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Potential of electric quadrupole transitions in radium isotopes for single-ion optical frequency
standards
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We explore the potential of the electric quadrupole transitions 7s 2S1/2-6d 2D3/2, 6d 2D5/2 in radium isotopes
as single-ion optical frequency standards. The frequency shifts of the clock transitions due to external fields
and the corresponding uncertainties are calculated. Several competitive ARa+ candidates, with A = 223–229,
are identified. In particular, we show that the transition 7s 2S1/2 (F = 2,mF = 0)-6d 2D3/2 (F = 0,mF = 0) at
828 nm in 223Ra+, with no linear Zeeman and electric quadrupole shifts, stands out as a relatively simple case,
which could be exploited as a compact, robust, and low-cost atomic clock operating at a fractional frequency
uncertainty of 10−17. With more experimental effort, the 223,225,226Ra+ clocks could be pushed to a projected
performance reaching the 10−18 level.
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I. INTRODUCTION

Optical atomic clocks based on ultranarrow optical transi-
tions in single laser-cooled trapped ions have demonstrated
a stability and accuracy significantly better than the 133Cs
atom microwave frequency standard. Transitions in various
ions are presently under investigation as candidates for
optical frequency standards, including electric quadrupole
transitions in 40Ca+ [1,2], 199Hg+ [3–5], 88Sr+ [6,7], and
171Yb+ [8,9], hyperfine-induced electric dipole transitions
in 27Al+ [10–12] and 115In+ [13], and an electric octupole
transition in 171Yb+ [14]; proposals also exist for 137Ba+ [15]
and 43Ca+ [16]. These ion clocks currently operate at fractional
frequency uncertainties δν/ν ranging from 10−16 to below
10−17, with projected accuracies reaching the 10−18 level. The
ultimate performance of each clock depends on the atomic
structure of the ion, the sensitivity of the transition to the
external environment, and the complexity of the experimental
setup needed to operate the clock.

At our institute, an experiment is in progress [17] to
measure atomic parity violation in single Ra+ ions [18]. This
experimental setup can be adapted for an investigation of a
single-ion Ra+ clock. In this paper we explore the feasibility
of using the strongly forbidden electric quadrupole transitions
7s 2S1/2-6d 2D3/2 at 828 nm and 7s 2S1/2-6d 2D5/2 at 728 nm
in a single laser-cooled and trapped Ra+ ion as a stable and
accurate frequency standard [19–21]. Our studies are based
on the available experimental information about the Ra+ ion
and on many-body atomic theory. The relevant energy levels
of 223,225,226Ra+ and the proposed clock transitions are shown
in Fig. 1.The 6d 2D3/2 and 6d 2D5/2 levels have a lifetime of
600 and 300 ms [20], respectively, corresponding to a Q factor
of ∼1015 for the clock transitions.

A major advantage of Ra+ is that all the required
wavelengths for cooling and repumping and for the clock
transition can easily be made with off-the-shelf available
semiconductor diode lasers, which makes the setup compact,
robust, and low-cost compared to clocks that operate in the
ultraviolet. Moreover, in odd radium isotopes, clock transitions
are available that are insensitive to electric quadrupole shifts
of the metastable 6d 2DJ levels. Such shifts are an important
limiting factor for several other ion clocks [22]. The radium

isotopes under consideration are mostly readily available from
low-activity sources.

Optical clocks are important tools to test the fundamental
theories of physics. They are particularly useful in laboratory
searches for possible spatial and temporal variations of the
physical constants that define these theories. Such searches
are strongly motivated by cosmological theories that unify
gravity and particle physics (see, e.g., Ref. [24]). Laboratory
tests have placed strong limits on the temporal variation of
the electron-to-proton mass ratio me/mp [25–27] and the
fine-structure constant α. The most stringent limit on the
latter was obtained by comparing two ultrasensitive ion clocks
(27Al+ and 199Hg+) over the period of a year, yielding a
limit α̇/α = (−1.6 ± 2.3) × 10−17/yr [25]. The sensitivity to
α̇/α results from relativistic contributions to the energy levels
that are of order O(Z2α2), favoring heavy atomic systems
like 199Hg+. The Ra+ clock transition has a comparably high
intrinsic sensitivity [19,20,28] but of opposite sign to that of
199Hg+, making it a promising alternative candidate for testing
the time variation of α. Ra+ is also very sensitive to variations
in the quark masses [29,30].

