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Conversion of heat to light using Townes’ maser-laser engine: Quantum optics
and thermodynamic analysis
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It is shown that thermal energy from a heat source can be converted to useful work in the form of maser-laser
light by using a combination of a Stern-Gerlach device and stimulated emissions of excited particles in a
maser-laser cavity. We analyze the populations of atoms or quantum dots exiting the cavity, the photon statistics,
and the internal entropy as a function of atomic transit time, using the quantum theory of masers and lasers.
The power of the laser light is estimated to be sufficiently high for device applications. The thermodynamics of
the heat converter is analyzed as a heat engine operating between two reservoirs of different temperature but is
generalized to include the change of internal quantum states. The von Neumann entropies for the internal degree
are obtained. The sum of the internal and external entropies increases after each cycle and the second law is not
violated, even if the photon entropy due to finite photon number distribution is not included. An expression for
efficiency relating to the Carnot efficiency is obtained. We resolve the subtle paradox on the reduction of the
internal entropy with regards to the path separation after the Stern-Gerlach device.
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I. INTRODUCTION

The second law of thermodynamics asserts that heat cannot
be converted completely to work [1]. Its connection to entropy
and extension to the quantum regime has been the subject
of extensive discussions at a recent meeting [2]. In statistical
thermodynamics the law ensures that matter cannot be cooled
in a cyclic process without a dissipative mechanism [3].
According to Lloyd [4,5], the second law is not violated when
information or knowledge is involved to realize an intelligent
control mechanism called Maxwell’s demon. The source of
the intelligence lies in having information of a physical
process, either via prior knowledge through predictability or
measurement. The knowledge can be used to control and
reduce the entropy of a subsystem. In other words, intelligence
can be used to restore order from disorder since entropy is
associated with disorder. However, there is a cost in acquiring
the intelligence, which we refer to as “setup” entropy, which
accounts, effectively, to the increase in the total entropy. It
is possible to establish a system of negative entropy [6,7]
that can be used to reduce the entropy of another system or
subsystem [8] even if the process is not in equilibrium, is not
closed, or does not evolve in cycles.

A Stern-Gerlach (SG) [9] device can be viewed as a
kind of intelligent setup that inherits human knowledge in
physics. A magnetic SG device works for particles with a
permanent magnetic moment in a magnetic field through the
Zeeman shift. Electrical SG devices work for particles with a
permanent electric dipole moment in an electric field through
the Stark effect. There is also an optical SG device but the
quantum dynamics of these SG devices is essentially unitary.
Townes and co-workers used the SG effect to make a focuser
in the earlier construction of an ammonia maser [10,11].
This concept is so simple and ubiquitous that its potentiality
for harnessing useful energy as laser light from ambient
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heat has been overlooked. A chapter in Feynman’s lecture
series [12] describes the atomic dynamics of the ammonia
maser and estimates the spectral density of the maser field
using the Schrödinger equation, but it does not consider
the field damping through the maser cavity. The Townes’
maser-laser setup forms a simple part of Scully’s quantum
afterburner Otto engine [13] where both maser and laser
actions in three-level systems operate in tandem, but it does not
involve thermodynamical processes of gas compression and
expansion. The engine was shown to produce Carnot efficiency
by using a two-level system [14].

In this paper, we show that energy from a heat source or
reservoir can be converted into useful work in the form of
photon energy or laser light. We propose a general scheme
or setup composed of the SG device, quantum particles,
and a maser-laser cavity [Fig. 1(a)]. The working fluid is
quantum particles (more practically atomic gas or quantum
dots) initially in equilibrium with a thermal heat source. The
thermodynamics of the scheme can be understood by the
standard heat flow diagram with two temperature reservoirs
[see Fig. 1(b)] and does not violate the second law. The
SG device separates the particles (ideally a two-level system)
into different trajectories according to the internal (electronic,
spin, vibrational, or rotational) quantum states, and they are
guided through hollow tubes. The excited particles interact
with the maser-laser cavity field where stimulated emissions
produce maser-laser photons. The deexcited ensembles exiting
from the maser-laser cavity are combined with an ensemble
in the ground state and are ready to be thermalized [15]
with the heat sink from the external degree (center-of-mass
translational motion) for the next cycle operation. This may
be realized by confining atomic gas or quantum dots inside
tubes with spin-preserving coating. Our analysis is focused on
the lasing mechanism, energy, entropy, and efficiency aspects
using quantum optics and quantum thermodynamics.

