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Tailoring quantum superpositions with linearly polarized amplitude-modulated light

S. Pustelny, M. Koczwara, Ł. Cincio, and W. Gawlik
Center for Magneto-Optical Research, Institute of Physics, Jagiellonian University, Reymonta 4, PL-30-059 Kraków, Poland

(Received 20 December 2010; published 26 April 2011)

Amplitude-modulated nonlinear magneto-optical rotation is a powerful technique that offers a possibility of
controllable generation of given quantum states. In this paper, we demonstrate creation and detection of specific
ground-state magnetic-sublevel superpositions in 87Rb. By appropriate tuning of the modulation frequency and
magnetic-field induction the efficiency of a given coherence generation is controlled. The processes are analyzed
versus different experimental parameters.
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I. INTRODUCTION

Quantum coherences are at the heart of many nonlinear
and quantum optical phenomena. They are responsible for the
appearance of such effects as coherent population trapping
[1], electromagnetically induced transparency [2], extremely
slow light-pulse propagation [3] and its storage [4] in a
medium, and so on. A possibility of controllable generation
and modification of an arbitrary quantum state also lays
at the very foundations of quantum-state engineering and
quantum-information processing (see, for example, Ref. [5]).

A specific example of quantum coherence phenomenon is
nonlinear magneto-optical rotation (NMOR) [6,7]. The effect
consists of light-intensity-dependent rotation of the polariza-
tion plane of linearly polarized light during its propagation
through a medium placed in an external magnetic field. The
effect is based on the generation, evolution, and detection
of nonequilibrium population distribution and/or quantum
coherences between Zeeman sublevels of a given atomic state.
In a typical Faraday geometry, in which the magnetic field and
light propagation direction are parallel, linearly polarized light
generates coherences between Zeeman sublevels differing in
the magnetic quantum number m by even values, �m = 2ni ,
where ni is an integer [8]. Despite the fact that different types of
coherences can be generated in atoms, it is not usually possible
to separate contributions from coherences with particular �m

to the NMOR signal that is observed around zero magnetic
field, B ≈ 0 [12,13].

An important breakthrough in the study of NMOR was the
application of frequency- [14] and amplitude-modulated light
[15], which resulted in the FM NMOR (frequency modulated
nonlinear magneto-optical rotation) and AMOR (amplitude
modulated optical rotation) techniques. Application of the
modulation technique enables the generation of given types of
atomic coherences, i.e., coherences between Zeeman sublevels
with specific m. By exploiting spatial symmetries of the
atomic angular-momentum distribution associated with a given
quantum state, it is possible to selectively create superpositions
between sublevels differing in a magnetic quantum number
m by 2, 4, or even more, if only the system supports such
coherences [10,11]. Information about the system’s quantum
state may also be obtained from the angular momentum
distribution by analyzing time-dependent rotation of the
polarization plane of light measured at nonzero magnetic
field. Thus, in addition to selective generation and detection
of the coherences, the technique constitutes a powerful tool

in analyzing the evolution of a quantum state of a system.
In particular, it allowed detailed investigations of relaxation
processes of ground-state coherences in atoms contained in a
paraffin-coated vapor cell [16–18].

This paper presents the investigations on the generation,
evolution, and detection of long-living ground-state observ-
ables (nonequilibrium population distribution and ground-
state coherences, the latter represented by nondiagonal den-
sity matrix elements between the ground-state sublevels) in
atomic vapor subjected to a longitudinal magnetic field. The
measurements are performed in the pump-probe arrangement
with one beam used for the creation of atomic polarization
and another beam employed for the detection of the system’s
quantum state. With this arrangement we create the �m = 2
Zeeman coherences in nonzero magnetic fields. By appropriate
tuning of the pumping laser, the coherences are generated
in the F = 1 and F = 2 hyperfine ground states of 87Rb.
These coherences evolve in the external magnetic field with the
frequency determined by the energy splitting between respec-
tive sublevels (the Larmor frequency) and are continuously
probed with cw light. We study the generation and evolution
of the coherences at various pumping and probing conditions.
Using magnetic fields such that the nonlinear-Zeeman splitting
of the ground-state sublevels is comparable to or exceeds
the relaxation rate of this state coherences, we resolve and
selectively analyze all three �m = 2 coherences generated in
the F = 2 state.

The paper is organized as follows. The next section presents
a theoretical approach demonstrating the relation between
ground-state Zeeman coherences and nonlinear magneto-
optical rotation with amplitude-modulated light. Section III
describes experimental apparatus, while Sec. IV presents the
results and their analysis. Final remarks are collected in Sec. V.