II. RADIUM ISOTOPES

Radium offers a wide range of short- and long-lived isotopes
with even and odd nuclear spin that could be considered for use
as optical frequency standards. Only trace quantities of radium
are needed to operate a single-ion Ra+ clock, but demands on
the half-life and the ease of production limit the options. The
half-life of the isotope should be long compared to the excited
6d 2DJ level coherence time (approximately seconds) required
to address the ion with laser light. Further, it is preferable from
an experimental point of view to be able to trap the ions for a
longer time, at least a few minutes.

The light (neutron-poor) isotopes A = 209–214, with
half-lives that range from several seconds up to a few
minutes, have been produced at the Kernfysisch Versneller
Instituut (KVI) by fusion-evaporation reactions [17,31]. A
possible clock candidate could be A = 213, which has a
half-life of 2.7 m; it is similar to the isotope A = 225, which
we consider in detail below. We focus in this paper on the
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FIG. 1. (Color online) The 223,225,226Ra+ level scheme with wavelengths taken from Ref. [23] and lifetimes from Ref. [20]. The clock
transitions are indicated; in 225Ra+ and 226Ra+, two clock transitions are considered.

heavier (neutron-rich) isotopes with A = 223–229 because
they have a half-life of longer than 1 min, and, moreover,
most of them occur in the decay series of uranium or thorium
and therefore can be produced in sufficient quantities with a
low-activity source, so that no accelerator is required. Table I
gives an overview of these isotopes, with their half-lives,
nuclear spin, and possible production methods. The nuclear
magnetic moments and quadrupole moments listed are used to
calculate the hyperfine constants of the 6d 2D3/2 and 6d 2D5/2

levels of the odd isotopes for which no experimental results
are available.

For Ra+ optical-clock purposes, the even isotopes A = 224,
226, and 228, with zero nuclear spin, are very similar and
spectroscopically relatively simple. They are analogous to the
40Ca+ and 88Sr+ clocks. 226Ra and 228Ra are available as a
source; 226Ra+ can also be taken from a 230Th source, in which
case there is no need to ionize the atoms. We limit ourselves
to 226Ra+, which is the most easily available isotope, and

we consider two transitions, namely, 7s 2S1/2-6d 2D3/2 and
7s 2S1/2-6d 2D5/2, as indicated in Fig. 1.

In the odd isotopes, with nonzero nuclear spin, the presence
of hyperfine structure gives two advantages. First, in all
odd isotopes, mF = 0 ↔ m′

F = 0 transitions exist, which are
insensitive to the linear Zeeman shift. Moreover, the odd
isotopes offer several transitions between specific hyperfine
levels that in first order do not suffer from the Stark
shift due to the electric quadrupole moment of the 6d 2DJ

level. In particular, we study the transition 7s 2S1/2 (F =
2,mF = 0)-6d 2D3/2 (F = 0,mF = 0) in 223Ra+ (no linear
Zeeman and quadrupole shifts) and 7s 2S1/2 (F = 1,mF = 0)-
6d 2D5/2 (F = 3,mF = ±2) in 225Ra+ (no quadrupole shift);
see Fig. 1. In addition, we consider the transition 7s 2S1/2 (F =
0,mF = 0)-6d 2D5/2 (F = 2,mF = 0) in 225Ra+ (no linear
Zeeman shift), which resembles the 199Hg+ clock. We also
include the isotopes A = 227 and 229, although their half-lives
are rather short and they must be produced in nuclear reactions.

TABLE I. Long-lived neutron-rich isotopes of radium with their lifetime and nuclear spin I [32], magnetic moments µI (in units of µN ) [33],
and quadrupole moments Q (in barns) [34]. Also shown are the decay series the isotopes occur in and possible low-activity production sources;
A = 227 and 229 have to be produced by nuclear reactions.

A Half-life I µI Qa Decay series Source

223 11.43d 3/2 0.2705(19) 1.254(66) 235U 227Ac (21.8 yr)
224 3.66d 0 0 0 232Th 228Th (1.9 yr)
225 14.9d 1/2 −0.7338(5) 0 233U 229Th (7.34 kyr)
226 1.6kyr 0 0 0 238U 226Ra, 230Th (75.4 kyr)
227 42.2m 3/2 −0.4038(24) 1.58(11) - -
228 5.75yr 0 0 0 232Th 228Ra
229 4.0m 5/2 0.5025(27) 3.09(19) - -

aThe uncertainties were obtained by adding in quadrature the uncertainties given in Ref. [34].
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TABLE II. Overview of the sensitivities to external-field shifts with the associated uncertainties in parentheses: linear (LZ) and quadratic
(QZ) Zeeman, dipole Stark (DS) dc and ac, and linear or quadratic quadrupole Stark (QS). The quoted uncertainties are derived from a Monte
Carlo model, taking into account the uncertainties for all parameters as quoted in the text and Tables I, IV, and V; t ≡ (3E2

z − E2)/(2E2)
parametrizes the tensor part of the dc dipole Stark shift.

