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Electromagnetically induced transparency with quantized fields in optocavity mechanics
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We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems.
The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output
quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the
single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus
paving the way for using optomechanical systems as memory elements.
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I. INTRODUCTION

The interaction of a nanomechanical system via radiation
pressure [1,2] is like a three-wave interaction in nonlinear
optics [3]. This interaction can lead to processes like up-
conversion; for example, a photon of frequency ωc can be
converted into a photon of frequency ωp = ωc + ωm, where
ωm is the frequency of the mechanical oscillator. Such upcon-
version processes have been useful in cooling nanomechanical
systems [4–7]. In a previous article [8], we showed how
such upconversion processes can lead to electromagnetically
induced transparency (EIT) in optomechanical systems. The
EIT in such systems turned out to share many of the features
of EIT in atomic vapors. The EIT in optomechanical systems
has been seen experimentally [9–11]. Traditionally, almost all
of the EIT experiments in atomic systems and other systems
have been done with coherent pump and probe fields [12–14].
Akamatsu et al. [15] did the very first experiment on EIT using
squeezed light in atomic vapors. They essentially reported that
squeezing of the probe is not degraded much by the quantum
noise of the medium under EIT conditions. Subsequently, a
number of other experiments [16,17] on EIT using quantized
fields were reported. The EIT with quantized fields is very
significant in the storage of fields at the single-photon level
[18–21].

In this paper, we examine EIT in optomechanical systems
using quantized fields. In optomechanical systems, noise is
added by both the resonator and the mechanical system. We
find the conditions when the perfect EIT of the quantized
field results. We study how the temperature of the mechanical
system can degrade EIT. We present detailed results for the
designs of nanomechanical systems as used in Refs. [9,22].
We find that certain designs of nanomechanical systems are
good even at temperatures on the order of 100 mK. Thus,
such systems would be quite useful as optical memories at
the single-photon level. The results that we present can be
extended to the reactive case [23–25].

The organization of the paper is as follows. In Sec. II, we
describe the model, derive the equations of motion for the
system, and obtain the steady-state mean values. In Sec. III,
we show how to detect the EIT with quantized fields, and
we present a homodyne detection and obtain the relevant
spectrum. In Sec. IV, we discuss the impact of the coupling
field on the homodyne spectrum of the output field and show
the existence of the EIT in the homodyne spectrum of the
quantized field at the output.

II. MODEL

The model that we are going to consider has been discussed
in detail previously [26,27] and is sketched in Fig. 1. The cavity
consists of a fixed mirror and a movable mirror separated by a
distance L. The fixed mirror is partially transmitting, while the
movable mirror is 100% reflecting. The cavity is driven by a
strong coupling field at frequency ωc. A quantized weak probe
field in a squeezed vacuum state at frequency ωp is injected
into the cavity through the fixed mirror. The movable mirror
interacts with the cavity field through radiation pressure. The
movable mirror is modeled as a harmonic oscillator with mass
m, frequency ωm, and decay rate γm. Moreover, the movable
mirror and its environment are in thermal equilibrium at a low
temperature T .

In such a system, the coupling between the movable mirror
and the cavity field is dispersive, so the frequency ω0(q) of
the cavity field depends on the displacement q of the movable
mirror: ω0(q) = nπc/(L + q), where c is the light speed in
vacuum and n is the mode number in the cavity. For q � L,
we can expand ω0(q) to the first order of q; thus, we have
ω0(q) ≈ ω0(0) + ∂ω0(q)

∂q
q ≈ ω0 − ω0

L
q, where we write ω0(0)

as ω0.
Let c (c†) be the annihilation (creation) operators for the

cavity field and Q and P be the dimensionless operators
for the position and momentum of the movable mirror with

Q =
√

2mωm

h̄
q and P =

√
2

mh̄ωm
p. Note that the commutation

relation for Q and P is [Q,P ] = 2i. In a frame rotating at
the frequency ωc of the coupling field, the Hamiltonian for the
system is

H = h̄(ω0 − ωc)c†c − h̄gc†cQ + h̄ωm

4
(Q2 + P 2)

+ ih̄ε(c† − c). (1)

In the above equation, the parameter g = (ωc/L)
√

h̄/(2mωm)
is the coupling strength between the cavity field and the
movable mirror, where we assume ω0 � ωc. The parameter
ε is the real amplitude of the coupling field, depending on its

power ℘ by ε =
√

2κ℘

h̄ωc
, where κ is the photon loss rate due to

the transmission of the fixed mirror.
The time evolution of the total system is obtained from the

Hamiltonian Eq. (1) by deriving the Heisenberg equations of
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FIG. 1. Sketch of the studied system. A coherent coupling field
at frequency ωc and a squeezed vacuum at frequency ωp enter the
cavity through the partially transmitting mirror.

motion and adding the damping and noise terms. The basic
equations are given by

Q̇ = ωmP,

Ṗ = 2gnc − ωmQ − γmP + ξ,
(2)

ċ = i(ωc − ω0 + gQ)c + ε − κc +
√

2κcin,

ċ† = −i(ωc − ω0 + gQ)c† + ε − κc† +
√

2κc†in.