Section II elaborates on the physical mechanisms of the
SG process and the quantum optics of the field amplification
in the maser-laser cavity. The results are used in Sec. III to
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FIG. 1. (Color online) (a) A quantum heat converter converts heat into light using a Stern-Gerlach device, a maser-laser cavity, and a
working fluid of quantum particles in a guiding tube. BS is the beam splitter. (b) Thermodynamic equivalence with two reservoirs, with the
heat source at a higher temperature TH and the heat sink at a lower temperature TL.

estimate the laser power output and efficiency. In Sec. IV,
we elaborate on the thermodynamics of the system as a heat
engine based on analysis of the energy balance. In Sec. V,
we show how the internal entropies in the processes should
be calculated, leading to the resolution of the paradox that the
internal entropy decreases. In Sec. VI, we analyze the internal
entropy change and the thermodynamic entropy change for
the external degree to show that the second law is satisfied.
Encouraging conclusions are given in Sec. VII based on the
results.

II. MECHANISMS IN THE QUANTUM HEAT CONVERTER

We analyze the physical mechanisms in the SG device and
maser-laser cavity from the perspectives of quantum optics
and consider practical aspects with realistic parameters.

A. Stern-Gerlach separation

The SG [9] device is composed of dipolar magnets, with
north and south poles aligned along the z axis (see inset of
Fig. 1). The x dimension of the magnets should be long enough
to provide significant angular deflection. The separation of
the particles is based on conservative magnetic force, which
introduces net momenta along the z direction for the upper and
lower ensembles, resulting in a slightly higher mean kinetic
energy of the two ensembles. The particle beam (or fluid) flows
from the thermal bath through the channel of a guiding tube
and is in thermal equilibrium, which means that the particles
move under the force of the SG device and are not affected by
the pressure of neighboring particles. Note that the quantum
particles or fluid cannot sustain a continuous flow without an

energy supply. Thus, the particles have to be driven to move
in one direction (as shown by the arrows in Fig. 1) by a driver
which is powered by some energy W� taken from the laser
light.

For a molecular beam, a number of internal rotational
levels are populated even though the levels are typically in
the ground vibrational state at room temperature. Molecules
in a rotational level J would be deflected by the SG device into
2J + 1 trajectories, each corresponding to a Zeeman substate.
After leaving the magnetic field region, these molecules have
essentially the same internal energy and can be combined in
the same cavity tuned to the lasing transition. However, the
molecules are distributed over several rotational levels, each
requiring a distinctly tuned maser cavity which would produce
lasing photons with different wavelengths, as illustrated in
Fig. 2(a). For vibrationally or electronically excited molecules
from a hot reservoir, the situation becomes more complicated
and requires a more elaborate experimental setup [16]. Thus,
it is preferable (but not necessary) to use the working fluid
composed of quantum particles with only the few lowest
internal levels populated, such as an atomic gas or quantum
dots (QD).

B. Field amplification in the cavity

The dynamics and quantum statistics of photons inside the
maser-laser cavity can be described by the quantum theory
of masers and lasers [17,18]. The situation with continuously
injected dots is identical to the quantum dot laser [19]. We
identify the criteria for obtaining a large number of maser-laser
photons by analyzing the photon number distribution and the
populations of the particles exiting from the cavity.
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FIG. 2. (Color online) (a) Multipath excited ensembles are fed
into maser-laser cavities, which generate a spectrum of maser or laser
photons. (b) Velocity components of particles in the upper path and
lower path before combining, and the components after combining.

1. Maser process

For the maser, the lasing wavelength is of the order
of the width w ∼ 1 cm of the microcavity. For particles
with mean velocity v̄ >∼ 50 m s−1, the average transit time
through the cavity is τ = w/v̄, which is typically smaller than
1/γµ ∼ 10−2 s, the spontaneous lifetime of the microwave
transition in ammonia molecules. For each particle entering
the cavity, the decay is negligible and the amplified field in the
cavity flips the excited particle to the lower state and back to
the upper state repeatedly until the particle leaves the cavity.
The rate of oscillations is the effective Rabi frequency [12]

g
√

n + ( �
2g

)2 + 1, which depends on the photon number n

and the detuning � = ν − ω − kv, where v is the transverse
velocity of the particle beam and k is the lasing photon wave
vector. By using a highly collimated particle guide, the Doppler
shift kv would be negligible. The dynamics of the photon
number distribution is governed by the master equation [17]

dpn

dt
= Xnpn−1 + Yn+1pn+1 − (Xn+1 + Yn)pn, (1)

with

Xn = r sin2(gτ
√

n) + Cnn̄th, (2)