QZ DS dc DS ac QS
Isotope Transition LZ (mHz/mG2) (mHz V−2 cm2) (mHz µW mm−2) (mHz V−1 cm2)

223Ra+ 7s 2S
F=2,mF =0
1/2 -6d 2D

F=0,mF =0
3/2 no 4.9(7) 2.6(2) 0.72(4) 15(2) × 10−9 a

225Ra+(1) 7s 2S
F=1,mF =0
1/2 -6d 2D

F=3,mF =±2
5/2 yes 0.75(3) 2.8(2) 1.6(3) 6.2(3) × 10−9 a

225Ra+(2) 7s 2S
F=0,mF =0
1/2 -6d 2D

F=2,mF =0
5/2 no −1.28(5) 2.8(2) − 5.23(5)t 1.2(3) 24.1(5)

226Ra+(1) 7s 2S
mJ =± 1

2
1/2 -6d 2D

mJ =± 3
2

3/2 yes 0 2.6(2) + 6.25(5)t 0.9(2) −19.6(1)

226Ra+(2) 7s 2S
mJ =± 1

2
1/2 -6d 2D

mJ =± 3
2

5/2 yes 0 2.8(2) − 1.30(1)t 1.5(4) 6.0(1)

227Ra+ 7s 2S
F=2,mF =0
1/2 -6d 2D

F=0,mF =0
3/2 no 2.8(2) 2.6(2) 0.72(4) 5.9(4) × 10−9 a

229Ra+ 7s 2S
F=2,mF =0
1/2 -6d 2D

F=0,mF =0
5/2 no 27(3) 2.8(2) 1.6(3) 12(1) × 10−9 a

43Ca+ 4s 2S
F=4,mF =0
1/2 -3d 2D

F=6,mF =0
5/2 no 90.5 [16] 5.6(4) + 2.1(2)t [16] 8(8) [16] 8.1 [16]

199Hg+ 5d106s 2S
F=0,mF =0
1/2 -5d96s2 2D

F=2,mF =0
5/2 no 0.18925(28) [36] −1.14 [36] -b −3.6 [36]

88Sr+ 5s 2S
mJ =±1/2
1/2 -4d 2D

mJ =±5/2
5/2 yes 0 4.6(2) [22] −2.24 [37] −18(2) [38]

a These are second-order quadrupole shifts with units mHz (V−1 cm2)2.
b The uncertainty caused by the ac Stark shift was measured to contribute less than 2 × 10−17 to the fractional frequency uncertainty [4].

Specifically, we consider the transitions 7s 2S1/2 (F = 2,mF =
0)-6d 2D3/2 (F = 0,mF = 0) in 227Ra+ and 7s 2S1/2 (F =
2,mF = 0)-6d 2D5/2 (F = 0,mF = 0) in 229Ra+; both transi-
tions are free from linear Zeeman and quadrupole shifts.

III. SENSITIVITY TO EXTERNAL FIELD SHIFTS

All proposed optical frequency standards are sensitive
to external perturbations due to the electric and magnetic
fields present in the trap. These perturbations cause unwanted
systematic shifts of the frequency of the clock transition.
Although for the most part these shifts themselves can be
corrected for, there is a remaining uncertainty associated
with each shift due to limited experimental or theoretical
accuracy. In this section, we will investigate the sensitivity
to the external fields of the candidate Ra+ clock transitions for
the different isotopes. Input for the required atomic-structure
quantities is taken from the recent KVI experiment [17] and
from experiments at the On-Line Isotope Mass Separator
(ISOLDE) facility at CERN [33–35]. The wavelengths of
the relevant transition are taken from Ref. [23]. When no
experimental data are available, we rely on atomic many-body
theory calculations.

In the following, we briefly discuss the relevant shifts
pointwise. The shift of the clock transition is defined as the
shift of the excited 6d 2DJ level minus the shift of the 7s 2S1/2

ground state. The results of our calculations for the different
Ra+ isotopes are summarized below and are divided into a
sensitivity (see Table II) and an uncertainty (see Table III).
The theoretical expressions for the various external-field shifts
either can be found in the literature or are straightforward to
derive; for completeness, the most important ones are given. In
the following, we assume that one single laser-cooled radium

ion is trapped in a radiofrequency (rf) electric quadrupole field,
i.e., in a Paul trap.

