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Self-trapping of scalar and vector dipole solitary waves in Kerr media
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We report solutions for expanding dipole-type optical solitary waves in two-dimensional Kerr media with
the self-focusing nonlinearity, using exact analytical (Hirota) and numerical methods. Such localized beams
carry intrinsic vorticity and exhibit symmetric shapes for both scalar and vector solitary modes. When vector
beams are close to the scalar limit, simulations demonstrate their stability over propagation distances exceeding
50 diffraction lengths. In fact, the continuous expansion helps the vortical beams avoid the instability against the
splitting, collapse, or decay, making them “convectively stable” patterns.

DOI: 10.1103/PhysRevA.83.043833 PACS number(s): 42.81.Dp, 42.65.Sf

I. INTRODUCTION

Spatial solitons are stable self-trapped beams propagating
in nonlinear media, for which diffraction is balanced by self-
focusing [1]. In particular, vector solitons consist of different
components with comparable intensities, which all contribute
to the induced increase of the refractive index in the material.
In optics, spatial vector solitons can be formed by either
copropagating or counterpropagating interacting beams [2].
In the basic form, they are represented by shape-preserving
self-localized solutions of coupled nonlinear-evolution partial
differential equations (PDEs) [3]. Spatial vector solitons in
the form of two-color self-trapped copropagating beams were
discussed in nonlocal Kerr media [4,5] and experimentally
observed in nematic liquid crystals by Alberucci et al. [6]. Vec-
tor solitons with counterpropagating beams in nematic liquid
crystals were reported by Izdebskaya et al. [7]. In the general
case, several beams can combine to produce multicomponent
vector solitons. Another variety of stable two-color solitary
beams is supported by the three-wave mixing in quadratically
nonlinear (χ (2)) media [8]. One- and two-dimensional (1D
and 2D) spatial χ (2) solitons (alias “simultons”) were created
experimentally [9] and studied in detail theoretically; see, e.g.,
reviews in Ref. [10]. Their spatiotemporal counterparts have
been investigated as well [11].

The existence of dipole-mode vector solitons (or “dipoles”,
for simplicity) was predicted theoretically [12,13] and verified
experimentally [14]. This kind of optical soliton originates
from the trapping of a dipole HG01-type mode in the waveg-
uide induced by a copropagating fundamental spatial soliton.
It was shown that, while several other topologically arranged
structures may be created in this setting, only the dipole solitary
mode is expected to give rise to a family of dynamically robust
vector solitons [15,16]. Stationary 2D dipole-mode solitons
were observed in optical media with thermal nonlinearity [17].
It was shown that the stability of dipole solitons in nonlocal
nonlinear waveguides crucially depends on the waveguide
shape [18], and that elliptically shaped dipole solitons are
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expected in media with an anisotropic quasilocal nonlinearity
[19]. In all of the aforementioned studies, solitons were
obtained either numerically or by means of variational or other
approximations. However, no exact solutions were found for
dipole vector solitons to date.

In this paper, we report exact 2D analytical solutions for
dipole-mode scalar and vector solitary waves in a local Kerr
medium. Such solutions, constructed using the separation of
variables and the Hirota bilinear method, are nonstationary
and gradually expand in propagation, similarly to necklace-
shaped soliton patterns [20]. It is well known that stationary
solitons in 2D Kerr media are always unstable against collapse
or decay, due to the critical character of the local cubic
self-attractive nonlinearity in the 2D setting. Moreover, 2D
ring-shaped solitons with embedded vorticity are subject to
a still stronger instability against splitting of the ring under
the action of azimuthal perturbations [21,22]. Nonetheless,
we demonstrate hereby that a part of the expanding solitary
waves (those close enough to the scalar limit) remain stable
over a long evolution. In fact, the continuing expansion helps
avoid splitting, collapse, or decay. In that sense, they may be
called convectively stable patterns, following the analogy with
the commonly known concept of convective instability. An
analytical explanation of this effective stability is given below,
alongside the numerical simulations.

The paper is organized as follows. In Sec. II we describe
the model governing the dynamics of dipole beams with
two mutually incoherent components copropagating in a
local Kerr medium. We discuss the lowest-order dipole
solitary waves with two components in Sec. III, where we
study their properties numerically. We address the stability
of dipole vector beams in Sec. IV, and draw conclusions
in Sec. V.

