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Few-cycle self-induced-transparency solitons
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We reveal the existence of an optical self-induced-transparency soliton family in a two-level absorbing system
down to the few-cycle limit. Based on the few-cycle envelope approximation, we introduce a systematical method
of reducing the Maxwell-Bloch equations beyond the slowly varying envelope approximation and characterize
the parameter space to achieve slow and fast lights. Verified by direct numerical simulations with full vectorial
Maxwell-Bloch equations, we also give the relationships for a number of optical cycles on area theory and pulse
group velocity, which demonstrate possible coherent photon-matter interactions.
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I. INTRODUCTION

Self-induced-transparency (SIT) soliton phenomenon in
two-level atomic systems is one of the most well-known
coherent pulse propagation phenomena that have broaden our
knowledge in nonlinear optics [1-3]. An incident optical field
with a 27 pulse area can propagate in a shape-preserving
way which totally inverts and returns the atomic population
back corresponding to the integral of Rabi frequency over
time [4]. The area theorem for SIT systems is a unique
constant of motion in spite of changes in pulse length and
group velocity. As a member of an optical soliton family, SIT
solitons have also been suggested to be potentially capable of
playing an important role in pulsed squeezed state generation
[5,6], quantum nondemolition measurement [7], and quantum
information storage and retrieval [8]. In contrast to the
electromagnetically induced-transparency (EIT) phenomena
that have been widely utilized for applications like slow lights
and quantum memories [9], SIT phenomena are intrinsic
nonlinear coherent pulse propagation effects that may have
more advantages for short optical pulse applications.

With the recent advances in the production of ultrashort
optical pulses of a few optical cycles, subfemtosecond and
attosecond pulses are now available in several laboratories
[10]. For this area of extreme nonlinear optics [11], the validity
of area theorem is re-studied in the few-cycle regime both the-
oretically [12] and experimentally [13]. When the optical pulse
is as short as a few optical cycles, new spectral components
from carrier-wave Rabi flopping during pulse propagation
are created. Cubic-polynominal featured population difference
[12,14], spectral modification [15], subcycle solitary wave
formation [16], single-cycle gap soliton [17], and the pulse area
evolution [18] are also demonstrated by solving fully vectorial
Maxwell-Bloch equations (MBE) through direct numerical
simulations.

In addition to solving the fully vectorial Maxwell equations,
a generalized few-cycle pulse propagation equation (FPE)
was developed to go beyond the slowly varying envelope
approximation (SVEA) [19,20]. With the consideration of
a transparent medium, a shape-preserving few-cycle soliton
propagation is shown to exist down to a single-cycle regime
[20,21]. When a resonance excitation field drives in specific

*yuyalin@mx.nthu.edu.tw

1050-2947/2011/83(4)/043828(4)

043828-1

PACS number(s): 42.65.Tg, 42.50.Md, 42.65.Re

resonant absorption two-level media, Maxwell-Drude-Bloch
equations and non-SVEA model are proposed to support
few-cycle optical solitons [22,23]. For possible coherent light-
matter interactions in the regime of extremely short time scale,
the existence of shape preserving SIT solitons of the few-cycle
duration is still unanswered.

In this work we investigate few-cycle optical solitons in a
resonance absorbing medium which is modeled by a two-level
atomic system. Our formulation, based on few-cycle nonlinear
envelope approximation, differs considerably from earlier
studies. Instead of the reduced sine-Gordon equation [24], we
derive a cubic-quintic nonlinear differential equation from the
modified MBE and reveal the possibility of generating shape-
preserving few-cycle SIT soliton solutions. The parameter
space in terms of atomic density and group velocity for bright
solitons is identified from slow-light to superluminal regimes
and stability of these solitons are discussed. The possibility of
reducing threshold energy to form few-cycle SIT solitons is
demonstrated with a wave vector offset.

