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Optical realization of two-boson tunneling dynamics
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An optical realization of the tunneling dynamics of two interacting bosons in a double-well potential, based on
light transport in a four-core microstructured fiber, is proposed. The optical setting enables one to visualize, in a
purely classical system, the entire crossover from Rabi oscillations to correlated pair tunneling and to tunneling
of a fragmented pair in the fermionization limit.
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I. INTRODUCTION

Light transport in engineered optical waveguides has pro-
vided a fascinating and experimentally accessible framework
to visualize in a classical setting many universal coherent
quantum phenomena generally encountered in condensed-
matter or matter-wave systems [1,2]. This has led to the
prediction and observation of a wide variety of classic optics
analogs of single-particle nonrelativistic and even relativistic
phenomena, such as Bloch oscillations and Zener tunneling
[1,3], dynamic localization [4], Anderson localization [5],
coherent destruction of tunneling [2], Zeno dynamics [6],
adiabatic stabilization [7], and Zitterbewegung [8]. Since
photons do not interact, it is a common belief that, as opposed
to other quantum systems such as cold atoms or trapped
ions (see, e.g., Ref. [9]), the use of photonics as a model
system for quantum physics carries the intrinsic drawback of
being limited to visualize single-particle phenomena, missing
the possibility of simulating the richer physics of interacting
many-particle quantum systems. A paradigmatic example of
many-body physics is found in the quantum tunneling of
bosons in a double-well potential—the so-called bosonic
junction [10–16]. For a relatively large number and weakly
interacting bosons, this has led to the observation of Josephson
oscillations and nonlinear self-trapping of bosons above a
critical interaction strength, as described by a standard Bose-
Hubbard model or by coupled mean-field equations in the
Gross-Pitaevskii limit [10]. A simple optical realization of
the bosonic junction in such a limiting case is based on
light tunneling between two coupled nonlinear waveguides
[17]. However, a richer dynamical scenario has been recently
predicted to occur for tunneling of few and strongly corre-
lated bosons [14,18], covering the full crossover from weak
interactions to the fermionization limit of the Tonks-Girardeau
gas [19]. In particular, the tunneling dynamics of two bosons
in a one-dimensional double well shows a transition from
Rabi oscillations, in the absence of interaction, to correlated
pair tunneling and further to fragmented-pair tunneling as the
interaction strength is increased [14]. Even though few-body
counterparts of the self-trapping transition and correlated pair
tunneling in a bosonic junction have been reported in recent
experiments [13,20], an observation of the rich two-boson
tunneling dynamics up to the fermionization limit [14] is still
missing. In this paper, it is shown that such a two-boson
tunneling dynamics can be realized in a classical optical
setting based on four-core guiding dielectric structure, in
which the electric field propagation along the guide mimics

the quantum-mechanical evolution of the two-particle wave
function. The paper is organized as follows. In Sec. II,
the quantum-optical analogy between light propagation in
a four-core microstructured fiber and the dynamics of two
interacting bosons in a double well is outlined. In Sec. III,
a detailed analysis of the tunneling dynamics is presented,
and the entire crossover from Rabi oscillations to correlated
pair tunneling and to tunneling of a fragmented pair in the
fermionization limit is explained on the basis of the coupling
among the various modes sustained by the fiber cores. Finally,
in Sec. IV the main conclusions are outlined.

II. QUANTUM-OPTICAL ANALOGY

Let us consider a weakly guiding dielectric structure with a
refractive index n(x1,x2), which varies in the transverse (x1,x2)
plane but remains invariant along the axial direction z. In the
paraxial approximation, the propagation of monochromatic
light waves is described by a Schödinger-type wave equation
for the electric field envelope ψ [2]:

iλ−∂zψ = − λ−2

2ns

(
∂2

∂x2
1

+ ∂2

∂x2
2

)
ψ + V (x1,x2)ψ, (1)

where λ− = λ/(2π ) is the reduced wavelength of photons,
V (x1,x2) � ns − n(x1,x2) is the optical potential, and ns is
the substrate refractive index. The normalization condition∫ ∞
−∞ dx1dx2|ψ |2 = 1 is assumed in the following. Previous

quantum-optical analogies have generally viewed the paraxial
wave equation (1) as formally equivalent to the Schrödinger
equation for a single particle of mass ns in a two-dimensional
potential V (x1,x2), in which the temporal evolution of the
quantum particle is mapped into the spatial light evolution
along the axial direction z and the Planck constant is
replaced by the reduced wavelength of photons (see, for
instance, Ref. [7]). However, whenever the potential V has
the form