II. THE MODEL AND THE SOLUTION METHOD

To model the dynamics of scalar and vector beams con-
sisting of N mutually incoherent components copropagating
in a Kerr medium, we use coupled (2 + 1)D nonlinear
Schrödinger equations for the slowly varying envelopes
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un (z,r,ϕ) (n = 1,2, . . . ,N), where r and ϕ are the polar coor-
dinates in the transverse plane. The dimensionless form of the
equations is [23]

i
∂un

∂z
+ 1

2
∇2

⊥un + F (I )un = 0, (1)

where the propagation distance, z, and the transverse Cartesian
coordinates, x and y, are measured in units of LD and the
diffraction length (LD/k)1/2, respectively (k is the carrier’s
wave number). The nonlinearity F (I ) is proportional to the
total intensity of the beam, F (I ) = I = ∑N

n=1 |un|2. Hence
Eq. (1) may be considered as a 2D version of the Manakov’s
system, and the paraxial diffraction is accounted for by the
transverse Laplacian:

∇2
⊥ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
,

written in polar coordinates.
To find solutions to Eq. (1), we look for the optical field in

the form of

un(r,ϕ,z) = V (z,r)φn(ϕ), (2)

with the self-consistency condition
∑N

n=1 |φn(ϕ)|2 = 1. Then,
substituting Eq. (2) into Eq. (1), the separation of variables
leads to the following two equations:

− 1

φn

d2φn

dϕ2
= m2, (3a)

2r2

V

[
i
dV

dz
+ 1

2

(
∂2V

∂r2
+ 1

r

∂V

∂r

)
+ |V |2V

]
= m2, (3b)

where m � 0 is an integer, see Refs. [24,25]. Obvious
solutions to Eq. (3a) are φn(ϕ) = An cos(mϕ) + Bn sin(mϕ)
(hence, m may be considered as the topological charge),
with complex coefficients An and Bn obeying conditions∑N

n=1 Re(AnB
∗
n ) = 0 and

∑N
n=1 |An|2 = ∑N

n=1 |Bn|2 = 1. In
this paper, we focus on the two-component (N = 2) case and
choose the corresponding coefficients as follows:

A1 = 1, B1 = iq, (4a)

A2 = 0, B2 =
√

1 − q2, (4b)

where parameter q ∈ [0,1] determines the modulation depth
of the beam. In the limit of q = 0, Eqs. (4) represent the
incoherent superposition of two modes, whereas for q = 1 they
correspond to the scalar solitary wave. For a dipole solitary
mode with topological charge m = 1, Eq. (3b) can be written
as:

i
∂V

∂z
+ 1

2

(
∂2V

∂r2
+ 1

r

∂V

∂r
− V

r2

)
+ |V |2V = 0. (5)

Next, we aim at obtaining some analytical solutions to
Eq. (5), represented in the Hirota bilinear form. To this end,
we make use of the following transformation: V = r

g(r,z)
f (r,z) ,

where g (r,z) is a complex function and f (r,z) is a real one.
Substituting these into Eq. (5) we obtain the bilinear forms as:

H1[gf ] = 0, (6a)

H2[ff ] = 2r2gg∗, (6b)

with H1 = irDz + 1
2 rD2

r + 3
2Dr , H2 = D2

r , where the star
indicates the complex conjugation. Furthermore Dr is
Hirota’s bilinear derivative operator [26,27], defined as
Dr [g(r)f (r)] = ( ∂

∂r
− ∂

∂r ′ )g(r)f (r ′)|r=r ′ . To find soliton so-
lutions, we expand functions g(r,z) and f (r,z) as power
series of a parameter ε: g(r,z) = εg1(r,z) + ε3g3(r,z) + · · · +
ε2j+1g2j+1(r,z) + · · ·, f (r,z) = 1 + ε2f2(r,z) + ε4f4(r,z) +
· · · ε2j f2j (r,z) + · · ·. Substituting g(r,z) and f (r,z) into the
bilinear equations (6) and collecting terms pertaining to the
same powers of ε, we obtain the following system of linear
PDEs:

ε1: H1[g1 1] = 0, (7a)

ε2: H2[1 f2 + f2 1] = 2r2g1g
∗
1 , (7b)

ε3: H1[g1 f2 + g3 1] = 0, (7c)

ε4: H2[g1 f2 + g3 1] = 2r2(g1g
∗
3 + g3g

∗
1 ). (7d)