II. DERIVATION OF MODIFIED MBE BEYOND SVEA

Considered are the dimensionless MBE describing the
interaction between a two-level system and an ultrashort
electromagnetic wave-packet E,

r
(3, + )E = (3, — 3, (582), (1)
P =iP+NE, 2
N =—3(PE*+ P*E). 3)

Here P and N are the atomic transition dipole moment
and related population difference normalized to total atomic
density N,, respectively. The speed of light is normalized to
1 and the polarizability and resonance detuning frequency
are denoted by I' = Nau?/(hepwy) and § = wy — w,, with
the dipole coupling coefficient u, reduced Planck constant,
h, the vacuum permittivity €p, the central frequency for
the field packet wy and the atomic transition frequency
w,. To go beyond SVEA we use the polarization P =
P(t,2)exp(ikz — iwot + i¢pp) with the propagation constant
expanded by k =Y "~ " ku(®w — wp)"/m! in which k, =
(00)"klw=e, and ¢p is an arbitrary phase offset to the
polarization. It yields that the right-hand side of Eq. (1)

can be approximated by %[1 +i(2 — 0)2—; -1 - 0’)28_’22 +
@

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.83.043828

YUANYAO LIN, - HONG CHEN, AND RAY-KUANG LEE

O(Z)P(t,z) when [3. P(t,2)| < lkoP(t.2)] is assumed. The
@y

parameter o which involves the ratio between the phase
velocity to group velocity v, for the nonlinear envelope of
the wave packet at a propagation constant near ko is denoted
by (1 + wok/ko)/2 =[1 + (a)o/ko)vg’l]/Z, which stands for
the envelope correction terms in the FPE.

We shall address that the Bloch equations in Egs. (2) and (3)
under dipole approximation and rotation wave approximation
[25] are valid when the interacting electric field remains
constant over the atomic scale (a few angstroms), which is
typically true even for a few-cycle pulse at the wavelength
~1 um as long as the electric field amplitude is moderate.
Furthermore, the relaxation of the atomic state is also ignored
since the the time scale associated with the interaction of
resonance radiation (ultrashort pulse) is much shorter then the
atomic relaxation time [4]. The Maxwell equation in Eq. (1) is
based on the concept of few-cycle envelope equations [19,20],
which is justified to be accurate down to a single-cycle pulse
duration [26].

III. FEW-CYCLE SIT SOLITONS SOLUTIONS

In order to find the corresponding SIT soliton solution,
which retains a constant pulse shape along the propagation
direction z, we transform Egs. (1)—(3) into a moving frame
with & =t — z/v, and n = z. For convenience we use E =
Qexp(i®) and P = (U +iV)exp(i®) in which the real
functions Q, U, V are the amplitudes and @ is the phase for
the complex envelopes. To simplify, the transverse Laplacian
and group velocity dispersion are neglected here and and the
resonance condition § = 0 is assumed. In the following only
results up to the first-order correction in o are shown in order to
give an explicit mathematical form and a clear physical picture.
Similar results can be found by using the same method below
for higher order corrections and off-resonance condition.
Furthermore, we also assume and apply in calculations that
the density of an atom is small and the phase velocity of the
optical pulse approaches the speed of light.

The conservation of Bloch vectors implies U2 + V? +
N? =1 [27], which together with the constraint 0,0 =
0 for solitary waves leads to an identity, that is, [N +
(1-— vg’l)Q2/ I'l = £1 = Ny. Under these assumptions we
can further argue that 9,U =9,V = 9, N = 0 for a shape-
preserving SIT soliton solution. Then we assume 3,® = 8 by
implying a change of the propagation constant 8 due to the
field-atom interaction [28]. As a result, the equation of motion
for the phase function can be found:

9P P Nol'(2 - 0)
9E 21 —v,7h) 41 —v )

3
—3C-00’ - “)
Subsequently, by plugging Eq. (4) into the modified MBE in
Egs. (1)—(3), one readily derives a cubic-quint (CQ) nonlinear
ordinary differential equation for the SIT soliton envelope
function in the few-cycle regime,

70 NoI' 5 1-2-0)AT
%2_[%hwg0_A]Q_[ 2 ]Q
32 —0)? 5
- [T} 0, (5)
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where we introduce a new offset parameter for the propagation
constant A = — 5 1jg—l) + 2’(011:(3;{; . The exact bright soliton
solution to Eq. (5) subjected to the condition Q(400) = 0 is
obtained by the well-known form [29]

72 & o
Q:{—p|1—(2—U)A||:A1cosh<—>:l:1:|} , (6)
2 Tp

where 7, = [2NoI'/(1 — vg’l) —4A%1712 and A, =

gy (1(3(_2‘:)2 A T 11'/? are real quantities and the sign is chosen
H

for the case of a negative (4) or positive (—) cubic nonlinearity.

The corresponding pulse duration (full width half maximum

of the envelope function) Wy, defined in terms of number of

optical cycles and the pulse energy E, are calculated with

the expressions Wy = 2[(1271:[)"1:,) — 4A2]’1/zcosh_l[i§—]3 + 4]
8

and E = [* Q%¢ = |21_60|tan_1[(ﬁ}—:)i'/2], respectively.
The induced Bloch vector components which satisfy the
conservation of Bloch vectors are obtained by substituting
the solution Egs. (4) and (6) back into the modified MBE in
Egs. (1)-(3).