Yn = Cn(n̄th + 1), (3)

where g is the particle-field coupling strength, C is the cavity
damping rate, n̄th = (eh̄ν/kBTa − 1)−1 is the mean thermal
photon number at ambient temperature Ta , and r is the particle
injection rate. The excited population of an exiting particle as
a function of the transit time τ is found by tracing out the
photon number,

ρ(m)
aa (τ ) =

∑
n

ρan,an(τ ) =
∑

n

p(m)
n cos2(gτ

√
n + 1), (4)

with the steady-state diagonal density matrix element ρnn of the
maser master equation being the photon number distribution

p(m)
n = p0

(
n̄th

n̄th + 1

)n n∏
k=1

(
ra sin2(gτ

√
k)

Cn̄thk
+ 1

)
, (5)

where p0 is the normalization constant. We have used
ρan,an(τ ) = |Can(τ )|2 with Can(τ ) = Cn(0) cos(αnτ ) as the
coefficient of the state |a,n〉, ρnn = pn = |Cn(0)|2, and αn =
g
√

n + 1 since initially the particles are in level a. In the
micromaser, the atomic decay rate is neglected since it is much
smaller than the dynamic rate.

One might expect that the peaks of the maser correspond to
the condition sin(gτ

√〈n〉) = ±1, or gτ
√〈n〉 = 2m+1

2 π , which
maximizes p(m)

n . In steady state, the mean number of photons
loss through the cavity is 〈n〉C, which is compensated by the
rate r of particles injected into the cavity, giving a crude
estimate of the mean photon number 〈n〉 � r/C. Thus, the
peaks are expected at gτ = 2m+1

2 π/
√

r/C with m as integers.
Figure 3(a) shows that the peak with the largest photon number,
i.e., 〈n〉 = r/C = 200, occurs at around 	 = gτ

√
r/C = π

2
or gτ

√〈n〉 = π
2 . This point [red arrows in Figs. 3(a) and

3(b)] corresponds to all particles exiting in the lower level
b [ρaa(τ ) � 0, i.e., the population is essentially in a single
internal state] corresponding to a minimum internal entropy
(S/kB = −∑

i=a,b pi ln pi = ln 1 is zero) and a maximum
mean photon number 〈n〉max = r/C = 200 [see Fig. 3(c)].
However, for higher transit times, the peak makes a transition
(jump) from a lower to a higher mean photon number at
every 1.5π interval, i.e., 	 � 2π,3.5π,5π . Note that this
does not satisfy 	 = gτ

√
r/C = 2m+1

2 π . Instead, it satisfies
gτ

√〈n〉 = 2m+1
2 π with 〈n〉 � r/C. Then ρ(m)

aa oscillates with
	 [Fig. 3(b)] in a nonsinusoidal fashion, with an abrupt drop
around a transition point due to the jump of the peak to a higher
photon number [refer to Fig. 3(a)]. For large transit times, the
oscillations in ρ(m)

aa disappear and the particles exit essentially
with equal probability in levels a and b [i.e., ρaa(∞) → 0.5],
with a constant entropy of Su

cav/kB → ln 2 � 0. 69. Thus, the
particles exiting the maser cavity are not necessarily in the
lower level b. If a smaller r/C is used, there would be collapse
and revival in the oscillations.

Although the Rabi oscillations contribute to the internal
particle dynamics, there are no simple analytical expressions
for ρ(m)

aa (τ ) and ρ
(m)
bb (τ ). The simulations provide clues to obtain

the particular transit times (∝ 	) that maximize the number of
particles exiting in the lower state. This enables us to maximize
the number of photons in the cavity. Thus, precise control of
the mean velocity v̄ of the particles and the cavity width w is
important to obtain the desired τ = w/v̄. This is supplemented
by adjusting the parameters, g, ra, and C such that pn has
peak(s) around large values of n to produce an intense maser
field.

2. Laser process

In the optical regime, the internal transitions of the particles
due to spontaneous emissions and Rabi flopping occur on a
time scale of ∼ 10−8 s, much shorter than the particle transit
time. According to the quantum theory of lasers [18], the laser
field and the photon statistics vary noticeably within a time
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(c)

(b)

(a)

FIG. 3. (Color online) (a) Steady-state photon statistics of a maser
vs 	 = gτ

√
r/C, the dimensionless parameter for transit time τ .

