Jodon [48] for
the λ = 3.39 µm laser, on the basis of the discussion of
the previous section we predict a differential frequency shift
of dνacS

dP
≈ 1 Hz

130 µW , amounting to �νacS ≈ 77 Hz when going

from the unperturbed atomic level spacing (zero field) to the
typical output power Pout = 10 mW of the smaller commercial
laser model. Compared to the sensitivity of the absolute
frequency measurement of a λ = 3.39 µm He-Ne laser used
as a reference for metrological standards (standard deviation
σω = 23 Hz, e.g., [49]), one expects to be able to detect the
frequency shift.

However, in metrological setups the laser power is typically
not varied. What is important, in such a case, is the amount
of coupled amplitude-frequency fluctuations which may
result from the amplitude noise of the laser. Using again the
manufacturer’s data from Jodon, we find that after warmup the
amplitude noise is 5%. Thus, considering Pout = 10 mW, the
resulting coupled amplitude-frequency fluctuations turn out
to be �νfluct ≈ 4 Hz. This value is still smaller than the best
estimate of the absolute laser frequency (σν = 10 Hz [50]) but
is not entirely negligible and may contribute to the uncertainty.
It is reasonable to suppose that the frequency-locking signal
should contain detectable traces of the frequency corrections
coupled to amplitude ones (especially in the case of slow
amplitude drifts). We remark that �νfluct ≈ 4 Hz represents
a 5 × 10−14 relative fluctuation on the He-Ne’s absolute laser
frequency [50].

The push towards better and better precision, aiming at
relative values of the order of 10−18 [51] (down at least three
orders of magnitude from current values), suggests that the
coupled amplitude-frequency fluctuations self-induced by the
laser’s ac Stark shift may become important in the design of
laser cavities for metrological applications. Indeed, the simple
way of reducing their contribution consists in lowering the
power density in the laser cavity by increasing the beam waist
size. Notice that the self-induced ac Stark shift transforms am-
plitude into frequency noise, but that the converse is not true.
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One specific domain where coupeld fluctuations may
become relevant in the future is the detection of gravita-
tional waves. The perspectives for the optical interferometer-
based detection of gravitational waves (successor to the
VIRGO project) set the goal in frequency stability at
1 Hz [52], for a third generation of instruments. The very low
sensitivity to the self-induced ac Stark shift of Nd:YAG lasers
(cf. Table II) makes their use a very good choice also from
this point of view, and at the current stability level (≈1 kHz)
the effect we are predicting does not play any significant
role. However, when the desired sensitivity approaches 1 Hz,
coupled amplitude-frequency noise may start playing a role
even for these lasers. The cavity design, as well as the choice of
stabilization procedure (e.g., injection by smaller, low-power
lasers) may play a role and reserve surprises if the self-induced
ac Stark shift is not taken into account. As shown in Table II, a
microcavity-microchip laser, which is certainly easier to
stabilize as a master laser, is not necessarily more immune
to the coupled amplitude-frequency noise originating from the
ac Stark shift.

C. Pulsed lasers

Strictly speaking our treatment deals with the self-induced
ac Stark shift in the continuous wave (cw) regime, and not
with laser pulses. Nonetheless, we can use the results of
Sec. III A for guidance. Laser pulses have been used since
the very first lasers [53], which, indeed, did not operate in the
cw regime. Because of the very high field amplitudes which
are reached at the peak of a pulse, it is reasonable to expect
sizeable self-induced ac Stark shifts, leading to a frequency
chirp originating from other than the usual nonlinear effects
due to the material response.

Current ultrashort (subfemtosecond) pulses promise large
self-induced ac Stark shift values, but our treatment of the prob-
lem, based on a two-level atom description, in not adequate
to extrapolate to these cases. Standard pulses provide rather
modest frequency shifts. For instance, pulses in IR He-Ne
lasers have been reported on the λ = 3.39 µm transition with
peak power up to Ppeak = 100 W [54]. The resulting induced
frequency chirp is only �νacS ≈ 3 MHz. Similarly, pulsed
waveguide commercial CO2 lasers [55] provide chirps of the
order of 1 MHz. Even with the large peak power values that can
nowadays be obtained with Nd:YAG lasers [56], the resulting
values of �νacS remain below 1 MHz.

The situation is quite different when considering mode-
locked semiconductor lasers. There is a strong interest in
obtaining very short pulses with high repetition rate and
relatively large power. Peak power values of the order of 100W
in the laser output can be currently obtained [57], thus raising
the intracavity electric field to levels well beyond those used
for the estimates of the self-induced ac Stark shift in Sec. IV A.
The modulation, by the Stark effect, of the self-absorption in
the saturable absorber used to obtain ultrafast mode-locking
(up to 50 GHz) is being directly modeled without using the
RWA [58], but under conditions [59] which are much simpler
(Class A systems) than those discussed in the present paper.
In this context, the intrinsic self-induced ac Stark may turn out
to play an active role in the physics of fast pulses. This point
is still under consideration.

V. CONCLUSIONS

The discussion of Secs. II and III has shown that the removal
of the RWA and a self-consistent application of expansion
techniques (multiscale analysis) allows for the solution of
two conceptual problems which have affected the modeling
of lasers for the past 50 years: the independence of the laser
frequency with laser power and the appearance of transverse
structures at δ = 0. From a quantitative point of view, however,
these corrections remain small and can be safely neglected in
most practical cases.

The relevance of our treatment is to clarify the foundations
of models, to offer a way of avoiding paradoxical predictions,
and to provide correct quantitative estimates in those cases
where a high precision may be demanded.

We have shown in Sec. IV, applying the results of the
previous sections to various lasers with widely different
properties, that a wide range of values for the self-induced
ac Stark shift can be obtained and that although in most
cases such a shift is small (relatively to the other sources of
frequency shifts), for some lasers it ought to be measurable,
or at the very least detectable in the error signal of the
stabilization loop. We have also shown that the self-induced
ac Stark frequency shift may be potentially important for
future precision measurements because of the coupling that
it introduces between amplitude and frequency noise.

An open avenue of development concerns the self-induced
ac Stark shift in chirped pulses: on the one hand, mode-locked
lasers are approaching regimes where the self-modulation
of the laser field may become relevant; on the other hand,
the very high power levels achieved in ultrashort pulses
propagating through a medium may induce a self-modulation
of its physical properties (e.g., bandgap). Notice that our
analysis fully applies since (1) the electric field strength
we are considering preserves the two-level approximation
without requiring the simultaneous account for the interaction
with additional levels, necessary for very strong fields, and
(2) although the amplification of chirped pulses generally
occurs in free propagation, the feedback phenomenon dis-
cussed in this paper does not require a laser cavity (cf. general
expressions for the frequency shift in Sec. III A). Work is
under way to further clarify the potential of this line of
investigation.

In conclusion, we have shown that the RWA is re-
sponsible for an artefact in the description of laser op-
eration, since it hides the true nonlinear dependence of
the frequency on the e.m. field amplitude. Quantitatively,
the consequences are minor as confirmed by the fact that
the RWA has been quite successfully used in a variety
of settings. Nonetheless, from a conceptual point of view
our analysis clarifies some singular points of the theory
and renders the description of laser dynamics consistent
with that of standard out-of-equilibrium nonlinear dissipative
systems.
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