II. THEORETICAL RELATION BETWEEN AMOR SIGNAL
AND GROUND-STATE COHERENCES

The optical properties of a medium are characterized by the
complex refractive index η

η = n + iκ =
√

1 + χ, (1)

where n, κ , and χ denote, respectively, the refractive index,
absorption coefficient, and medium electric susceptibility.
Knowledge of η for different polarizations allows one to
determine anisotropic properties of the medium. In particular,
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the Faraday angle ϕ, which is the angle of polarization rotation
during transition through a medium, may be calculated using
refractive indices n+ and n− of two circular polarizations σ+
and σ−

ϕ = ωL

2c
(n+ − n−), (2)

where ω is the light frequency, L the length of the medium, and
c the speed of light. In order to calculate the susceptibility of a
medium, and hence the refractive indices and Faraday angle,
the density-matrix formalism may be used [19]

χ± = N

E0

F∑
m=−F

dmm±1ρm±1m, (3)

where ρm±1m is the optical coherence between the ground-state
sublevel m and excited state sublevel m ± 1 and dmm±1 is the
corresponding dipole matrix element, N the number density of
atoms, and E0 is the amplitude of the electric field of the light.
Substituting Eq. (3) into Eq. (1) and expanding the equation
into the power series with respect to χ allows one to link the
Faraday angle with the density matrix elements

ϕ = ωLN

2cE0
Re

(
F−1∑

m=−F

dmm+1ρm+1m −
F∑

m=−F+1

dmm−1ρm−1m

)
.

(4)

In order to calculate the density matrix elements, the
evolution of the density matrix ρ, governed by the Liouville
equation, needs to be considered

	̇ = − i

h̄
[H,	] − 1

2
{
,	} + �, (5)

where H is the total Hamiltonian of the system, 
 the re-
laxation operator, and � the repopulation operator describing
ρ-independent mechanisms such as transit and wall relaxation
[20] and the square and curly brackets denote the commutator
and anticommutator [21]. In the considered case, the total
Hamiltonian of the system is a sum of the unperturbed
Hamiltonian H0 and the Hamiltonians describing interactions
of atoms with light Vl and magnetic field VB

H = H0 + Vl + VB. (6)

Assuming the y-polarized laser beam, the Hamiltonian de-
scribing the light-atom interaction may be written in the dipole
approximation as

Vl = −E · d = −E0e
−iωtdy = − 1√

2
E0e

−iωt (d− + d+), (7)

where E is the electric field of the light of amplitude E0,
d denotes the electric dipole moment operator, and d± are
the dipole-matrix elements corresponding to the transitions
between the ground- and excited-state Zeeman sublevels
differing in the magnetic quantum number m by ±1.

The magnetic-field interaction Hamiltonian VB may be
presented in the form

VB = −µ · B, (8)

where µ is the magnetic dipole moment operator and B the
magnetic-field induction. Since in our geometry the magnetic

field is applied along the quantization axis, it changes the
Zeeman-sublevel energies removing their degeneracy but does
not mix them. For an alkali atom, one can calculate the energy
shift h̄ωB of a given ground-state magnetic sublevel mF using
the Breit-Rabi formula

ωB(mF ) = Eu

h̄
− �HF

2(2I + 1)
± �HF

2

√
1 + 4m

2I + 1
x + x2,

(9)

where x = ωL/�HF with ωL = gF µBB/h̄ being the Larmor
frequency, gF the Landé factor of the state with a total angular
momentum F , µB the Bohr magneton, �HF the energy splitting
of the ground-state hyperfine doublet, Eu the “center of mass”
energy of the level with no hyperfine interaction, and the signs
± correspond to two hyperfine components F = I ± 1/2.

Combining Eqs. (6)–(9) with Eq. (5) allows one to
formulate equations describing time evolution of a given
density-matrix element ρab

ρ̇ab = −iωabρab + i
∑

j

(�ajρjb − ρaj�jb) − 
ab

(
ρab − ρ

eq
ab

)
,

(10)

where �aj = Eajdaj /
√

2h̄ is the Rabi frequency associated
with the transition between |a〉 and |j 〉 states, ωab = ωB(ma) −
ωB(mb) denotes the frequency splitting of the levels, and ρ

eq
ab

the equilibrium value of ρab.
In order to demonstrate the role of ground-state coherences

in rotation of the polarization plane, the explicit formulas for
optical coherences need to be written. To derive such analytical
formulas, we use the perturbation approach, where the density
matrix is expanded into the power series of the electric field of
the light

ρ =
∞∑

n=0

ρ(n)En
0 . (11)

In such a case, the relation for time evolution of a given density
matrix element takes the form

ρ̇
(n)
ab = −iωabρ

(n)
ab + i

∑
j

[
�ajρ

(n−1)
jb − ρ

(n−1)
aj �jb

]
−
ab

[
ρ

(n)
ab − ρ

eq
ab

]
. (12)

Even though in this paper nonlinear magneto-optical
rotation with amplitude-modulated light is studied, we first
derive analytical formulas for populations, optical and Zeeman
coherences when cw light is used (NMOR). Such an approach
facilitates the understanding of the problem and provides an
insight into the modulated case. By simple generalization of
the cw formulas one can write relations for the density-matrix
elements when AM light is applied.

A. Low-magnetic-field, unmodulated light

Application of the unmodulated light allows one to employ
the steady-state approximation (ρ̇ ≡ 0). Within this approxi-
mation the density-matrix elements calculated in the first three
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orders of the expansion are given by

ρ(0)
aa = ρeq

aa,

σ
(1)
ab = �ab

�ωab + i
ab

ρ(0)
aa ,

ρ(2)
aa = −i

�abσ
(1)
ba − σ

(1)
ab �ba


aa

,

(13)

ρ
(2)
aa′ = �abσ

(1)
ba′ − σ

(1)
ab �ba′

−ωaa′ + i
aa′
,

σ
(3)
ab = �abρ

(2)
aa + ρ

(2)
aa′�a′b

�ωab + i
ab

,

where ρaa denotes the population of the ground-state sublevel
|a〉, σab the amplitude of the optical coherence ρab (ρab =
σabe