(b) Population of level a and the corresponding internal entropy
(thick line) of exiting atoms. (c) Mean photon number generated
in the cavity. Note that the nonsinusoidal oscillations across τ

indicate the influence of multipeak photon number distribution and
the Rabi oscillations in the atomic dynamics. Here, we use n̄th = 1,
γ = 108 s−1, g = γ, and r/C = 200.

scale much longer than the decay lifetime γ −1 such that we
can add up the laser fields contributed by all particles in the
cavity, each with different injection times [20], for example,∫ ∞

0 γ |Can(τ )|2dτ = ∫ ∞
0 γ e−γ τ cos2(αnτ )dτ = γ 2+2α2

n

γ 2+4α2
n
. Thus,

the resulting photon statistics would not depend on the duration
of the transit time τ . The theory successfully describes the
photon statistics of lasers as the result of stimulated emission
and cavity amplification mechanisms, in addition to the
statistical contribution of many particles.

FIG. 4. (Color online) Population (thin line) ρaa(τ ) [based on
Eq. (6)] of an atom exiting the cavity in level a and the corresponding
internal entropy Su

cav(τ ) (thick line) as a function of transit time τ

showing the damping of the oscillations with mean photon number
〈n〉 = 2000. We use r/C = 450, γ = 108 s−1, and g = 0.1γ .

The dynamics of an atom in the laser cavity can be
obtained from the theory of resonance fluorescence driven
by the quantized laser field. The matrix element ρan,an(τ ) =
ρnn

1
2 [1 + e−3γ τ/4 cos(gτ

√
n + 1)] now includes the exponen-

tial term that was set to unity in the maser case. The population
of an exiting particle as a function of the transit time τ is
obtained by tracing out the photon number,

ρaa(τ ) =
∑

n

pn

1

2
[1 + e−3γ τ/4 cos(gτ

√
n + 1)], (6)

with the exact steady-state photon number distribution,

pn = p0

(n̄th + 1)

n∏
k=1

(
A/C

1 + k B
A

)
, (7)

where A = r
2g2

γ 2 and B = 4g2

γ 2 A. Note that the laser photon
statistics does not depend on the transit time, unlike the maser
case.

For comparison with the maser case, we plot Eq. (6)
in Fig. 4, which shows that the oscillations of the excited
population for the exiting particles disappear for long transit
times and the particles end up equally in both upper and
lower levels: ρaa(∞) � ρbb(∞) → 0.5. Thus, we expect that
the maser and laser have the same efficiency, which is 50%.
The particles exiting the laser cavity after a long transit have
a corresponding internal entropy of Su

cav/kB → ln 2, as in
the maser case. The mean photon number 〈n〉 = ∑

n npn is
independent of the transit time. So, it is compatible with the
population ρaa(τ ) at transit times greater than a few 1/γ or the
coarse graining time.

C. Combining the paths

Previous work shows that an information entropy of kB ln 2
has to be spent to coherently combine two wave packets
of particles without heating up the system [21]. Instead of
using information to coherently combine the particles from
the upper and lower arms, here, we are dealing with a
realistic situation composed of a continuous flow of ensembles
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of particles, where no synchronization of wave packets is
possible. When the ensemble of particles in the upper and
lower paths are combined, collisions between the particles
reduce the transverse mean momenta close to zero, while
reducing the overall kinetic energy and increasing the width
of the momentum distribution.

Let us consider the kinematics in Fig. 2(b) in order to
understand how the external (center-of-mass) entropy (associ-
ated with the momentum width of the particles) can increase
as the result of the incoherent combination without invoking
information. The conservation of both the x- and z-component
momenta before and after the collision gives v′

1x + v′
2x =

v1x + v2x and v′
1z + v′

2z = v1z − v2z, respectively. Energy con-

servation gives 2v =
√

v′2
1 + v′2

2 =
√

v′2
1x + v′2

2x + v′2
1z + v′2

2z. If
the particles move almost entirely along the x direction, v

would range between 1
2

√
2(v1x + v2x)2 = √

2 (v1x+v2x )
2 when

v′
1 = v′

2 = v1x + v2x and 1
2

√
2 1

4 (v1x + v2x)2 = v1x+v2x

2
√

2
when

2v′
1 = 2v′

2 = v1x + v2x . The velocity distribution is broadened
from v̄√

2
to

√
2v̄, where v̄ is the mean velocity of both

ensembles. Inelastic collisions between the molecules will
eventually make the center-of-mass (external) temperature
equal to the internal temperature, establishing thermalization
and creating some entropy.