A. Doppler shifts

The motion of an ion in a Paul trap can be described
by a secular oscillation with a superimposed micromotion
oscillation [39]. The micromotion oscillation is directly driven
by the rf field applied to the trap. Any movement of the ion
in the trap can, via the Doppler effect, cause broadening and
shifts of the frequency of the clock transition. This effect is
important even when the ion is laser cooled to the Doppler
limit. In the Lamb-Dicke regime [40], which can be reached
by Doppler cooling on the strong 7s 2S1/2-7p 2P1/2 transition
at 468 nm, the oscillation amplitude is small compared to
the laser-light wavelength, and first-order Doppler shifts are
essentially negligible [41,42]. Second-order Doppler shifts are
still present. However, it can be shown that for a heavy ion like
Ra+ this shift is negligible in the Doppler cooling limit [16],
with a projected fractional frequency uncertainty in the low
10−19 levels. It is, of course, a major challenge to achieve
this limit experimentally [11]; excess micromotion of the ion,
caused by electric fields that displace the ion from the middle
of the rf pseudopotential, needs to be minimized.

B. Zeeman shifts

Magnetic fields in the trap lead to frequency shifts of the
clock transition via the linear and quadratic Zeeman effect.
For the transitions that suffer from the linear Zeeman effect
it is hard to quantify the theoretical uncertainty because the
achievable accuracies depend on experimental details. In these
cases, multiple transitions mF ↔ m′

F can be used to average
out the linear effect to the desired level of accuracy. The linear
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TABLE III. Overview of the shifts (in mHz) due to the external fields, with the associated uncertainties in parentheses. The values and
uncertainties are derived from those in Table II, taking into account the field uncertainties as explained in the text. The resulting fractional
frequency uncertainties δν/ν caused by the external-field shifts are given for different scenarios; δν indicates the uncertainty in a certain shift,
rather than the shift itself. The transitions for the different isotopes are as given in Table II.

Shift 223Ra+ 225Ra+(1) 225Ra+(2) 226Ra+(1) 226Ra+(2) 227Ra+ 229Ra+

LZ no yes no yes yes no no

QZ, dc 4.9(7) 0.74(3) −1.28(5) 0 0 2.8(2) 27(3)

QZ, ac (1.2) (0.19) (−0.32) 0 0 (0.7) (6.8)

BB, 293(1) K 163(14) 173(13) 173(13) 163(13) 174(13) 163(13) 174(13)

BB, 77(1) K 0.78(8) 0.83(8) 0.83(8) 0.78(8) 0.83(7) 0.78(7) 0.83(8)

DS, dc scalar (0.026) (0.028) (0.028) (0.026) (0.028) (0.026) (0.028)

DS, dc tensor 0 0 (−0.05) (−0.06) (−0.013) 0 0

DS, ac 0.72(4) 1.6(3) 1.2(3) 0.9(2) 1.5(4) 0.72(4) 1.6(3)

QS 1.5(2) 0.62(3) (24.1) × 103 (−19.6) × 103 (6.0) × 103 0.59(4) 1.2(1)

Total shift (293 K) 170(14) 177(13) (24) × 103 (20) × 103 (6.0) × 103 167(14) 203(15)

Total shift (77 K) 7.9(1.4) 3.8(4) (24) × 103 (20) × 103 (6.0) × 103 4.9(7) 30(7)

Total shift (293 K, no QS) 173(13) 164(13) 175(13)

Total shift (77 K, no QS) 0.7(4) 1.5(2) 2.3(4)

Total δν/ν (293 K) 3.7 × 10−17 3.2 × 10−17 5.9 × 10−14 5.4 × 10−14 1.5 × 10−14 3.7 × 10−17 3.6 × 10−17

Total δν/ν (77 K) 4.0 × 10−18 9.1 × 10−19 5.9 × 10−14 5.4 × 10−14 1.5 × 10−14 2.1 × 10−18 1.7 × 10−17

Total δν/ν (293 K, no QS) 3.2 × 10−17 3.7 × 10−17 3.3 × 10−17

Total δν/ν (77 K, no QS) 1.1 × 10−18 4.9 × 10−19 9.1 × 10−19

Zeeman shift is absent in mF = 0 ↔ m′
F = 0 transitions, in

which case the quadratic Zeeman shift �νQZ becomes the
dominant source of uncertainty. For the state |γ,I,J,F,mF 〉, it
is given by

h�νQZ(γ,I,J,F,mF )