It is seen in Eq. (5) that the sign of quintic nonlinearity
is negative while the sign of cubic nonlinearity alters by
varying the polarizability I', the group velocity v,, and the
change of propagation constant 8, accordingly. The fact that
the sign of cubic nonlinearity alters despite negative quintic
nonlinearity suggests that our few-cycle SIT soliton family can
be categorized by the set of parameters defined by I', o, and
in our system. When o = 2, Eq. (6) accurately replicates the
chirping-free 27 pulse solutions for a sine-Gorden equation
transformed from standard many-cycle MBE [2,27]. It is worth
mentioning that the related temporal phase variation for these
few-cycle SIT solitons introduces a frequency chirping that
is quadratic to electric field amplitude and is given by the
expression in Eq. (4). Such a chirping signature depends on
the group velocity of the optical pulse (vanishes as o = 2)
and is very specific for admitting the few-cycle envelope
approximation with correction terms.

IV. DISCUSSIONS

First we study SIT soliton in the case Ny = —1 by assuming
that all the atoms are initially prepared in the ground state
before the emergence of an optical pulse. For 7, to be real, it is
required that 0 < vic) < v, < véc) < 1, where vi") and véc) are
the cutoff velocities of solitary wave solutions. When the wave
packet has the same propagation constant k with respect to the
carrier, thatis, (8 = 0), in Fig. 1 we demonstrate an example of
these few-cycle SIT soliton profiles (a) and its induced atomic
Bloch vectors (b), accordingly. Comparisons are illustrated in
Figs. 1(c) and 1(d) for SIT soliton solution with and without
the envelope correction terms by using finite-difference-time-
domain (FDTD) simulation upon the full vectorial Maxwell-
Bloch equations [14]. In the absence of the correction term,
a severe pulse distortion in the electrical field is observed in
addition to the known cubic-polynomial featured population
difference [12,14] when the soliton duration goes below 10
optical cycles. Yet employing only the first-order correction,
the SIT soliton solutions found in Eq. (6) remain shape
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FIG. 1. (Color online) (a) Example of few-cycle SIT soliton
solutions for their electrical field amplitude with (solid lines) and
without (dashed lines) the carrier and related temporal phase (dashed-
dotted lines) in the parameter space marked by A in Fig. 2. (b) The
corresponding U, V, and N of Bloch vectors are shown in solid,
dashed, and dashed-dotted lines, respectively. (c) FDTD simulations
for SIT solitons with (in black) and without (in red) correction terms
for which the associate population differences are shown in (d). The
parameter used are § = 0, I" = 0.06, and v, = 0.9.

preserved under the fully vectorial propagation environment,
down to a pulse duration as short as five optical cycles.

The relationship for the pulse duration of supported
few-cycle SIT solitons to the group velocity v, and the
polarizability I is plotted in Fig. 2 (black curves) and the
dependence of pulse area defined by A = [ fooo Qdé is plotted
in Fig. 2 (red curves) as well. For these SIT solitons their
pulse areas exceed 2w and diverge when the group velocity
approaches the two cutoffs. Solitons propagating at a velocity
near v® has a diverging pulse area due to the strong quintic
nonlinearity as a result of a narrow and intense envelope.
Although ultraslow solitons (dashed) at velocity close to
v have a broad envelope but a divergent quintic nonlinear
coefficient, the result is conspicuous because it might fall
out of the regions of convergence to admit corrections to

I, polarizability

1
v, g1oup velocity

FIG. 2. (Color online) The contour plots for the relationship of
pulse duration (in black) and pulse area (in red) (normalized to 27)
for the supported few-cycle SIT solitons in the parameter space
defined by the group velocity v, and the polarizability I' with the
condition 8 = 0. The shaded regions define the group velocity cutoffs
calculated by the required soliton criterion. To the left of the dashed
line Ny = —1 and v, < 1 and to the right Ny = 1 and v, > 1.
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FIG. 3. (Color online) Pulse energy-duration (in red) and pulse
area-duration (in black) relationship for slow-light (a) and fast-light
(b) few-cycle SIT solitons under the conditions § = 0 and A = 0 are
shown in solid and dashed lines, respectively. The solid-dashed line
refers to pulse energy duration for SIT solitons under SVEA. The
parameters I' = 0.05 is used and Ny = —1 and Ny = +1 are used for
slow- and fast-light regimes, respectively.

the first order. In particular, within this model we confirm
the breakdown of area theory near the few-cycle regime and
predict its invalidity for a SIT soliton.