III. LASER POWER OUTPUT

Here, we consider the power aspect for the laser case.
We use the results from the quantum theory of lasers and
the lasing condition for estimating the power of laser light.
The phase dynamics of the field is described by the photon
number coherences in the off-diagonal density matrix element
ρmn (m 
= n). For operation far above threshold (A/C � 1,
good cavity, and large particle injection rate) the matrix
element gives the normalized [

∫
f (ν)dν = 1] Lorentzian laser

linewidth,

f (ν) = D/π

(ν − ω)2 + D2
, (8)

where the linewidth is D � A+C
n̄

= BC
A

A+C
A−C � BC2

A2 . The mean
photon number in the laser cavity can be obtained from 〈n〉 =∑∞

n=1 npn and has the analytical expression

〈n〉 = A
C

(A − C
B

)
= 2rg2/Cγ 2 − 1

4g2/γ 2
= r

2C −
(

γ

2g

)2

. (9)

When the injection rate exceeds the threshold, r > Cγ 2/2g2

or A > C, we obtain 〈n〉 � r
2C = A2

BC � C
D

.
For large pumping or injection rate, B

A � 1, we have
A/C

1+k B
A

→ 1
k
A2

BC = 1
k
〈n〉c. Replacing

∏n
k=1

〈n〉c
k

= 〈n〉nc
n! in the

exact expression for pn [Eq. (7)] gives the coherent state with
a Poissonian distribution

pn = 1

n!
〈n〉nc e−〈n〉c (10)

with the mean photon number related to the linewidth, i.e.,
〈n〉c = A2

BC � C/D.

The power output of the laser is the number of photons
dissipated, C〈n〉, multiplied by the photon energy averaged
over the laser linewidth,

P = C〈n〉
∫

h̄νf (ν) dν. (11)

The integral gives h̄D
π

∫ ∞
0

ν
(ν−ω)2+D2 dν = h̄D

π

∫ ∞
−∞

xdx
x2+D2 +

h̄ω = h̄ω. When the injection rate exceeds the threshold, we
have

P ≈ r

2
h̄ω. (12)

The factor 1/2 in Eq. (12) arises because the quantum theory
of lasers gives the result for large τ , such that only 50% of
the input (excited) population converts the internal energy into
photon energy. In general, we may replace 1/2 by ρaa(τ ) and
write P = rρbb(τ )h̄ω. Using γ ∼ 108, g ∼ 106, r ∼ 1015 s−1,

A ∼ 2 × 1010, B = 4
104 A, and C ∼ 0.01A, we find a moderate

power P ∼ 50 µW.
The rate of the excited particle beam passing through the

cavity can be expressed as

r = dNc/dt � Nc/τ = ρAv̄ = Ncv̄/L, (13)

where v̄ = dl/dt is the mean velocity, ρ = Nc/V is the
number density, and A is the cross section of the beam of
particles. The number of excited particles in the cavity of
length L is Nc = ρAL.

The typical gas number density at room temperature is
ρ ∼ 1025 m−3. For a particle beam with a radius of 5 mm, A =
π0.0052. Assuming a moderate flow rate of v̄ ∼ 5 cm s−1, we
have r ∼ 1018 s−1. For a typical optical regime, ω ∼ 1015 s−1,
we have a power of about 4 W, enough to run electrical gadgets
like clocks and radio. Note that the power is proportional to
the flow rate r , which depends on the mean velocity of the
particles in the guiding tube.

IV. THERMODYNAMIC ANALYSIS

The thermodynamics of the heat converter in Fig. 1(a) can
be analyzed by referring to the heat engine schematic depicted
in Fig. 1(b).

A. Heat engine

The total heat energy (per particle) from the heat source (at
higher temperature TH ) is

QH = 3
2kBTH + pHh̄ω, (14)

composed of the internal energy QH,int = pHrh̄ω, which is
only due to the excited population pa = pH = 1

1+exp(x) , x =
h̄ω/kBTH , and the external QH,ext = 3

2kBTH energy, which is
obtained from the kinetic theory and the equipartition theorem.

The power of the maser-laser photons is d
dt

W̄pho = P =
pH

dN
dt

ρbb(τ )h̄ω, where we have used P ≈ ρbb(τ )rh̄ω and r =
pH

dN
dt

, which is less than the rate of particles flowing into the
Stern-Gerlach device, dN

dt
. Thus, the laser work per particle is

Wpho = dW̄pho

dt

/
dN

dt
= pHρbb(τ )h̄ω. (15)
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The exhaust particles exiting the cavity serves as a heat sink (at
lower temperature TL), satisfying the detailed energy balance
with the total heat (per particle) QL = QH − Wpho, or

QL = 3
2kBTH + pHh̄ω − Wpho, (16)

which is due to the kinetic energy QL,ext = 3
2kBTH and the

internal energy not converted into lasing photons but carried
by the exiting particles in the excited state, QL,int = (pHh̄ω −
Wpho) = pHρaa(τ )h̄ω.