Here, we have introduced the thermal Langevin force ξ with
a vanishing mean value, resulting from the coupling of the
movable mirror to the environment. The Langevin force ξ has
the correlation function in the frequency domain

〈ξ (ω)ξ (	)〉 = 4πγm

ω

ωm

[
1 + coth

(
h̄ω

2kBT

)]
δ(ω + 	),

(3)

where kB is the Boltzmann constant. Throughout this paper,
the following Fourier relations are used:

f (t) = 1

2π

∫ +∞

−∞
f (ω)e−iωtdω,

(4)

f †(t) = 1

2π

∫ +∞

−∞
f †(−ω)e−iωtdω,

where f †(−ω) = [f (−ω)]†. cin represents the input quantum
field, which is centered around the frequency ωp = ωc + ωm

with a finite bandwidth �. The quantized field has the following
nonvanishing correlation functions:

〈cin(ω)cin(	)〉 = 2π
M�2

�2 + (ω − ωm)2
δ(ω + 	 − 2ωm),

(5)

〈cin(ω)c†in(−	)〉 = 2π

[
N�2

�2 + (ω − ωm)2
+ 1

]
δ(ω + 	),

where N is the photon number in the squeezed vacuum
and M = √

N (N + 1). The antinormally ordered term has
a broadband contribution coming from vacuum noise. Note
that by setting M = 0 we would obtain a standard phase-
independent quantum field with a mean number of photons

N�2

�2+(ω−ωm)2 around the frequency ω = ωm.

The mean values at steady state can be obtained from Eq. (2)
by setting all of the time derivatives to zero. These are found
to be

Ps = 0, Qs = 2g|cs |2
ωm

, cs = ε

κ + i�
, (6)

where

� = ω0 − ωc − gQs (7)

is the effective cavity detuning.

III. THE OUTPUT FIELD AND ITS MEASUREMENT

The output field is a quantum field; it contains many Fourier
components. Since the quantized input field is centered around
ωp = ωc + ωm, the interesting component of the output field
is near the probe frequency ωp, so we mix the output field
c̃out(t) with a strong local field clo(t) centered around the probe
frequency ωp at a 50:50 beam splitter, as shown in Fig. 2. In
a frame rotating at the frequency ωc, clo(t) = cloe

−iδ0t , where
δ0 = ωp − ωc. The difference between the output signals from
the two photodetectors is sent to the spectrum analyzer, and
the output signal from the spectrum analyzer depends on the
phase of clo. If clo is real, then the homodyne spectrum X(ω)
of the output field measured by the spectrum analyzer is given
by

〈[c∗
lo(t)c̃out(t) + c.c.][c∗

lo(t ′)c̃out(t
′) + c.c.]〉

= c2
lo

2π

∫
dωe−iω(t−t ′)X(ω). (8)

Thus, in our investigations of EIT with quantized fields, X(ω)
is the quantity of interest.

In order to study the EIT effect in the homodyne spectrum
X(ω) of the output field, we will calculate the fluctuations of
the output field. The steady-state part would not contribute as
it is at the frequency of the coupling field. We assume that
the photon number in the cavity is large enough so that each

FIG. 2. Sketch of the measurement of the output field. The output
field c̃out(t) is mixed with a strong local field clo(t) centered around
the probe frequency ωp at a beam splitter, where c̃out(t) is defined
as the sum of the output field cout(t) from the cavity and the input
quantized field cin(t). BS, 50:50 beam splitter; PD, photodetector;
SA, spectrum analyzer.
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operator can be written as a linear sum of the steady-state mean
value and a small fluctuation, which yields

Q = Qs + δQ, P = Ps + δP, c = cs + δc, (9)

where δQ, δP , and δc are the small fluctuations around
the steady state. By substituting Eq. (9) into Eq. (2), one
can arrive at the linearized equations for the fluctuation
operators. Further, we transform the linearized equations into
the frequency domain by Eq. (4) and solve it; we can obtain
the fluctuations δc(ω) of the cavity field. Then, using the
input-output relation cout(ω) = √