V (x1,x2) = Vw(x1) + Vw(x2) + Vint(|x1 − x2|), (2)

where Vw(x) is an arbitrary one-dimensional potential and
Vint(x) is a short-range potential, Eq. (1) can be regarded
as the optical analog of the Schrödinger equation for two
particles with the same mass ns in a one-dimensional potential
Vw, which interacts via the potential Vint. If the optical
structure is excited at the z = 0 input plane by a beam
satisfying the symmetry constraint ψ(x1,x2,0) = ψ(x2,x1,0),
the wave function ψ remains symmetric along the propagation,
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FIG. 1. (Color online) (a) Profiles of the double-well potential
Vw(x) (solid curve) and of the repulsive potential Vint(x) (dashed
curve) for parameter values a = 4.5 µm, w = 3 µm, Dx = 1 µm,
wi = 0.5 µm, Dxi = 0.2 µm, �n1 = 0.003, and �n2 = 0.002.
(b) The corresponding two-dimensional optical potential V (x1,x2).
(c) Schematic of the guided modes supported by the four core regions
involved in the tunneling dynamics and their couplings.

and Eq. (1) thus describes the evolution of two interacting
identical bosons. Therefore, if we assume for Vw a double-
well shape and for Vint a short-range repulsive potential,
our optical system realizes a classic wave optics analog of
the two-boson junction recently studied in Ref. [14]. In our
optical system, we assume for Vw(x) a double well of the
form [21] Vw = −�n1[g(x − a) + g(x + a)], where g(x) =
{erf[(x + w)/Dx] − erf[(x − w)/Dx]}/[2 erf(w/Dx)] is the
well shape, 2a is the distance between the two wells, �n1 > 0
is the peak index change that defines the well depth, and 2w

is the well width. For the repulsive potential, we assume
a similar functional form Vint = �n2{erf[(x + wi)/Dxi] −
erf[(x − wi)/Dxi]}/[2 erf(wi/Dxi)], with wi and Dxi much
smaller than w and Dx , respectively. The refractive index
change �n2 > 0 measures the strength of the interaction, and
�n2 = 0 corresponds to noninteracting bosons. Typical shapes
of Vw(x), Vint(x), and the resulting two-dimensional potential
V (x1,x2) [Eq. (2)] are shown in Figs. 1(a) and 1(b). Note
that the resulting potential V in the (x1,x2) plane defines four
higher-index guiding regions, i.e., four waveguides denoted
by I–IV in Fig. 1(b), which are evanescently coupled. Such
a four-core guide could be realized, for example, with the
technology of microstructured fibers [22], in which a preform
with the desired geometrical and refractive index features is
first manufactured. For example, using a cladding region made
of fused silica, the structure of Fig. 1(b) could be realized
by assembling different regions of fused silica with different
GeO2 doping concentrations.

III. TUNNELING DYNAMICS

The main features of the tunneling dynamics of two bosons
in a double-well potential are captured by analyzing the
evolution of the percentage of bosons in the right well, pR(z),
and the pair (or same-site) boson probability p2(z), which are
defined by [14]

pR(z) =
∫ ∞

0
dx1

∫ ∞

−∞
dx2|ψ |2, (3)

p2(z) =
∫

x1,x2>0
dx1dx2|ψ |2 +

∫
x1,x2<0

dx1dx2|ψ |2. (4)

In our optical setting, pR(z) and p2(z) simply correspond to
the fractional light power trapped in waveguides I and IV
and in waveguides I and III, respectively. A typical evolution
of pR(z) and p2(z), as obtained by numerical integration of
Eq. (1) for increasing values of the interaction strength �n2,
is shown in Fig. 2. Parameter values used in simulations are
λ = 633 nm and ns = 1.45. In each simulation, the structure
is excited at z = 0 in the fundamental mode of guide I,
which corresponds to the two bosons in the right-side well
initially being in the lowest energy state. The scenario shown in
Fig. 2 reproduces the transition from uncorrelated tunneling to
pair tunneling and fragmented tunneling in the fermionization
limit, predicted in Ref. [14]. For noninteracting bosons (curve
1), the atoms simply Rabi oscillate back and forth between
both wells, and they tunnel independently. When a small
correlation is introduced (curve 2), both atoms tend to remain
in the same well in the course of tunneling; i.e., they tunnel
as pairs. Such a dynamical behavior, which was observed
in Ref. [15] and referred to as second-order tunneling, can be
simply explained in the framework of a standard two-site Bose-
Hubbard model, the optical simulation of which was recently
proposed in the Fock space using waveguide arrays [23].
However, the standard Bose-Hubbard model fails to predict the