For a large transit time τ the particle exits the laser
cavity with equal probability in the ground state |b〉 and the
excited state |a〉. This means that only half of the internal
energy ( 1

2QH,int) goes to the lasing photons. The remaining
exhaust energy 3

2kBTH + 1
2pHh̄ω becomes the heat sink that

is recycled back through the hot reservoir [see Fig. 1(b)].
The internal degree and the external degree (kinetic energy)

of the exhaust particles thermalize through inelastic collisions
on the way back to the hot reservoir, resulting in a lower
temperature TL that satisfies

3
2kBTH + ρaa(τ )pHh̄ω = 3

2kBTL + pLh̄ω, (17)

where pL = 1
1+exp(y) and y = h̄ω/kBTL.

The consideration of thermalization provides the heat
sink temperature TL which is necessary for us to study the
thermodynamics of the system. Otherwise, nonequilibrium
processes do not allow us to define the temperature TL for
establishing an analogy with the standard thermodynamic heat
engine.

Figure 5(a) shows that TL < TH and it varies almost linearly
with TH . The exhausted particles serve as a heat sink at
temperature TL, with a finite (nonzero) energy QL after some
of its input energy QH has been converted to work. Thus,
the heat converter setup is a typical heat engine that runs
between two different temperatures, where energy flows from
the reservoir at TH to the reservoir at a lower temperature TL.
The rejected heat QL = 3

2kBTH + ρaa(τ )pHh̄ω in the exhaust
fluid is topped up by an amount Wpho = ρbb(τ )pHh̄ω after
passing through the heat source, to be reused for the next
cycle.

The presence of rejected or exhaust heat QL as a byproduct
at lower temperature TL, the work Wpho delivered through
the laser photons, and the reservoirs with two temperatures

FIG. 5. (Color online) (a) Thermalized temperature TL of the
particles as a heat sink. (b) Entropy change in a cycle (essentially due
to external entropy), �S = (QL,ext − QH,ext)/TL + Wpho/TH created
after the thermalization and passing through the heat source, in
agreement with the second law.

TL and TH clearly show that the setup in Fig. 1(a) is not a
perpetual motion machine of the second kind (PMM2). The
setup does not run on a single-temperature reservoir, and it
does not convert the entire input energy QH to work Wpho.
If no work were delivered, the temperature of the exhaust
particles would be unchanged (remaining at TH ). A single
reservoir that does not do work is not a PMM2. The particles
in a single temperature reservoir would also not be able to
extract any net heat from the hot reservoir when passing
through it. Before we can connect our analysis with the second
law, the internal entropy change has to be computed correctly.
Note that the internal entropy may not be defined like the
external entropy by writing SL,int/kB = QL,int/TL = y

1+exp(y)
and SH,int/kB = QH,int/TH = x

1+exp(x) . Proper expressions for
the internal entropy are obtained from the quantum von
Neumann entropy, as discussed in detail in Sec. V.

B. Efficiency

If only the internal energy is considered as the in-
put energy (i.e., we neglect the external energy due to
the center-of-mass motion), the input power is Q̇int =
pHrh̄ω (pH = 1

1+exp(x) , x = h̄ω/kBTH ) and the (internal) ef-
ficiency ηint,a(τ ) = Wpho(τ )/Qint,H = pHρbb(τ )h̄ω/pHh̄ω =
ρbb(τ ) is determined by the population of the particles exiting
from the maser-laser cavity, which is 50% for above-threshold
laser operation. The overall efficiency, including the external
energy, is

η(τ ) = Wpho(τ )

Qext + Qint
= ρbb(τ )

2x

3 + 3ex + 2x
, (18)

which has a maximum of 7.83% when x = h̄ω/kBTH � 1.28
for ρbb(τ ) = 1/2. The low efficiency of the heat converter is
not a concern since the input energy source is a heat reservoir
such as the “ever-present” heat from the ambience or the sun,
which can be acquired for free.

The external entropies of the two reservoirs are SH,ext =
QH,ext/TH and SL,ext = QL,ext/TL, respectively. Thus, the
external entropy difference between the two heat reservoirs
is SL,ext − SH,ext = 3

2kB − 3
2kB = 0. This result, together with

QL,ext + QL,int = QH,ext + QH,ext − Wpho, is used to derive
an alternate expression for the efficiency that relates to ηc =
1 − TL

TH
, the Carnot efficiency, as

η = Wpho

QH

= ηc + 2
3x(pH − pL)

2
3xpH + 1

, (19)

which corresponds to Eq. (19). Note that pL − pH is negative
for TH below certain value, called TX. That means that at TX

we have the maximum efficiency η = ηc
2
3 xpH +1

.