Now, in order to get the first-order nonstationary soliton
solution, we assume that g (r,z) is truncated to g1(r,z), and
f (r,z) truncated to f2(r,z), i.e., gj (r,z) = 0 for j = 3,5, . . .

and fk(r,z) = 0 for k = 4,6, . . .. Thus, we find that
f2 = eD+D∗

4 [ 2(CC∗+4z2)
C+C∗ exp(− C+C∗

CC∗+4z2 r
2) − r

√
π (CC∗+4z2

C+C∗ )3/2

erfi(r
√

− C+C∗
CC∗+4z2 )], and g1 = 1

(C+2iz)2 exp[D − r2

C+2iz
], where

erfi(r) is the imaginary error function erf(ir)/i, and C

and D are complex constants such that C + C∗ �= 0. Next,
we set ε = 1 and obtain the first-order soliton solution
of Eq. (5):

V (1)(r,z) = r

2(C + 2iz)2
sech(� + �∗ + �0)e�−�∗−i�0 ,

(8)

where � = 2D − 2r2

C+2iz
and �0 = −4 ln |2(C + C∗)|. Note

that the argument of sech in Eq. (8) is automatically real.
In a similar fashion, we obtain the second- and the L-

th-order [28] nonstationary soliton solutions of Eq. (5) (see
Appendix). Finally, making use of Eqs. (2) and (8), we arrive
at the exact first-order solution of Eq. (1) for the dipole solitary
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FIG. 1. Intensity distributions (nonzero in white annuli, zero in
black areas) of the axially symmetric scalar mode, at z = 0,30,50,
from left to right. Top and bottom rows display first- and second-order
solitary modes, as given by Eq. (9).
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FIG. 2. (Color online) Nonstationary radial intensity distributions
|V (r)| at several values of the propagation distance, z = 0,30,50, as
found from Eq. (8). Panels (a) and (b) display the first- and the
second-order solitary-wave solutions.

mode:

u(1)
n (r,φ,z) = r(An cos φ + Bn sin φ)

2(C + 2iz)2
sech(� + �∗ + �0)

× e�−�∗−i�0 . (9)

It is straightforward to see that |un| vanishes at r → ∞, i.e.,
Eq. (9) represents a localized, although nonstationary, bright
solitary wave solution. Indeed, the radius of the ring structure
corresponding to Eqs. (8) and (9) expands as R ∼ z, while its
squared amplitude decays as

(|A|2)max ∼ z−2 (10)

III. DISCUSSION

In this section we display and discuss solutions given in
Eq. (9) for scalar and vector dipole modes. In most cases,
we fix constants C and D, namely, D = 0 and C = 2 for the

first-order solitary mode, and D1 = D2 = 0, C1 = 2, C2 = 4
for the second-order one.

For q = 1 in Eqs. (4), we obtain a scalar ring-shaped beam
for m = 1. A typical example of such a vortex ring is shown in
Fig. 1, along with the axisymmetric radial intensity distribution
of solitary waves of various orders. The intensity is zero at
the center, as it should be for vortex patterns. In the course
of evolution, this nonstationary vortex ring expands and gets
attenuated in the radial direction. The number of layers (white
annuli in the figure) in this scalar solitary wave is determined
by its order L. The scalar soliton is represented as an incoherent
superposition of two dipole solitary modes with m = 1 and
q = 1. Accordingly, the dipole components can be written as
u2 = 0 and u = u1 = V eiϕ ; hence u actually displays a simple
isotropic vortex shape.

Moreover, Fig. 2 displays a set of nonstationary radial
intensity profiles, obtained from Eq. (8) for solitary waves of
first and second orders. With increasing z, the intensity remains
zero at r = 0 and r = ∞ (as it should be for vortical solitons,
even nonstationary ones), while the structure expands in the
radial direction and its peak gradually decays, in accordance
with Eq. (10).