−iωt ), ρaa′ the ground-state coherence, �ωab = ω − ωab

the light detuning from the transition between the ground
state |a〉 and the excited state |b〉, and the superscript to ρ

denotes the order of the expansion [22]. From Eqs. (13), the
amplitude of the third-order optical-coherence σ

(3)
ab depends on

the ground-state Zeeman coherence ρ
(2)
aa′ which is characterized

by the ground-state relaxation rate 
aa′ . Since the ground-state
relaxation is much slower than the relaxation of the optical
coherence, 
aa′ � 
ab, the third-order optical coherence
manifests in the absorption and dispersion via spectral features
much narrower than those associated with the first-order coher-
ence. Moreover, Eqs. (13) additionally show that not only the
widths but also the light-intensity dependences differentiate
between the two contributions; although the first-order optical
coherence is linear in �, and thus is the amplitude of the
electric field E0, the third-order coherence depends on �3.
Thus, based on the intensity dependences, one demonstrates
that the first-order optical coherence is responsible for linear
optical phenomena, such as polarization rotation independent
of light intensity, and the third-order coherence determines
nonlinear phenomena like NMOR and electromagnetically
induced transparency.

As shown above, NMOR is associated with ground-state
Zeeman coherences. In particular for the F = 2 state, three dif-
ferent ground-state coherences (ρ−2,0, ρ−1,1, ρ0,2) contribute
to NMOR. Thus, the effect may be used for investigation of
the ground-state coherences, in particular, their generation
and evolution under interaction with external fields. It is
noteworthy, however, that at low magnetic fields independent
studies of a given coherence are not possible because of the
same dependence of all contributions on the magnetic field and
light intensity. Such a distinction would be possible for higher
magnetic fields when Zeeman sublevels depend nonlinearly
on a magnetic field; however, at such fields the NMOR signals
are not observed.

B. Stronger magnetic field, modulated light

When the intensity of light is sinusoidally modulated, the
electric field of the light takes the form

E = E0e
−iωt

√
2

√
1 − am cos ωmt, (14)

where am is the modulation amplitude and ωm the mod-
ulation frequency. It may be easily shown that for the
full modulation (am = 1), relation (14) simplifies to E =
E0 exp(−iωt) sin(ωmt/2) [23]. This modification of the light
spectrum results in a change of the light-atom interaction
Hamiltonian

Vl = −[e−i(ω+ωm/2)t + e−i(ω−ωm/2)t ](d− + d+). (15)

Application of the modulated light rules out the standard
steady-state approximation. This is caused by the appear-
ance of the time-dependent Rabi frequency � = �eiωm/2t +
�e−iωm/2t that drives oscillation of the density-matrix elements
at different frequencies. In order to solve Eq. (10), the density
matrix needs to be expanded into the Fourier series of the
modulation frequency ωm/2

ρ =
∞∑

k=−∞
ρ(k)eikωm/2t , (16)

where ρ(k) is the k-th Fourier coefficient. Introduction of the
Fourier expansion (16) into Eqs. (13) enables application of the
steady-state approximation for a given Fourier coefficient of
the density matrix. In such a case, one can calculate the time-
dependent density matrix elements ρ(l,k) [superscripts (l,k)
denote the l-th order of the perturbation expansion and the
k-th order of the Fourier expansion in half the modulation
frequency]

ρ(0,k)
aa = ρeq

aaδk,0,

σ
(1,k)
ab = �ab

ρ(0,k−1)
aa + ρ(0,k+1)

aa

�ωab − kωm/2 + i
ab

,

ρ(2,k)
aa = �ab

[
σ

(1,k−1)
ba + σ

(1,k+1)
ba

] − �ba

[
σ

(1,k−1)
ab + σ

(1,k+1)
ab

]
−kωm/2 + i
aa

,

(17)

ρ
(2,k)
aa′ = �ab

[
σ

(1,k−1)
ba′ + σ

(1,k+1)
ba′

] − �ba′
[
σ

(1,k−1)
ab − σ

(1,k+1)
ab

]
−ωaa′ − kωm/2 + i
aa′

,

σ
(3,k)
ab = �ab

[
ρ(2,k−1)

aa + ρ(2,k+1)
aa

] + �
(1)
a′b

[
ρ

(2,k−1)
aa′ + ρ

(2,k+1)
aa′

]
�ωab − kωm/2 + i
ab

,

where δlm is the Kronecker δ. Although relations for cw and
AM light [Eqs. (13) and (17)] are similar there are some
significant differences between them. First is the appearance
of cross terms that couple different orders of the Fourier
expansion. For instance, the k-th order populations and
Zeeman coherences couple to the k ± 1-th orders of optical
coherences. Since the largest density-matrix elements are those
with low k (in zeroth order the only nonzero elements are the
ground-state populations), the coupling to the higher-order
density-matrix elements is weaker. This enables truncation of
the formally infinite series (16) at some finite kc (usually not
bigger than 5). The k-(k ± 1) dependence additionally results
in the zeroing of some density matrix elements. It may be
shown that populations and Zeeman coherences are nonzero
only at even k [for odd k ρ