The friction between the fluid and the confining surfaces
or guiding tube prevents continuous motion of the fluid.
Frictionless flow or persistent flow is not possible. Thus, a
small amount of energy (taken from the laser) is needed to
drive the flow of the fluid (see the driver in Fig. 1). By using a
guiding tube which can minimize inelastic collisions between
the confining surface and the particles, the power needed to
drive the quantum fluid in one direction is estimated to be

W� = v̄F = v̄PA, (20)
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where P is the fluid pressure. For v̄ ∼ 5 cm s−1, P = 105 Pa,
and A = π0.0052 we have W� = 0.4 W, which is much less
than the output laser power of 4 W obtained above.

Thus, the net work is Wnet(τ ) = Wpho(τ ) − W→ and the net
efficiency is

ηnet(τ ) = Wnet(τ )

Qext + Qint
= 2x

ρbb(τ ) − P
h̄ωρ

(1 + ex)

3 + 3ex + 2x
, (21)

which is lower than η(τ ), where we have used r = ρAv̄.

V. QUANTUM ENTROPY ANALYSIS

The use of internal states in the scheme reflects the quantum
nature of the process. The SG separation enables us to
identify an internal state via its path and then manipulate
the appropriate ensemble. Initially, the internal state is ρ̂i =
(pa|a〉〈a| + pb|b〉〈b|)|h〉〈h|. The proper description of the
internal entropy is the von Neumann entropy

Si/kB = Sa + Sb = −pa ln pa − pb ln pb, (22)

which has an upper limit of ln 2 � 0. 693 when pa = 0.5.
After the SG device, the internal degree becomes “entan-

gled” with the path, ρ̂SG = pa|a〉UU 〈a| + pb|b〉LL〈b|. There
is an uncertainty of finding the particle due to the existence
of two [upper (U ) and lower (L)] paths, which introduces
spatial distinguishability to the entropy SSG/kB = SU + SL =
−pa ln pa − pb ln pb, which is the same as the initial entropy
since the SG process is unitary and no dissipative mechanism
was involved. Thus, the total entropy is unchanged and the
second law is not violated. Suppose we try to detect a particle
after the SG stage. If the populations are equal, the uncertainty
of finding the particle is maximum. If all particles are in a
single state, we know in which path the atom can be found and
SSG = 0.

The overall state of the particles after exiting the
cavity is ρ̂cav(τ ) = paρaa(τ )|a〉UU 〈a| + paρbb(τ )|b〉UU 〈b| +
pb|b〉LL〈b|. It seems that the internal entropy decreases,
violating the second law. The key point to resolving the
paradox here is that the states |b〉L and |b〉U are distinguishable.
The corresponding internal entropy should be

Scav(τ )/kB = −paρaa(τ ) ln paρaa(τ )

−paρbb(τ ) ln paρbb(τ ) − pb ln pb. (23)

Looking at only the exiting particles in the upper path, we find
that the internal entropy is

Su
cav(τ )/kB = −ρaa(τ ) ln ρaa(τ ) − ρbb(τ ) ln ρbb(τ ), (24)

where ρbb(τ ) + ρaa(τ ) = 1. The internal entropy of the parti-
cles exiting the maser cavity is finite because there is a finite
probability to be in both the excited and lower levels. For large
τ we have ρ(m)

aa (τ ) = ρ
(m)
bb (τ ) = 0.5, and thus Su

cav(τ )/kB =
ln 2. In the laser case, Fig. 4(b) shows that the internal entropy
in the upper path vanishes, Su

cav → 0, since ρaa(τ ) = 1 for
large τ . Since Su

cav is only the entropy of a subsystem (upper
path), this should not be mistaken as a violation of the second
law.

We should use the overall internal entropy Scav as given by
Eq. (23). Then, we find the that second law is not violated.
Note that if we do not distinguish between the upper and

lower paths, or the states |b〉U and |b〉L, we might incorrectly
interpret Eq. (24) as the internal entropy and find that the
internal entropy of all the particles in both paths is reduced
by the selective stimulated emissions process, violating the
second law. In fact, the process does not reduce the internal
entropy and neither does it discard the internal entropy into the
external entropy of the center-of-mass subsystem since there
is essentially no change in the center-of-mass entropy during
the stimulated emission. This process is different from the
coherent optical processes driven by lasers where the entropy
of a subsystem can be reduced at the expense of increasing the
entropy of another subsystem [8].