2κc(ω) − cin(ω), we can find
the fluctuations δcout(ω) of the output field. For the purpose of
Fig. 2, we define the output field as c̃out(ω) = cout(ω) + cin(ω);
then we find the result

δc̃out(ω) = V (ω)ξ (ω) + E(ω)cin(ω) + F (ω)c†in(−ω), (10)

in which

V (ω) =
√

2κgcsωmi

d(ω)
[κ − i(ω + �)],

E(ω) = 2κ

d(ω)

{
2ig2|cs |2ωm + (

ω2
m − ω2 − iγmω

)
× [κ − i(ω + �)]

}
,

F (ω) = 4κ

d(ω)
ωmg2c2

s i, (11)

where

d(ω) = −4ωm�g2|cs |2 + (
ω2

m − ω2 − iγmω
)

× [(κ − iω)2 + �2]. (12)

The first term on the right-hand side of Eq. (10) refers
to the contribution of the thermal noise of the movable
mirror, and the other two terms represent the contribution
of the squeezed vacuum. To illustrate the meaning of the
last two terms, let the squeezed vacuum be a single mode,
i.e., cin(t) = Ce−i(ωp−ωc)t ; then cin(ω) = 2πCδ(ω − ωp + ωc)
and c

†
in(−ω) = 2πC†δ(ω + ωp − ωc). Thus, the fluctuations

of the output field δc̃out(t) = 1
2π

∫ +∞
−∞ V (ω)ξ (ω)e−iωtdω +

CE(ωp − ωc)e−i(ωp−ωc)t + C†F (ωc − ωp)e−i(ωc−ωp)t . There-
fore, E(ωp − ωc) is the component at the probe frequency
ωp, which in the rotating frame is ωp − ωc, and F (ωc − ωp)
is the component at the new frequency 2ωc − ωp, which in
the rotating frame is ωc − ωp, due to the nonlinear interaction
between the movable mirror and the cavity field.

By the aid of the correlation functions of the noise operators
cin(ω) and ξ (ω) and neglecting fast oscillating terms at
frequency ±2ωm, we obtain the homodyne spectrum X(ω)
of the output field as measured by the setup of Fig. 2,

X(ω) = E(ω + ωm)E(−ω + ωm)
M�2

�2 + ω2
+ |E(ω + ωm)|2

× N�2

�2 + ω2
+ E∗(−ω + ωm)E∗(ω + ωm)

M�2

�2 + ω2

+ |E(−ω + ωm)|2 N�2

�2 + ω2
+ |E(ω + ωm)|2

+ |F (−ω + ωm)|2 + |V (ω + ωm)|22γm

ω + ωm

ωm

×
{

1 + coth

[
h̄(ω + ωm)

2kBT

]}
+ |V (−ω + ωm)|22γm

× ω − ωm

ωm

{
1 + coth

[
h̄(ω − ωm)

2kBT

]}
, (13)

where the first four terms in Eq. (13) originate from the
squeezed vacuum, the next two terms not involving N and
M are the contributions of the spontaneous emission of the
input vacuum noise, and the last two terms result from the
thermal noise of the movable mirror.

IV. EIT IN THE HOMODYNE SPECTRUM OF THE
OUTPUT QUANTIZED FIELD

After having derived the homodyne spectrum of the output
field, we next examine it numerically to explore the EIT
phenomenon in the homodyne spectrum of the output field.
Since the original Eqs. (2) are nonlinear, these can have
instabilities. Thus, in the following, we work in the stable
regime of the system. We first examine the frequency at which
we expect transparency. This is ω = 0. For N ≈ M ,

X(0) = N [E(ωm) + E∗(ωm)]2 + |E(ωm)|2 + |F (ωm)|2

+ 4|V (ωm)|2γm coth

[
h̄ωm

2kBT

]
. (14)

We use the parameters from the experimental paper [9]
focusing on the EIT in the optomechanical system: the
wavelength of the coupling field λ = 2πc/ωc = 775 nm,
the coupling constant g = 2π × 12 GHz/nm

√
h̄/(2mωm), the

mass of the movable mirror m = 20 ng, the frequency of the
movable mirror ωm = 2π × 51.8 MHz, the cavity decay rate
κ = 2π × 15 MHz, κ/ωm = 0.289, the mechanical damping
rate γm = 2π × 41 kHz, and the mechanical quality factor
Q′ = ωm/γm = 1263. In addition, we choose the linewidth of
the squeezed vacuum � = 2κ and consider the resonant case
� = ωm.