(l,k)
aa′ = 0] and the only nonzero

optical coherences are these evaluated at odd k. The last
difference manifests in the appearance of the −kωm/2 term in
denominators of the formulas for the density-matrix elements,
which leads to the generation of additional resonances of
the density-matrix elements versus the modulation frequency.
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Assuming that the whole energy splitting of the ground-state
Zeeman sublevels is due to the magnetic field, the resonance
arises at nonzero magnetic field; the time-dependent rotation
of the polarization plane arises when the Larmor splitting
of the levels coincides with a given multiplicity of half of
the modulation frequency (kωm/2 = −ωaa′ ). For F > 1, low
magnetic field and a given modulation frequency, all �m = 2
ground-state coherences are generated with equal efficiency
(same energy splitting of the levels) and single AMOR reso-
nance is observed. At stronger fields, i.e., when the nonlinear
Zeeman splitting of the sublevels is comparable to or exceeds
the ground-state relaxation rate, each �m = 2 coherence has
different resonance frequency. It is this difference which
allows selective addressing of a given ground-state Zeeman
coherence.

In order to calculate dynamic nonlinear magneto-optical
rotation, i.e., the AMOR signal, one needs to combine all
Fourier coefficients of the density matrix and introduce them
into Eq. (3)

χ±(t) = NTr
[ ∑kc

k=−kc
ρ(k)eikωm/2t d±

]
E0(e−iωm/2t + eiωm/2t )

. (18)

Multiplication of Eq. (18) by sin(mωmt) or cos(mωmt) and
integrating them over the modulation period gives

χ
(m)
±,in =

∫ 2π/mωm

0
χ±(t) sin(mωmt),

(19)

χ
(m)
±,quad =

∫ 2π/mωm

0
χ±(t) cos(mωmt),

where m is the harmonic number, allows one to find for-
mulas for the in-phase or quadrature amplitude of electric
susceptibility at a given harmonic of the modulation frequency.
Substituting Eqs. (19) into Eq. (1) and then into Eq. (4) enables
calculation of the amplitude of time-dependent nonlinear
magneto-optical rotation (AMOR signal). It should be noted
that the AMOR signal measured in our experiment, i.e., at
the first harmonic of the modulation frequency (m = 1), is
described by the third-order optical coherence and k = 1.
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FIG. 1. (Color online) Experimental setup. D is the detector,
IO the optical isolator, AOM the acousto-optical modulator, P the
polarizer, BS the beam splitter, λ/2, λ/4 the half- and quarter-
waveplates, respectively, and A is the iris.

III. EXPERIMENTAL APPARATUS

The layout of the experimental apparatus is shown in Fig. 1.
A paraffin-coated buffer-gas-free cylindrical glass cell, 2 cm in
diameter and 2 cm long, contains isotopically enriched sample
of 87Rb. The cell is heated to 50 ◦C by a nonmagnetic resistive
oven providing atomic density of about 5 × 1010 atoms/cm3

[24]. The cell is placed inside a three-layer mu-metal magnetic
shield reducing the external, uncontrollable magnetic fields by
a factor higher than 104. The residual fields are compensated
with two sets of orthogonal magnetic-field coils: one for the
first-order magnetic-field gradients and another for the second-
order gradients. An additional solenoid is used to generate a
highly homogenous and well controlled magnetic field along
the light propagation direction which is varied within a range
of ±1 G.

The rubidium atoms interact with two copropagating,
linearly polarized light beams: the pump and the probe. Both
beams are generated with the same external-cavity diode
laser but their intensities are controlled independently. The
laser-light frequency is monitored with a saturated-absorption-
spectroscopy system and can be stabilized to a particular
transition of the Rb D1 line (795 nm) with a dichroic-
atomic-vapor laser lock [28]. The intensity of the pump light
is modulated with a single-pass acousto-optical modulator
(AOM) optimized for the first-order diffraction. Application of
AOM enables modulation of light with an arbitrary frequency,
amplitude, and waveform. It also leads to a frequency shift of
the pump light relative to the probe by 80 MHz. After traversing
the AOM, the pump light illuminates the atoms contained
in the vapor cell. The atoms are simultaneously probed with
the unmodulated light beam, split off from the main beam
before AOM. A balanced polarimeter situated after the shield
is employed to analyze the polarization state of the probe. A
small angle between the beams allows blocking of the pump
before the polarimeter. The polarimeter consists of a Glan
polarizer and two photodiodes. The polarimeter differential
signal is demodulated with a lock-in amplifier at the first
harmonic of the modulation frequency. We also measure the
sum of two signals, which enables us to obtain information
about response of the atoms to light. In particular, the division
of the difference signal by twice the sum of photodiode signals,
performed during postprocessing, allows one to obtain, for
not-too-big rotations, information about the amplitude of the
polarization rotation [ϕ ≈ (I1 − I2)/2(I1 + I2), where I1,2 are
the respective light intensities in the first and second channel
of the polarimeter]. Eventually, the signals are stored on a
computer which also controls the light modulation and the
magnetic-field strength.

IV. RESULTS AND DISCUSSION

Figure 2 shows the amplitude and phase of the AMOR
signal measured versus the modulation frequency for the pump
tuned to the center of the F = 2 → F ′ = 1 transition.