= (gJ µB − gIµN )2 B2J (J + 1)(2J + 1)

×
∑
F ′

{
J F ′ I

F J 1

}2 (
F 1 F ′

−mF 0 mF

)2

× (2F + 1)(2F ′ + 1)

E − E′ , (1)

where the magnetic field B is taken along the z axis; γ

indicates all quantum numbers that are not specified. We
consider only couplings to the hyperfine-structure partners
since other contributions will be suppressed; therefore, the
quadratic Zeeman effect is negligible in the even isotopes. The
Zeeman shifts can be calculated from the hyperfine structure
constants AS,D and BD of the 7s 2S1/2, 6d 2D3/2, and 6d 2D5/2

levels and the electron and nuclear g factors. Table IV lists the
available experimental and theoretical values of AS,D and BD

of the relevant odd isotopes.

1. dc Zeeman shift

The dc Zeeman shifts are caused by the applied static
magnetic field present in the trap. We assume a magnetic
field of 1 mG, which is a typical value needed to split the
Zeeman degeneracies to order ∼10 kHz needed for proper

state addressing. Passive shielding of an ion trap against
magnetic fields has achieved �10 µG field stability [44].
This experimental number is taken as the uncertainty in the
magnetic field strength in Table III. In order to calculate the
uncertainty in the resulting shifts, the uncertainties in AD and
BD , in the magnetic field (∼10 µG), and in the gJ values were
taken into account. For gJ the free-electron values were used
with a conservative 1% uncertainty. The uncertainties due to
gI and the parameters associated with the 7s 2S1/2 state are
negligible.

2. ac Zeeman shift

The rf voltages applied to the trap electrodes require rather
large currents to flow. These currents give rise to an ac magnetic
field in the trap center. In a perfect geometry, when the currents
to all electrodes are equal, the individual contributions of the
electrodes will cancel each other, and the net magnetic field
will be zero. However, this cancellation could be far from
complete [25]. The oscillating magnetic field averages over the
clock interrogation time (which is of the order of the 6d 2DJ -
level lifetime), which is long compared to typical rf periods
(0.1–1 µs). Therefore, the expressions for the dc Zeeman effect
can be used, with a rms magnetic field. For the 199Hg+ clock
this magnetic field is conservatively estimated to be of the order
of milligauss [25]. We use 1 mG as an estimate in Table III
because for Ra+ the mass and other trapping parameters are
similar. The resulting ac Zeeman shift proves to be one of the
largest shifts. Therefore, it is important to work with a rather

043829-4



POTENTIAL OF ELECTRIC QUADRUPOLE TRANSITIONS . . . PHYSICAL REVIEW A 83, 043829 (2011)

TABLE IV. The available experimental and theoretical hyperfine structure constants (in MHz) of the 7s 2S1/2, 6d 2D3/2, and 6d 2D5/2 levels
of the relevant odd isotopes of Ra+. The values A′

J for the isotopes for which no data were available were calculated with A′
J = (I/I ′)(µ′

I /µ)AJ ,
while for BJ we used B ′

J = (Q′/Q)BJ . The reference values are in bold. For the 7 s2S1/2 level, two different sets of experimental data were
available; we used the italic values. The experimental value for AD of the 6d 2D3/2 level of 213Ra+ was used to calculate AD for the 6d 2D3/2

levels of the heavy isotopes; the 213Ra+ magnetic moment used is µI = 0.6133(18) [33]. There are no data for the BD coefficient of the 6d 2D3/2

level or for AD and BD of the 6d 2D5/2 level. Consequently, we used the theoretical values listed and estimated the uncertainty of the AD

coefficients of the 6d 2D5/2 level to be 3% and the uncertainty of all BD coefficients conservatively as 10%.