VI. ENTROPY CHANGE AND THE SECOND LAW

Based on the above quantum entropy analysis for the initial
internal entropy of Eq. (22) and the internal entropy after
exiting the laser cavity, Eq. (23), we have the internal entropy
change

(Scav − Si)/kB = −pa{ρaa(τ ) ln ρaa(τ ) + ρbb(τ ) ln ρbb(τ )},
(25)

which is between 0 and 1
2 ln 2 � 0.35 for pa = 0.5.

After the beam combination, Scomb/kB = −p′
a ln p′

a −
p′

b ln p′
b, where p′

a = paρaa(τ ) and p′
b = pb + paρbb(τ ). The

internal entropy decreases due to the reduction in the number
of paths. This is compensated by the increase in the center-of-
mass entropy δScm(> |�Scomb|) by at least the same amount as
discussed in Sec. II C. There is also a slight broadening (∼ h̄k)
in the momentum distribution of the particles as a result of
particle recoil [22] but the contribution is negligible.

After thermalization, the internal entropy becomes
Sthm(τ )/kB = −pL ln pL − (1 − pL) ln(1 − pL), which is less
than Si . In the heat source, the internal entropy in-
creases, back to Si . In each cycle, the total internal en-
tropy change is zero: �Sint = (Si − Sthm) + (Sthm − Scomb) +
(Scomb − Scav) + (Scav − Si) = 0.

However, the total external entropy change �Sext =
�Ssource

ext + �Ssink
ext is due to the change in the heat sink

(during thermalization), �Ssink
ext = (QL,ext − QH,ext)/TL, and

the change inside the heat source, �Ssource
ext = Wpho/TH . Thus,

we have

�Sext = Wpho

TH

− QH.ext − QL,ext

TL

= kB

[
ρbb(τ )xpH − TH

TL

+ 1

]
. (26)

Since the external entropy change is positive, as shown in
Fig. 5(b), the total entropy change is positive. Therefore, the
second law is satisfied.

The entropy change may also include other sources such as
the entropy of the laser photons, Spho/kB = −∑

n ρnn ln ρnn,
associated with the finite width of the photon number distri-
bution in the maser-laser field. For a laser with a Poissonian
distribution [Eq. (10)] the photon entropy is

Spho,c/kB = e−〈n〉c
∑
n=0

〈n〉nc
n!

[ln n! − n ln〈n〉c + 〈n〉c]. (27)
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FIG. 6. (Color online) (a) Photon entropy Spho versus mean
photon number for the coherent state 〈n〉c of a laser with exact
photon statistics (thick solid line) and Poissonian statistics (thin
dashed line). (b) Entropy of a single photon, S1pho = Spho/〈n〉, reduces
with 〈n〉c.

Figure 6(a) shows that the laser photon entropy increases
with 〈n〉c (but more slowly for larger 〈n〉c) for a Poissonian
distribution and the exact photon statistics of Eq. (7) with
n̄th = 0. The photon entropy is independent of TH . The entropy
of one photon associated with one particle can be obtained by
dividing by 〈n〉, S1pho = Spho/〈n〉. We find that S1pho → 0 for
large 〈n〉 as shown in Fig. 6(b).

Thus, the inclusion of the laser photon entropy along
with the center-of-mass and internal entropies gives �S =
�SI + �Sext + S1pho + δScm, which is obviously positive, in
agreement with the second law.

VII. CONCLUSIONS

We have analyzed the scheme that can convert thermal
energy from any heat source to useful energy in the form of
maser-laser light. This scheme uses a Stern-Gerlach device and
a maser-laser cavity (stimulated emission process) to extract
the photon energy from the internal degree of the excited
particles. Analysis of the internal dynamics of the particles and
photon statistics provides insights into the physical conditions
for optimizing the output of photons. The energy efficiency
of the system has been estimated. The proposed setup is a
heat engine which runs on two heat reservoirs with different
temperatures while producing laser work. The engine is a
generalization of the classical heat engine with the inclusion of
the change in the internal energy due to variable populations
of the quantum states. Thermodynamic analysis shows that
the setup is not a perpetual motion machine of the second
kind. The total change in the internal and external entropies
for each cycle always increases. Thus, the cyclic process does
not violate the second law of thermodynamics and the heat
converter is feasible. The scheme may run on any heat source,
for example natural heat source from the sun or geothermal
sites that provide green and renewable energy.
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