For lower magnetic fields, the amplitude dependence is
characterized by a single Lorentz resonance and the phase
is described by an asymmetric curve, both centered at twice
the Larmor frequency (insets to Fig. 2). For stronger fields,
the single AMOR resonance splits into three resonances: the
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FIG. 2. Amplitude and phase of the AMOR signal measured
versus the modulation frequency. For a magnetic field of about
640 mG the AMOR signal is split into three resonances due to the
quadratic Zeeman effect. Each resonance corresponds to the different
atomic superpositions of the ground-state magnetic sublevels. The
insets depict unsplit resonance at B = 19 mG, where contribution
from all superpositions superimpose. Both signals were measured for
a pump power of 11 µW tuned to the center of the F = 2 → F ′ = 1
transition and a probe power of 3 µW.

largest central resonance and two smaller resonances shifted
symmetrically with respect to the central one. The splitting is
also observed at the corresponding phase dependence. Each of
the resonances corresponds to different atomic superposition
of an individual pair of the ground-state magnetic sublevels.

As discussed in Sec. II, the appearance of the AMOR
resonance (resonances) is associated with generation of the
ground-state Zeeman coherences. The process is most effi-
cient when the modulation frequency matches the frequency
splitting of the magnetic sublevels differing in the magnetic
quantum number m by 2, �m = 2. In order to calculate the
splitting of the sublevels, we expand Eq. (9) into the power
series of x up to the second order, which for the F = 2 state
of 87Rb (I = 3/2) is equal to

ωm,m′ ≈ (m − m′)ωL − (m2 − m′2)
ω2

L

�HF
. (20)

For three pairs of �m = 2 sublevels in the F = 2 state, one
obtains

ω−2,0 ≈ 2ωL − 4
ω2

L

�HF
, ω−1,1 ≈ 2ωL,

(21)

ω0,2 ≈ 2ωL + 4
ω2

L

�HF
.

FIG. 3. (Color online) Average splitting of the AMOR reso-
nances, (ωr − ωl)/2, measured versus the Larmor frequency (square).
The observed dependences is in very good agreement with theoretical
curve plotted based on Eqs. (21) (solid line) and the data from
Ref. [29]. The data were measured with a single sinusoidally
modulated light beam of 8-µW power acting as pump and probe
simultaneously.

The first terms in Eqs. (21) arise from the linear Zeeman
effect, while the second ones appear due to the quadratic
Zeeman effect. For weak magnetic fields, the contribution
from the nonlinear effect is significantly smaller than the
ground-state relaxation rate (4ω2

L/�HF � γ ). In that case,
the AMOR resonances associated with individual coherences
overlap and appear as a single resonance (insets to Fig. 2).
For stronger magnetic fields, the sublevel-splitting frequencies
differ sufficiently and the separation of the resonances is
observed, as seen in Fig. 2. The amplitude of the given
resonance is determined by the amplitude of the corresponding
coherence and appropriate dipole matrix elements. Thus
using the NMOR signal and also the relations (17)–(19)
determination of the amplitude of the coherence is possible.

In Fig. 3, the measured splitting of the resonances is
presented as a function of the magnetic field.

For low magnetic fields, the resonances are unresolved
and no splitting is measured [30]. The splitting becomes
measurable for fields corresponding to Larmor frequencies
above a few tens of kHz and increases quadratically with B and
ωL, which is in good agreement with predictions of Eqs. (21).

In order to verify the model developed in Sec. II, we
simulate AMOR signals for the first harmonic of the mod-
ulation frequency, ωm ≈ 920 kHz and a magnetic field of
640 mG (Fig. 4). The simulations reveal all the features
observed experimentally (Fig. 2). For a magnetic field inducing
significant nonlinear Zeeman splitting of the levels, three
AMOR resonances associated with ρ−2,0, ρ−1,1, and ρ0,2 are
observed. The strongest resonance is related to the coherence
between the | − 1〉 and |1〉 sublevels. The remaining two
resonances are equally split with respect to the central one and
have equal amplitudes. Also the phase of the simulated signal
follows the experimentally measured dependence crossing
zero at the center of the largest signal. We attribute the observed
deviation of the simulated from the measured dependences
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FIG. 4. Amplitude and phase of the AMOR signal simulated for
the F = 2 → F ′ = 1 transition using Eqs. (17). The signal reveals
all the salient features of real signal (Fig. 2), i.e., resonance splitting,
and similar amplitude relations.

due to higher-order processes, such as power broadening and
saturation, which are not included in our model.