Self-trapped localized structures with a large number of
azimuthal lobes (“petals”) may exhibit a strong effective sta-
bilization even in self-focusing Kerr media [29,30]. Figures 3
and 4 display the propagation dynamics of the first- and
second-order dipole vector modes, which exhibit similar
patterns. These examples are obtained for q = 0 in Eqs. (4). In
these solitary modes, the dipole structure is formed due to the
interaction between the two components. Note that the inten-
sity remains equal to zero at the center, as the solitary waves
carry the intrinsic vorticity. As for scalar solitons, the structure
expands in the radial direction. Note that the second-order
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FIG. 3. (Color online) Evolution of the first-order dipole vector solitary waves with q = 0, shown for z = 0,30,50 from top to bottom. The
total intensity of the solitary waves (third column) is I ′ = |u1|2 + |u2|2.
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FIG. 4. (Color online) Same as Fig. 3, but for the second-order dipole vector solitary waves with q = 0.

dipole vector solitary waves form two layers, with the inner one
more strongly modulated than its outer counterpart. As visible
in Fig. 4, in the course of the evolution the peak intensity of
the outer layer increases as compared with the inner one.

The shape of the dipole vector modes is different for q → 1
in Eqs. (4). With the increase in q, the components of the

dipole vector solitary wave change their structure from the
spiky pattern to the modulated vortex ring. The same trend
can also be observed as q → 1 in higher-order solitary modes.
An example of the third-order dipole vector solitary wave
is displayed in Fig. 5 for q = 0.8, D1 = D2 = D3 = 0, and
C1 = C3 = 2, C2 = 4.
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FIG. 5. (Color online) Same as Fig. 4, but for the third-order dipole vector solitary wave with q = 0.8.
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FIG. 6. (Color online) Comparison of (a) the analytical solution (9) with (b) numerical simulations, at z = 50. The parameters are as in
Fig. 3, except for q = 0.95. As in Figs. 3–5, the intensity of the vector solitary wave is I ′ = |u1|2 + |u2|2. A tiny mismatch between the two
plots is a result of the finite accuracy of the numerical simulations to details of the numerical scheme, in this case.

IV. STABILITY OF DIPOLE VECTOR SOLITARY WAVES

The stability of the dipole vector modes was tested by
direct simulations of Eq. (1). The simulations also confirmed
the validity of analytical solutions (9), by comparing them to
their numerical counterparts. Figure 6 shows the comparison
between analytical and numerical solutions of Eq. (1), the latter
obtained by means of the split-step beam-propagation method
(see, e.g., Ref. [31] for a recent application of this method in
a similar setting; the beam-propagation method based on the
fast Fourier transform was introduced by Ref. [32]; in another
context, the Fourier transform for the spatial dependence was
introduced in Ref. [33] in combination with the leapfrog
scheme for advancement in time). We solved Eq. (1) with initial
conditions given by the exact solution (9) at z = 0 and larger
values of q. It is seen that the analytical solution is consistent
with the numerical results. Here, we keep the same parameters
as in Fig. 3, but increase the modulation depth to q = 0.95,
which allows us to obtain a remarkably stable state [we remind
the reader that setting q = 1 in Eq. (4) corresponds to the
transition to the scalar solitary mode]. The general conclusion
is that the stability of the dipole vector modes is strongly
affected by q and improves for q → 1.

The effective (“convective”) stabilization of the expanding
ring-shaped structure may be explained in a qualitative way.
To this end, we notice that a straightforward analysis of the
dimension of different terms in the underlying equation (1),
with f (I ) = I , predicts that the growth rate of the strongest
instability of the vortex ring in a local Kerr medium against
splitting by azimuthal perturbations [21] scales as γ∼(|A|2)max

with the squared maximum amplitude of the nonlinear struc-
ture [22]. This estimate pertains to the quasistationary soliton
(i.e., the one slowly expanding in a self-similar fashion),
whose width scales as (|A|)−1

max, which obviously complies
with the conservation of the total power of the soliton. In
a more accurate form, the above estimate is presented by
the linear dependence of the growth rate of the stationary
scalar vortex soliton on the soliton’s propagation constant (κ),
at small values of κ , as per Fig. 7 of Ref. [22] (a similar
estimate was given in Ref. [34]). Then, considering that the
squared amplitude of the radially expanding ring decays with z

according to Eq. (10), we conclude that the accumulated split-
ting perturbation grows as exp[const

∫ z (z′)−2dz′]. Because the

integral in this expression converges at z → ∞, the growth of
the perturbation is bounded, and does not necessarily lead to
the destruction of the structure. As for the instability against
the collapse or decay, rather than the splitting, it is weaker
than the splitting, as it grows with z not exponentially, but
according to a power law [21].