FIG. 2. (Color online) Numerically computed behavior of (a) the
percentage of bosons in the right well, pR , and (b) the pair probability
p2 vs propagation distance, for increasing values of the particle
interaction strength, measured by the index change �n2. Curve 1,
�n2 = 0 (noninteracting bosons); curve 2, �n2 = 0.5 × 10−3; curve
3, �n2 = 1.5 × 10−3; curve 4, �n2 = 15 × 10−3. Curves 2 and 3
correspond to the correlated-pair tunneling regime, whereas curve 4
corresponds to tunneling of a fragmented pair.
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tunneling regimes at strong interaction and the transition to the
fermionization limit. Indeed, at a larger interaction (curve 3),
tunneling tends to be inhibited, which is the few-body signature
of the self-trapping phenomenon of many bosons in the
mean-field limit. Remarkably, at stronger interaction and near
the fermionization limit (curve 4), tunneling is again allowed,
and a fast oscillation of pR(z) is superimposed to the slower
tunneling cycle. This basically corresponds to fragmented-pair
tunneling at the Rabi frequency predicted in Ref. [14]. Corre-
spondingly, p2(z) passes through just about any value from 1
(fragmented pair) to small values (near complete isolation). A
detailed explanation of such a rich tunneling scenario requires
an inspection of the low-lying energy spectrum of the exact
two-boson Hamiltonian (1) beyond the standard two-mode
Bose-Hubbard approximation [14]. In the optical context, the
scenario can be explained in a different view as the result of
evanescent photonic tunneling among a few guided modes of
the four two-dimensional guides in the geometrical setting of
Fig. 1(b). In fact, let us indicate by φ1,2 the fundamental modes
of isolated waveguides I and III, by φ3,4,5 the fundamental
and the two lowest higher-order degenerate transverse modes
of isolated waveguide II, and by φ6,7,8 the fundamental and
the two lowest higher-order degenerate transverse modes of
isolated waveguide IV. A typical profile of such modes is
shown in Fig. 1(c). Let us then expand the envelope ψ as
a superposition of such modes with z-varying coefficients,
i.e., ψ = ∑8

l=1 cl(z)φl(x1,x2) exp(iβz), where β is a reference
propagation constant. Note that, for symmetry reasons, one has
c6 = c3, c7 = c4, and c8 = c5. In the tight-binding and nearest-
neighbor approximation, neglecting cross-coupling terms, the
following coupled-mode equations for the amplitudes cl can
be derived (see, for instance, Refs. [1,17]):

i(dc1/dz) = −2κ1c3 − 2κ2c4 − 2κ3c5 + δ1c1,

i(dc2/dz) = −2κ1c3 − 2κ3c4 − 2κ2c5 + δ1c2,

i(dc3/dz) = −κ1(c1 + c2), (5)

i(dc4/dz) = −κ2c1 − κ3c2 + δ2c4,

i(dc5/dz) = −κ3c1 − κ2c2 + δ2c5,

where κ1, κ2, and κ3 are the coupling constants between the
couples of modes {φ1,φ3}, {φ1,φ4}, and {φ1,φ5}, respectively
[see Fig. 1(c)]; δ1 = β3 − β1 is the mismatch between the
propagation constants β3 and β1 of modes φ3 and φ1, and δ2 =
β3 − β4 is the mismatch between the propagation constants
β3 and β4 of modes φ3 and φ4 (or φ5). The initial condition
for Eqs. (5) is cl(0) = δl,1. In terms of the amplitudes cl , the
percentage of bosons in the right well and the same-site boson
probability, as defined by Eqs. (3) and (4), takes the simple
form

pR(z) = |c1|2 + |c3|2 + |c4|2 + |c5|2, (6)

p2(z) = |c1|2 + |c2|2, (7)

respectively. In the absence of interaction, i.e., for �n2 =
0, one has δ1 = 0, whereas δ2 is much larger than the
coupling constants. Hence, the higher-order transverse modes
of waveguides II and IV are not excited, i.e., one has
c4 ∼ c5 ∼ 0, and the evolution of c1, c2, and c3 can be
calculated exactly, yielding pR(z) = cos2(κ1z) and p2(z) =
(1/2)[1 + cos2(2κ1z)]: this is precisely the dynamical behavior

FIG. 3. (Color online) (a) Behavior of pR and (b) p2 vs propaga-
tion distance, for increasing values of particle interaction strength
measured by the detuning δ1, as predicted by the coupled-mode
equations (3), for κ2 = 0.16, κ3 = 0.80, and δ2 = 20 (in units of
mm−1). Curve 1, δ1 = 0, κ1 = 0.212; curve 2, δ1 = 1.22, κ1 = 0.26;
curve 3, δ1 = 3.2, κ1 = 0.32; curve 4, δ1 = 18.9, κ1 = 0.38.