The splitting of the AMOR resonance into three reso-
nances illustrates a possibility of selective addressing of a
particular �m = 2 ground-state coherence. Figure 5 presents
simulations of the density matrix at the first harmonic of the
modulation frequency calculated at lower and higher magnetic
fields corresponding to single and split resonances (Fig. 4).
The top row is calculated for 10 mG, whereas the bottom
for 640 mG, which corresponds to resonance splitting of
120 Hz, (ωr − ωl)/2 ≈ 4γ . The simulations are performed for
the modulation frequencies equal to 2ωL − 3γ (left column),
2ωL (middle column), and 2ωL + 3γ (right column). As
shown in the top row, exact tuning of the modulation frequency
to twice the Larmor frequency results in generation of all
�m = 2 coherences with the highest and equal efficiency,
while detuning it away uniformly reduces the amplitudes of
all of them. In stronger fields the situation differs (bottom row).
Whereas for ωm = 2ωL the ρ−1,1 coherence is generated with
the highest efficiency, the two other coherences are created
significantly less efficient. One can selectively increase the am-
plitude of either of these coherences by appropriate tuning of
the modulation frequency. For ωm = 2ωL − 3γ (left column),
the ρ−2,0 coherence is most efficiently generated, whereas
for ωm = 2ωL + 3γ (right column), the ρ0,2 coherence has
the strongest amplitude. This dependence of the amplitude of
the specific coherence on the modulation frequency proves the
possibility of selective addressing and the control of specific
�m = 2 coherences.
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FIG. 5. (Color online) Calculated absolute values of the density-
matrix elements (|ρm,m′ |) of the F = 2 ground under interaction with
linearly polarized, AM light tuned to the F = 2 → F ′ = 1 transition.
The top row corresponds to a magnetic field of about 10 mG, when
energy splittings of all �m = 2 sublevels are equal and the bottom
row to a much stronger field of 640 mG causing the AMOR-resonance
splittings of 120 Hz, that is, four times the ground-state relaxation rate.
The central column shows the density-matrix elements for ωm = 2ωL,
while the side columns correspond to ωm = 2ωL ± 3γ , respectively.

The AMOR technique is a powerful tool in the analysis
of a quantum state of the system. In particular, scanning
the modulation frequency, fitting the data with three Lorentz
curves, and taking into account strengths of the specific
transitions allows one to extract information about amplitudes
of the density-matrix elements. This measurement, however,
requires a modulation-frequency scan within a range strongly
exceeding the splitting of the resonances. In order not to scan
the modulation frequency, one may perform free-induction
decay measurements, where information about the coherence
amplitude is extracted from time-dependent rotation signal (for
more details, see Ref. [31]).

As described above, the theoretical model developed in
Sec. II is valid only for low light powers; for higher light
intensities effects such as the ac Stark shift start to play an
important role, e.g., by broadening of the AMOR resonances.
Due to this fact not only the modulation frequency but also
the pump and probe powers determine the amplitudes of the
Zeeman coherences and hence the AMOR signals. In Fig. 6 the
amplitude of the AMOR signal is presented versus the pump-
and probe-light powers.

For low-pump-light power the AMOR amplitude is small
(see the upper inset to Fig. 6), which reflects the low
efficiency of the ground-state coherence generation. This
efficiency, hence the AMOR-resonance amplitude, increases
with the pump power and reaches its maximum at about
30 µW. Appearance of the maximum and further decrease
of the amplitude results from the higher-order effects, such as
saturation, hyperfine pumping, and repumping/regeneration of
the existing Zeeman coherences. For instance, the hyperfine
pumping leads to a decrease of a number of atoms in the
F = 2 ground state transferred to the F = 1 ground state
via spontaneous emission. Degradation of the AMOR signal
is also associated with the applied modulation. Efficiency of
the ground-state coherence generation, and hence the number
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FIG. 6. (Color online) AMOR signal as a function of the pump-
and probe-light power. The data were measured at 850 mG. The
top inset show a cross section across the plot, i.e., the amplitude
pump-power dependence measured with a probe-intensity of 2 µW.
Similarly, the bottom inset shows the data taken with varied probe
power and fixed pump-light intensity, 4 µW.

of atoms existing in a particular quantum state, follows the
light modulation. At low light intensities, it effects in a
sinusoidal variation of numbers of atoms evolving with specific
phases, which results in strong anisotropy of the medium. For
more intense light, i.e., when saturation processes become
significant, the efficiency does not reproduce the sinusoidal
modulation pattern. In particular, higher harmonics of the
modulation arise in the efficiency of coherence generation
and number of atoms generated during successive pumping
phases does not follow the sinusoidal dependence. It results
in weaker anisotropy of the medium and a decrease of the
AMOR-resonance amplitude for higher pump-light powers
(Fig. 6).

The dependence of the AMOR signals on the probe-
light intensity differs. As seen in the lower inset to Fig. 6,
the amplitude of the AMOR resonance decreases with the
probe-beam power on the whole accessible range of powers.
This is caused by the probe light being resonant with the
medium (the 80-MHz difference between the probe and
pump frequencies caused by AOM is negligible relative
to the Doppler broadening of the transition). In such a
case, the probe perturbs the atoms; absorption of a photon
from the probe beam results in a new quantum state which, in
general, differs from the state created initially with the pump-
light photon. In that way, the probe-light absorption decoheres
the system and acts as additional relaxation mechanism
reducing the AMOR-signal amplitude.

It was shown in Sec. II that efficiency of the ground-state
coherence generation strongly depends on the pump-light
tuning (dependence on �). In particular, various pump-power
dependences may be observed for the light coupling a given
ground state with different excited states. Such an example is
depicted in Fig. 7, which shows the ratio of the amplitude of
the central resonance to the averaged amplitudes of the side
resonances versus the pump-light power for the F = 2 →
F ′ = 1 and the F = 2 → F ′ = 2 transitions. At low pump
powers the AMOR signals observed at these two transitions

FIG. 7. (Color online) (a) Ratio of the amplitude of the central of
AMOR signal to the averaged amplitude of the side components of
the signal versus the light power, (b) ratio of the geometric mean of the
| − 1〉 and |1〉 sublevels population to the averaged geometric mean
of the | − 2〉 and |0〉 populations and |0〉 and |2〉 population versus
normalized Rabi frequency. Signals were measured at a magnetic
field of 790 mG with the 1.2-µW probe power while the calculations
were performed for a single unmodulated light beam exploiting the
rate equations. The red points and the red curve corresponds to the
F = 2 → F ′ = 1 excitation while the black squares and black curve
to the F = 2 → F ′ = 2 transition.