We note that the pulse duration of these few-cycle SIT
solitons is broadened owing to a nonvanishing offset parameter
for the propagation constant A. Set A = 0 with a change of the
propagation constant by choosing g = NoI'(2 — ¢)/2, then
one obtains a few-cycle SIT soliton solution with a minimal
pulse duration at a fixed group velocity. The pulse area of these
solitons is found to be less than 2 and their formation energy
E is also lower than those revealed above. In Fig. 3(a) we
show the pulse energy-duration relation for the case without a
change of propagation constant 8 = 0, with a suitable change
of propagation constant A = 0 and without a correction term.
Suppose that A = 0, the group velocity cutoffs extend to zero
and to the speed of light; meanwhile the pulse duration also
goes down with a reduced formation energy.

Besides SIT solitons of slow group velocity, light matter
interaction can support other types of solitary waves. In
the inverted media, where Ny = +1, bright few-cycle SIT
solitons are found provided the condition (1 —v,™') > 1
which indicates an exotic propagation effect with v, > 1,
namely superluminal (fast light) [30,31]. In Fig. 4 we show
examples of fast-light SIT soliton given I' =0.025 and
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FIG. 4. (Color online) FDTD simulation of a fast-light SIT soliton
solution in the parameter space marked by B in Fig. 2. Insets show
the electrical field profile at (a) = 0 and (b) t = 39.1 (unit of w, b,
respectively. Center of mass trajectory (in white) of the soliton and
velocity of light (in black) are shown as dashed lines.
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v, = 1.1 and demonstrate its superluminal propagation in
FDTD simulations by evaluating the the center of mass
trajectory of the soliton, defined by Z.(¢) = (ffooo z|E?dz)/
()%, |EPdz).

The parameter space for the pulse area and pulse duration of
these fast-light SIT solitons without a change of propagation
constant (8 = 0) are also plotted in Fig. 2. Similar to the
slow-light SIT solitons, their pulse areas exceed 2 and diverge
when the group velocity approaches the cutoff described by
the shaded area to the right of the dashed line in Fig. 2.
The breakdown of area theory near the few-cycle regime is
also valid in the superluminal regime. In Fig. 3(b) we also
show the pulse area-duration relations and energy-duration
relations for the fast-light solitons with and without a change
of propagation constant and without correction term, which
reveals very similar behavior to those explored in slow-light
solitons discussed above.

SIT soliton is proved to be stable against perturbations
[27]. Even though the stability of bright solitons in the CQ
nonlinear equations has been studied for various combinations
of cubic and quintic nonlinearities [32]. In this work the CQ
model for SIT soliton is valid with an additional constraint
imposed by the conservation of Bloch vectors. To investigate
the instability property of these SIT solitons we perform a
linear stability scheme numerically with eigenvalue solvers
to Egs. (1)—(3) at the moving frame (&,7) not only for the
wave solution obtained in Eq. (5) but also for the induced
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Bloch vector components accordingly. It shows that in the
entire spectrum the eigenvalues of perturbed modes are real
and therefore these few-cycle SIT solitons are stable provided
the initial atomic state is stable. Yet for the fast-light solitons
in the inverted media, they are unstable due to the spontaneous
instability [31], which is not considered in this paper.

V. CONCLUSIONS

To summarize, by deriving from the modified Maxwell-
Bloch equations beyond SVEA we introduce a systematic
approach for the studies on the few-cycle SIT solitons.
Some families of pulse-area tunable few-cycle SIT optical
soliton are categorized in slow-light and fast-light regimes,
and verified with FDTD simulations upon the full vectorial
Maxwell-Bloch equations. Our work reveals the existence of
few-cycle SIT solitons with a pulse area smaller than 2w
and the possibility of reducing the formation energy for SIT
solitons by choosing a wave vector offset. Supported by the
results of this work, it is practically realizable to excite and
manipulate few-cycle SIT solitons with a controllable group
velocity, pulse energy, and pulse area by a proper adjustment
of the wave number offset and temporal chirping behavior.
Combining with recent successful synthesis of arbitrary wave
forms in the subfemtosecond regimes [33], the prediction in
this work paves the way to bring coherent pulse phenomena
into the field of extreme nonlinear optics.
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