V. CONCLUSIONS

We have introduced a class of self-trapped beam solutions
of the nonlinear Schrödinger equation in the form of scalar
vortices and vortical vector solitary waves, with necklace-type
structure. We have demonstrated that such nonstationary
(expanding) solitary modes may be effectively stable, propos-
ing a qualitative explanation in terms of the “convective”
stabilization. The solutions of the coupled 2D Schrödinger
equations with a self-focusing Kerr nonlinearity were obtained
in both analytical and numerical forms (using the Hirota
method for the former). The numerical analysis confirmed
the existence of an extended family of dipole vector spatial
solitary waves.
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APPENDIX

Similar to Eq. (8), the second-order solitary-wave solutions
to Eq. (5) can be obtained from Eqs. (7) by setting ε = 1:

V (2)(r,z) = r
g1(z,r) + g3(z,r)

1 + f2(z,r) + f4(z,r)
, (A1)

where we define

g1 = eθ1

(C1 + 2iz)2
+ eθ2

(C2 + 2iz)2
, (A2)
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f2 = 1

4

[
eθ1+θ∗

1

(C1 + C∗
1 )2

+ eθ1+θ∗
2

(C1 + C∗
2 )2

+ eθ2+θ∗
1

(C2 + C∗
1 )2

+ eθ2+θ∗
2

(C2 + C∗
2 )2

]
, (A3)

g3 = (C∗
1 − 2iz)2(C1 − C2)2eθ1+θ2+θ∗

1

4(C1 + 2iz)2(C2 + 2iz)2(C1 + C∗
1 )2(C2 + C∗

1 )2

+ (C∗
2 − 2iz)2(C1 − C2)2eθ1+θ2+θ∗

2

4(C1 + 2iz)2(C2 + 2iz)2(C2 + C∗
2 )2(C1 + C∗

2 )2
,

(A4)

f4 = (C1 − C2)2(C∗
1 − C∗

2 )2eθ1+θ∗
1 +θ2+θ∗

2

16(C1 + C∗
1 )2(C2 + C∗

2 )2(C1 + C∗
2 )2(C2 + C∗

1 )2
,

(A5)

with θl = Dl − r2

Cl+2iz
and both Cl and Dl being complex

constants (l = 1,2). More generally, we can obtain the Lth-
order solitary-wave solutions of Eq. (5), as defined in Ref. [28],
in the form of

V (L)(r,z) = r
g(r,z)

f (r,z)
, (A6)

where

g(r,z) =
∑

µ=0,1

′ exp

⎡
⎣ 2N∑

k=1

µkχk +
2N∑
k<j

�(k,j )µkµj

⎤
⎦ , (A7)

g∗(r,z) =
∑

µ=0,1

′′
exp

⎡
⎣ 2N∑

k=1

µkχk +
2N∑
k<j

�(k,j )µkµj

⎤
⎦ , (A8)

f (r,z) =
∑

µ=0,1

′′′
exp

⎡
⎣ 2N∑

k=1

µkχk +
2N∑
k<j

�(k,j )µkµj

⎤
⎦ , (A9)

with χk = ak(z)r2 + bk(z), ak(z) = − 1
Ck+2iz

, bk =
Dk − i

8(Ck+C∗
k )
√

CkC
∗
k

arctan( 2z√
CkC

∗
k

) − 2 ln |ak(z)| for k =
1,2, . . . 2N , and χk+N = χ∗

k , ak+N = a∗
k , bk+N = b∗

k ;
�(k,j ) = −2 ln |2ak(z) + 2aj (z)|, for k = 1,2, . . . N ,
and j = N + 1, . . . ,2N , or k = N + 1, . . . ,2N , and
j = 1,2, . . . ,N ; �(k,j ) = 2 ln |2ak(z) − 2aj (z)|, for
k = 1,2, . . . N , and j = 1,2, . . . ,N , or k = N + 1, . . . ,2N ,
and j = N + 1, . . . ,2N .

Here Ck and Dk are complex constants (k = 1,2, . . . ,2N ),∑2N
k<j stands for the summation over all possible combinations

of 2N elements taken with k < j , while
∑′

µ=0,1,
∑′′

µ=0,1,∑′′′
µ=0,1 denote the summation over all possible combina-

tions of µk = 0,1 (k = 1,2, . . . ,2N ), satisfying the following
relationships:

N∑
k=1

′µk =
N∑

k=1

′µk+N,

N∑
k=1

′′µk = 1+
N∑

k=1

′′µk+N,

N∑
k=1

′′′µk+N = 1+
N∑

k=1

′′′µk.
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