are similar in shape and amplitude, with well-resolved triple-
component structures [see the inset on the left in Fig. 7(a)].
However, the pump-power dependencies of the resonances
amplitudes measured at the two transitions are very distinct.
While for the F = 2 → F ′ = 1 transition, the ratio increases
with the pump-light power [see the inset on the top right in
Fig. 7(a)], and the opposite dependence is observed at the
other transition. In the latter case, the ratio decreases with the
power [see the inset at the bottom right in Fig. 7(a)] even
below one when the side resonances have larger amplitudes
than the central resonance. The observed dependencies reflect
the different behavior of the ρ−11 coherence and the ρ−20

and ρ02 coherences at the two transitions. Among others,
the behavior originates from optical pumping and population
redistribution between Zeeman sublevels within a given
hyperfine state. Since for the F = 2 → F ′ = 1 transition
the maximal Clebsch-Gordan coefficients are those from the
sublevels with maximal m (m = ±F ), these states are most
efficiently depopulated. Simultaneously, the depletion of the
other sublevels is smaller, which effectively leads to an aligned
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state with the highest population in the m = 0 sublevel and
the lowest population in the m = ±2 sublevels. The change
in the population distribution is reflected in the amplitudes
of the Zeeman coherences associated with these states. For
the F = 2 → F ′ = 1 transition and intense light, the lower
amplitudes have the ρ−20 and ρ02 coherences, while the higher
one has the ρ−11 coherence. The opposite is true for the
F = 2 → F ′ = 2 transition, while the m = 0 state is most
efficiently depleted.

In order to qualitatively verify the mechanism described
above, the geometric means of the population of the magnetic
sublevels constituting the coherence were calculated versus
the pump intensity. Such a geometric mean of the two
sublevels’ populations sets an upper limit on the amplitude
of the coherence between the sublevels (Schwarz inequality),
|ραβ | � √

ρααρββ . Figure 7(b) shows the ratio of
√

ρ−1−1ρ11

to (
√

ρ−2−2ρ00 + √
ρ00ρ22)/2 for the F = 2 state coupled with

light to the F ′ = 1,2 states. Populations of the sublevels were
calculated based on the rate equations using cw light and
neglecting hyperfine optical pumping, saturation, and so on.
As seen in Fig. 7, the simulations qualitatively reproduce
the observed dependence, i.e., increase of the ratio for
the F = 2 → F ′ = 1 transition and decrease for the other
transition.

In alkali atoms there are two hyperfine ground states
supporting long-living quantum coherences. In particular, in
87Rb there are F = 1 and F = 2 ground states separated by
about 6.8 GHz that can be selectively addressed by appropriate
tuning of the pump and probe lasers. Figure 8 presents
the AMOR signals measured at the F = 2 → F ′ = 1 and
F = 1 → F ′ = 1 transitions for the same set of experimental
parameters.

As shown, the two signals differ significantly; not only
do the numbers of the AMOR resonances associated with
the �m = 2 coherences differ (there is only one �m = 2
coherence in the F = 1 ground state) but also their amplitudes
are distinct. The latter difference originates from the transition
probabilities and less efficient hyperfine pumping at the
F = 1 → F ′ = 1 transition than at the F = 2 → F ′ = 1 one.

FIG. 8. (Color online) AMOR signals recorded for light tuned
to the F = 2 → F ′ = 1 transition (left curve) and the F = 1 →
F ′ = 1 transition (right curve). The difference in the position of the
AMOR resonances arises from nuclear contribution to the Landé
factor. Signals were measured at a magnetic field of about 780 mG
and pump- and probe-light powers of 6 and 3 µW, respectively.

Moreover, the positions of the AMOR resonances in a strong
magnetic field differ. It results from the difference in the Landé
factors for the two ground states

gF=2 = − 1
4gJ + 5

4gI , gF=1 = 1
4gJ + 3

4gI , (22)

where gJ is the electron and gI the nuclear g factor. Based on
Eq. (22) it can be easily shown that although the splittings due
to the electron spin are opposite and hence indistinguishable
in the AMOR experiment, the nuclear-spin contributions
differ, which leads to the separation of the resonance �ωm =
2 × 2gIµNB/h̄, where µN denotes the nuclear magneton. For
a magnetic field of about 780 mG we predicted a splitting
of about 4.35 kHz which is consistent with experimentally
measured value of 4.32 kHz. This difference in frequencies
of AMOR resonances for the transitions is important from
the point of view of quantum-state engineering since it offers
an additional way of controlling and modifying the quantum
state by specific tuning of the frequency of an additional rf
field [32].

Dependences of the ground-state Zeeman-coherence life-
times on the pump and probe powers are presented in Fig. 9.