7s 2S1/2 6d 2D3/2 6d 2D5/2

Isotope Source Ref. AS AD BD AD BD

213Ra+ Expt. [35] 22920.0(6.0) - 0 - 0
Expt. [17] - 528(5) 0 - 0

223Ra+ Expt. [34] 3404.0(1.9) - - - -
Expt. [35] 3398.3(2.9) - - - -
Theory [20] 3567.26 77.08 383.88 −23.90 477.09
Theory [43] 3450 79.56 - −24.08 -

225Ra+ Expt. [34] −27731(13) - 0 - 0
Expt. [35] −27684(13) - 0 - 0
Theory [20] −28977.76 −626.13 0 194.15 0

227Ra+ Expt. [35] −5063.5(3.1) - - - -
229Ra+ Expt. [35] 3789.7(2.3) - - - -

weak trap potential, as the average magnetic field scales with rf
power. By varying the trap parameters the ac Zeeman shift can
be measured. Moreover, averaging schemes that exploit the
hyperfine structure could significantly reduce the uncertainty
in the ac Zeeman shift. In this way it should be possible to
reduce this uncertainty to the level of 25% of the shift itself;
this is the uncertainty used in Table III.

C. Stark shifts

Stark shifts result both from static electric fields (causing
dc Stark shifts) and from dynamic electric fields (causing
ac Stark or light shifts). First, quadratic dipole Stark shifts
are discussed, which are caused by the interaction of the
dipole moment of the atom with the electric field. Next, we
discuss quadrupole Stark shifts, caused by the interaction of
the quadrupole moment of the atom with the gradient of
the electric trap field; we look at both linear and quadratic
quadrupole Stark shifts.

1. dc dipole Stark shift

The theory of the static quadratic dipole Stark shift was
developed by Angel and Sandars [45]. For the state |γ,J,mJ 〉
this shift is given by

h�νdcDS(γ,J,mJ ) = −1

2
α1

0(γ,J )E2 − 1

2
α1

2(γ,J )

×3m2
J − J (J + 1)

2J (2J − 1)
(3E2

z − E2), (2)

where E is the dc electric field strength and α1
0 and α1

2 are
the scalar and tensor polarizabilities, respectively. In Table V
the available theoretical calculations for these polarizabilities
are listed for the 7s 2S1/2, 6d 2D3/2, and 6d 2D5/2 levels in
Ra+; we used the results of Ref. [21] in our calculations.

The polarizabilities for the hyperfine levels |γ,I,J,F,mF 〉 are
calculated using

α1
k (γ,I,J,F ) = (−1)J+I+F+k(2F + 1)

×
{

F F k

J J I

}
α1

k (γ,J ) . (3)

For an ion laser cooled to the Lamb-Dicke regime, dc electric
fields at the position of the ion can be reduced to less than
10 V/m in the process of minimizing the micromotion [25].
This is the field uncertainty that we assume to estimate the
fractional uncertainty in Table III in a worst-case scenario,
i.e., Ez = E.

The main source of dc dipole Stark shifts, however, is the
presence of black-body (BB) radiation due to the nonzero
temperature T of the trap and its surroundings. The energy
shift of a level with dipole scalar polarizability α1

0 in a BB
electric field is given by [46]

h�νBB(γ,J,mJ ) = −1

2
(8.319 V/cm)2

(
T [K]

300

)4

×α1
0(γ,J )(1 + η) , (4)

where η is a small calculable term associated with dynamical
corrections; it is of the order of a few percent [47], and
therefore, it can be neglected compared to the overall 10%
uncertainty given in Table II, which is mainly due to the the-
oretical uncertainties in the polarizabilities. The BB radiation
is assumed to be isotropic, so the tensor polarizability plays
no role. Since the BB radiation shift results in a relatively
large fractional frequency uncertainty at room temperature
T = 293 K (see Table III), the calculation was also performed
for liquid-nitrogen temperature, T = 77 K (the 199Hg+ clock
operates at 4 K). We assume an uncertainty in the temperature
of 1 K, as in Ref. [48].
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2. ac dipole Stark shift

The most important cause of ac dipole Stark shifts is the
laser locked to either the 728 or 828 nm clock transition since

we assume that the cooling and probing laser light is fully
extinguished at the time of measurement. When the laser light
propagates along the z axis, the ac dipole Stark shift of a state
|γ,J,mJ 〉 is given by [49]

h�νacDS(γ,J,mJ ,νL) = − IL

2ε0c

(
α1

0(νL) + Aα1
1(νL)

mJ

2J
− α1

2(νL)
3m2

J − J (J + 1)

2J (2J − 1)

)
, (5)

where IL is the intensity of the laser light, which we take
as 1 µW/mm2, νL is its frequency at the clock transition,
and A is a numerical factor whose value depends on the
type of polarization. Further, α1

0(νL), α1
1(νL), and α1

2(νL)
are the dynamic scalar, vector, and tensor polarizabilities,
respectively, of the state |γ,J,mJ 〉. We choose the polarization
such that A = 0; therefore, we only need the scalar and tensor
polarizabilities. These are given by