of uncorrelated bosons (curve 1 of Fig. 2). As the interaction
�n2 is increased, the detuning δ1 increases, whereas δ2 does
not change. The coupling constants κ1, κ2, and κ3 are given
by overlapping integrals involving the coupled guided modes
and are expected to slightly increase as �n2 is increased
because of the lesser confinement of modes φ1 and φ2. If
(δ2 − δ1) is still large enough that the higher-order transverse
modes of waveguides II and IV are still out of resonance,
the amplitudes c4 and c5 remain small, and the tunneling
dynamics is mainly governed by the first three equations
of the system (3), but with δ1 �= 0. A nonvanishing value of
the detuning δ1 is responsible for the double periodicity of
pR(z), the increase of the tunneling period, and the appearance
of correlated-pair tunneling (i.e., p2(z) � 1) as observed in
curves 2 and 3 of Fig. 2. As the interaction �n2 is further
increased, excitation of the higher-order transverse modes of

FIG. 4. (Color online) Light tunneling dynamics in a four-core
fiber. (a) Profile of the optical potential ns − n(x1,x2) (core diameter
2w = 5 µm, core spacing 2a = 7 µm, index change �n = 0.005).
Evolution of (b) pR and (c) p2 for increasing values of the width wc of
the cut in guides I and III. Curve 1, wc = 0 (noninteracting bosons);
curve 2, wc = 0.6 µm (correlated-pair tunneling); curve 3, wc =
2 µm (tunneling of a fragmented pair).
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waveguides II and IV can no longer be neglected, and the
tunneling dynamics requires us to account for the full five
amplitudes entering in Eq. (5). For very strong interactions,
corresponding to the fermionization limit, the fundamental
modes φ1,2 of waveguides I and III get close to resonance with
the (degenerate) transverse modes φ4,5 and φ7,8 of waveguides
II and IV, whereas their fundamental modes φ3,6 are now out
of resonance. Hence, in the fermionization limit, one can set
c3 � 0 in Eqs. (5). Such equations well describe the restoration
of tunneling of a fragmented pair.

A typical dynamical evolution of pR(z) and p2(z) in the
various parameter regions, as obtained by numerically solving
the coupled-mode equations (5) by varying δ1 and accounting
for the correction of κ1 solely, is shown in Fig. 3. Note that
the behavior of both the percentage of bosons in the right well
and the same-site boson probability reproduces very well the
different tunneling regimes previously found in Fig. 2.

The good description of the tunneling dynamics offered by
the coupled-mode equations (5) indicates that the tunneling
dynamics of two bosons, shown in Fig. 2, is rather insensitive
to the specific shapes of the guides and could thus be observed
in simpler optical structures. For example, in Fig. 4 it is shown
that a similar dynamical behavior can be realized using a
microstructured optical fiber with four circular cores of radius
w and step index �n, in which a cut with variable width
wc is applied to cores I and III to mimic boson repulsion
[Fig. 4(a)]. As the cut width wc (i.e., the interaction strength)
is increased, a transition from independent Rabi oscillations

(curve 1) to correlated-pair tunneling (curve 2) and to tunneling
of a fragmented pair (curve 3) is clearly observed.

IV. CONCLUSIONS

In conclusion, an optical realization of the tunneling
dynamics of two interacting bosons in a double-well potential,
based on light transport in a four-core microstructured fiber,
has been proposed. The present results indicate that photonic
systems could provide an experimentally accessible test bench
to investigate in a purely classical setting the dynamical aspects
embodied in the physics of strongly correlated few-particle
quantum systems. As compared to quantum simulators based
on the coherent dynamics of cold atoms or ions trapped in
optical lattices [9], the use of a classical optics simulator
enables direct access to the evolution of the multiparticle
probability density and could provide a route to realize
other many-body physical models [23,24]. For example, the
introduction of gain and loss regions in the optical structure
could offer the possibility to test the physics of many-body
particles within non-Hermitian PT -symmetric models [24] in
the laboratory.
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A. Bräuer, and U. Peschel, Phys. Rev. Lett. 96, 023901
(2006).

[4] S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta,
E. Cianci, and V. Foglietti, Phys. Rev. Lett. 96, 243901 (2006);
A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov,
F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S.
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[13] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers,

A. Widera, T. Müller, and I. Bloch, Nature (London) 448, 1029
(2007).
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