FIG. 9. Lifetime of the Zeeman coherence between | − 1〉 and |1〉
ground-state sublevels versus pump- (a) and probe-light (b) powers.
Increasing power of either of the light beams results in reduction of
the lifetime of a quantum state which manifests as broadening of
the AMOR resonances (see insets). The signals were measured for a
magnetic field of about 780 µG with a probe power of 1.2 µW (a)
and pump power of 2.2 µW. The laser was tuned to the center of the
Doppler-broadened F = 2 → F ′ = 1 transition.
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The lifetimes τ were extracted from the AMOR resonance
width as τ = 1/πδωm, where δωm is the AMOR-resonance
half-width at half maximum measured versus the modulation
frequency. Figure 9 shows that raising the light power of either
of the beams leads to broadening of the AMOR resonance
(see insets) and shortening of the ground-state coherence
lifetime. In order to calculate the coherence lifetime that is not
affected by the light, we performed a series of measurements
of the AMOR signals at different pump and probe powers and
double-extrapolate the resonance width to zero light powers.
The double-extrapolated lifetime of the coherences studied in
this experiment is equal to 13.2(12) ms, which is determined
by three relaxation mechanisms: collisions with the uncoated
surfaces, mainly in the cell stem containing a rubidium metal
droplet; spin-exchange collisions between rubidium atoms
[16]; and temperature-dependent dephasing collisions with the
cell wall coating [33]. Using a simple mathematical model, the
relaxation rate due to collisions with uncoated surfaces was
estimated at the level of ≈2π × 8.3 s−1. At the same time,
the relaxation rate associated with spin-exchange collisions,
that is calculated based on Ref. [34], gives 2π × 4.1 s−1. The
other relaxation channel most likely are dephasing collisions
of atoms with the coating.

V. SUMMARY AND CONCLUSIONS

We have analyzed the possibility of generating the quantum
superpositions of ground-state Zeeman sublevels differing in

the magnetic quantum numbers by 2. Since in the F > 1 state
the sublevels split nonlinearly with a magnetic field (nonlinear
Zeeman effect), selective generation of coherences between
specific sublevels by appropriate tuning of the modulation
frequency is possible. In particular, it was shown that for the
magnetic fields such that nonlinear magnetic-sublevel splitting
exceeds the ground-state relaxation rate, selective addressing
of the ρ−20, ρ−11, and ρ02 coherences is possible. Efficiency
of the coherence generation versus different experimental
parameters, such as modulation frequency and pump- and
probe-light power, light frequency was analyzed. We have
shown that in our experimental setup the lifetime of the
coherences exceeds 10 ms. Such a long coherence lifetime
opens interesting possibilities for application of the coherences
in quantum-state engineering and quantum computation. In
this context, the ability of modification of atomic quantum
state by application of external field, e.g. magnetic and/or the
rf field, is particularly interesting.

ACKNOWLEDGMENTS

The authors express their gratitude to Andrew Park, Jerzy
Zachorowski, and Simon Rochester for stimulating discus-
sions. The work was supported by the Polish Ministry of
Science and Higher Education (Grants No. N202 074135 and
No. N202 175935). Part of the work was operated within the
Foundation for Polish Science Team Programme cofinanced
by the EU.

[1] E. Arimondo, in Progress in Optics, edited by E. Wolf, Vol. 35
(Elsevier Science, New York, 1996), pp. 259–354.

[2] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.
Phys. 77, 633 (2005).

[3] Z. Dutton, N. S. Ginsberg, C. Slowe, and L. V. Hau, Europhys.
News 35, 33 (2004).

[4] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094
(2000).

[5] K. Hammerer, A. S. Sorensen, and E. S. Polzik, Rev. Mod. Phys.
82, 1041 (2009).

[6] D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V.
Yashchuk, and A. Weis, Rev. Mod. Phys. 74, 1153 (2002).

[7] W. Gawlik and S. Pustelny, in New Trends in Quantum
Coherence and Nonlinear Optics, edited by R. Drampyan (Nova,
New York, 2009), pp. 47–84.

[8] Hereafter, it is assumed that quantization axis is aligned along the
magnetic field. Thus, in the case of Faraday geometry, linearly
polarized light is a superposition of two circular polarization σ+

and σ− and it can induce superpositions of Zeeman sublevels
of �m = 2. It should be noted, however, that for nonparallel
orientations of the magnetic field and the light propagation
direction coherences of �m = 1 may also be generated (see,
for example Ref. [9]). When light is sufficiently intense,
multiphoton interaction can create coherences with �m > 2,
in particular �m = 4 or �m = 6 [10,11].

[9] S. Pustelny, W. Gawlik, S. M. Rochester, D. F. Jackson Kimball,
V. V. Yashchuk, and D. Budker, Phys. Rev. A 74, 063420
(2006).

[10] V. V. Yashchuk, D. Budker, W. Gawlik, D. F. Jackson Kimball,
Yu. P. Malakyan, and S. M. Rochester, Phys. Rev. Lett. 90,
253001 (2003).

[11] S. Pustelny, D. F. Jackson Kimball, S. M. Rochester, V. V.
Yashchuk, W. Gawlik, and D. Budker, Phys. Rev. A 73, 023817
(2006).

[12] B. Łobodziński and W. Gawlik, Phys. Rev. A 54, 2238
(1996).

[13] S. Gateva, L. Petrov, E. Alipieva, G. Todorov, V. Domelunksen,
and V. Polischuk, Phys. Rev. A 76, 025401 (2007).

[14] D. Budker, D. F. Jackson Kimball, V. V. Yashchuk, and
M. Zolotorev, Phys. Rev. A 65, 055403 (2002).
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