α1
0(γ,J,νL) = − 2

3(2J + 1)

∑
γ ′J ′

|〈γ ′J ′||D||γ J 〉|2

× �E

(�E)2 − (hνL)2
, (6)

α1
2(γ,J,νL) = −4

√
5

6

(
J (2J − 1)

(2J + 3)(J + 1)(2J + 1)

)1/2

(−1)2J

×
∑
γ ′J ′

(−1)J−J ′
{

1 1 2
J J J ′

}
|〈γ ′J ′||D||γ J 〉|2

× �E

(�E)2 − (hνL)2
, (7)

with �E = E − E′ and D being the dipole operator. For νL →
0, the above equations reduce to their static counterparts. In
calculating the dynamic polarizabilities we use the values for
the dipole matrix elements given in Refs. [43,50,51]. In using
this sum over the valence states approach, we do not take the
core contributions, which are of the order of 10% [20], into
account. However, the core contributions cancel since we look
at differential shifts, and these contributions are common. The
remaining uncertainty is due to neglected higher-order valence
and valence-core couplings and the uncertainty in the dipole
matrix elements.

TABLE V. Dipole scalar, α1
0 , and tensor, α1

2 , polarizabilities (in
units of 4πε0a

3
0 ) and quadrupole moments 	 (in units of ea2

0 ) for the
7s 2S1/2, 6d 2D3/2, and 6d 2D5/2 levels in Ra+.

Ref. 7s 2S1/2 6d 2D3/2 6d 2D5/2

α1
0 [21] 104.54(1.5) 83.71(77) 82.38(70)

[43] 106.22
α1

2 [21] - −50.23(43) −52.60(45)
	 [20] - 2.90(2) 4.45(9)

3. Quadrupole Stark shift

The interaction of the atomic quadrupole moment with the
gradient of an electric field gives rise to an electric quadrupole
shift. This shift is troublesome in several optical frequency
standards [22]. The expression used for the linear quadrupole
Stark shift is [36]

h�νLQS(γ,I,J,F,mF )

= Adc	(γ,J )
2
[
F (F + 1) − 3m2

F

]
(2F + 1)

[(2F + 3)(2F + 2)(2F + 1)2F (2F − 1)]1/2

×(−1)I+J+F

{
J 2 J

F I F

} (
J 2 J

−J 0 J

)−1

X , (8)

where Adc is the electric field gradient, 	(γ,J ) is the
quadrupole moment, and X contains the angular factors
resulting from the rotation of the quadrupole field frame
to the quantization axis [36]. The quadrupole moment of
the 7s 2S1/2 ground state is zero; those of the 6d 2D3/2 and
6d 2D5/2 levels [20] are listed in Table V. There are three
special cases in which the first-order effect also vanishes for
particular hyperfine states of the 6d 2DJ levels.

(i) F = 0 levels have no quadrupole moment; this applies
to the 223,227,229Ra+ cases.

(ii) When F = 2, I = 3/2, J = 3/2, the 6j -symbol in
Eq. (8) is zero. This set of quantum numbers is available
in 223,227Ra+; however, there is no improvement over case (i).
All other shifts and associated uncertainties were calculated
to be equal to, or larger than, their counterparts in the F = 0
case. Therefore, these transitions have not been included in
Tables II and III.

(iii) For F = 3, mF = ±2 the shift vanishes because of the
factor F (F + 1) − 3m2

F in Eq. (8); this applies to the 225Ra+(1)
case.

The transitions in 226Ra+ and 225Ra+(2) do suffer from a
linear quadrupole shift. These are given in Tables II and III.
To estimate the size of these shifts and their uncertainties, we
assumed that in the trap a typical static stray electric field
gradient Adc � 103 V/cm2 is present due to patch potentials.
We assume that the angular factor X is of order 1. Since the
orientation of the stray field is unknown, we take the full shift
as an estimate of the uncertainty. The effects of the much
larger rf trapping fields average out over the interrogation
period.

However, the transitions that are free from the linear effect
do suffer from a second-order, quadratic quadrupole Stark
shift. This contribution is significant because now the effects
from the rf trap potential do not average out. This rf potential
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gives rise to a typical rms field gradient Aac = 104 V/cm2.
To estimate the size of the shift, we assume that the magnetic
field orientation and the z axis of the quadrupole trap field
coincide. Taking only couplings to hyperfine partners into
account results in

h�νQQS (γ,I,J,F,mF )

= 4A2
ac	(γ,J )2

∑
F ′

(2F + 1)(2F ′ + 1)

E − E′

×
(

F ′ 2 F

−mF 0 mF

)2 {
J F ′ I

F J 2

}2 (
J 2 J

−J 0 J

)−2

. (9)

It should be feasible to achieve an overall 10% accuracy in the
determination of this shift, which is the uncertainty quoted in
Table III.

It can be seen in Table III that, similar to other clocks,
the linear quadrupole shift is by far the largest shift in Ra+.
In 199Hg+ it was canceled by means of an averaging scheme
[25,36,52], which brought down the uncertainty level to the
10−17 level. An alternative was presented more recently for
88Sr+ in Ref. [7], where it is projected that the uncertainty
caused by the electric quadrupole shift can be reduced to the
10−18 level.

IV. DISCUSSION AND CONCLUSIONS

Tables II and III contain the quantitative results of our
studies. Table II lists the sensitivities of the isotopes under
study to the external fields. Also in Table II, the sensitivities of
three other ion clocks that are based on an electric quadrupole
transition are shown for comparison. In Table III, the Ra+
sensitivities have been combined with typical values (and
uncertainties) for the required and spurious external fields
to quantify the resulting shifts and the fractional frequency
uncertainties δν/ν, where ν is the transition frequency and δν

is the uncertainty in the total shift. In the top half of Table III the
different shifts are given in millihertz, with the corresponding
uncertainty given in parentheses.

The transitions 225Ra+(1), 226Ra+(1), and 226Ra+(2) suffer
from the linear Zeeman (LZ) shift, which therefore has to be
controlled to the desired level of accuracy. The transitions
225Ra+(2), 226Ra+(1), and 226Ra+(2) suffer from a linear
quadrupole Stark (QS) shift of the order of 6–24 Hz, which has
to be canceled in order for these cases to be competitive. As
mentioned, an averaging scheme was implemented for 199Hg+,
a system comparable to 225Ra+(2), and 10−17 levels have been
achieved [25,52]. With an alternative averaging scheme, it
appears feasible to reduce the QS shift experimentally to the
10−18 level in 88Sr+ [7], a system comparable to 226Ra+. The
transitions in 223Ra+, 227Ra+, and 229Ra+ are insensitive to
both the LZ and the linear QS shifts, which is, in principle, a
clear experimental advantage. The quadratic QS shifts are only

of the order of 1 mHz. 227Ra+ is overall slightly better than
223Ra+, while 229Ra+ is worse because it has a relatively large
quadratic Zeeman (QZ) shift. As discussed, of these three, only
223Ra can be obtained from a source.

Provided that the LZ and linear QS shifts can be canceled
in 225,226Ra+, the largest remaining shift is caused by the BB
radiation. It is of the order of 0.2 Hz in all the isotopes. As in the
case of 199Hg+, this shift can be rendered negligible by cooling
down the system, albeit at the cost of a more complicated
experimental setup. For that reason, the BB shift is given for
two temperatures, namely, for room temperature (293 K) and
for liquid-nitrogen temperature (77 K). The combination of
these two options with the possibility of averaging away the
QS shift (indicated by “no QS” in Table III) give us, in total,
four different results for four sets of experimental choices, as
shown in the bottom of Table III. In the calculation of these
uncertainties in the case “no QS,” we have assumed that the LZ
shift and the linear QS shift can be averaged out experimentally
to negligible values. The actual obtainable accuracies in these
cases depend on experimental details, but, as discussed, it
appears realistic to aim for accuracy levels of a few times
10−18.

We conclude that, in particular, the isotopes 223,225,226Ra+
are promising clock candidates with projected sensitivities
that are all below the 10−17 level. The actual experimental
feasibility of the scenarios discussed above remains to be
demonstrated, of course. 223Ra+ stands out as an attractive
simple candidate, without LZ and linear QS shifts, providing
a compact, robust, and low-cost atomic clock.

V. SUMMARY

In summary, a theoretical analysis of the possible perfor-
mance of a radium single-ion optical clock was presented.
It was shown that transitions in several readily available
Ra+ isotopes are excellent candidates for alternative optical
frequency standards. The advantages of a heavy single ion that
can be directly laser cooled and interrogated with off-the-shelf
available semiconductor lasers are clear for many applications
in which costs and system size and stability are of importance.
Furthermore, Ra+ is an excellent laboratory for the search for
variation of fundamental constants, where it ranks among the
most sensitive candidates.
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