For N = 10 and M = √
N (N + 1) ≈ 10, ℘ = 20 mW,

and T = 20 mK, the first term in Eq. (14), which is the
contribution of the squeezed vacuum, is about 6.5 × 10−4,
the sum of the second and third terms in Eq. (14), which
are the contributions of the input vacuum noise, is about 0.16,
and the last term arising from the thermal noise of the movable
mirror is about 0.14. The contribution of the input quantum
field in principle can be obtained by doing the experiment
with and without the quantized field and by subtracting the
data, i.e., by studying X(0) − X(0)|N=0. The squeezed field
part in a sense exhibits perfect EIT. If M = 0, i.e., the input
quantized field is phase insensitive, then such a field leads
to a term 2N |E(ωm)|2, which is equal to 1.6 for the above-
mentioned parameters, and hence there is no perfect EIT. The
squeezed field changes 2N |E(ωm)|2 to N [E(ωm) + E∗(ωm)]2,
and for the above parameters, the number changes from 1.6 to
6.5 × 10−4.

For N = 5, M = √
N (N + 1) and 0, and T = 20 mK, we

plot the homodyne spectrum X(ω) of the output field as a
function of the normalized frequency ω/ωm in the absence
(dotted curve) and presence (solid, dot-dashed, and dashed

043826-3



SUMEI HUANG AND G. S. AGARWAL PHYSICAL REVIEW A 83, 043826 (2011)

0.4 0.2 0.2 0.4
ω ω m

20

40

60

80

X ω

FIG. 3. (Color online) Homodyne spectrum X(ω) as a function
of ω/ωm for N = 5 in the absence (dotted curve) and the presence
(solid, dot-dashed, and dashed curves) of the coupling field for the
temperature of the environment T = 20 mK. The solid curve is for
℘ = 10 mW and M = √

N (N + 1), the dot-dashed curve is for ℘ =
20 mW and M = √

N (N + 1), and the dashed curve is for ℘ =
20 mW and M = 0.

curves) of the coupling field in Fig. 3. First, let us look
at the case that the input quantum field is phase dependent
[M = √

N (N + 1)]. In the absence of the coupling field, one
can note that the homodyne spectrum of the output field has a
Lorentzian line shape. However, in the presence of the coupling
field at different power levels, the solid curve [℘ = 10 mW and
M = √

N (N + 1)] and the dot-dashed curve [℘ = 20 mW
and M = √

N (N + 1)] exhibit the EIT dip, which is the
result of the destructive interference between the squeezed
vacuum and the scattering quantum field at the probe frequency
ωp generated by the interaction of the coupling field with
the movable mirror. For ℘ = 20 mW and M = √

N (N + 1),
the minimum value of X(ω) is about 0.22. Moreover, the
linewidth of the dip for ℘ = 20 mW is larger than that for
℘ = 10 mW due to power broadening. Generally, the EIT
dip has a contribution to its width that is proportional to the
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ω ω m
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80

X ω

FIG. 4. (Color online) Homodyne spectrum X(ω) as a function of
ω/ωm for different values of the parameter N and M = √

N (N + 1)
in the absence (dotted curves) and the presence (solid curves) of
a coupling field with power ℘ = 10 mW and temperature of the
environment T = 100 mK. The upper two curves are for N = 5, and
the lower two curves are for N = 1.
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FIG. 5. (Color online) As in Fig. 4 but now the parameters used
are from Ref. [22].

power of the coupling field. We indeed find that the width
for ℘ = 20 mW is 0.26ωm, which is about twice the width for
℘ = 10 mW. If the input quantum field is phase independent
(M = 0) (the dashed curve), then we can see that the maximum
value of X(ω) for ℘ = 20 mW and M = 0 is about half that
for ℘ = 20 mW and M = √

N (N + 1).
Next, we increase the temperature to 100 mK. Figure 4

displays the homodyne spectrum X(ω) of the output field
against the normalized frequency ω/ωm in the absence (dotted
curves) and presence (solid curves) of the coupling field for
N = 1 and 5 and M = √

N (N + 1). In the presence of the
coupling field (℘ = 10 mW), it is seen that the EIT dip still
appears in the homodyne spectrum of the output field for
N = 1 and 5. Note that the two dips almost have the same
minimum values (about 1.43) and the same linewidth (about
0.15ωm). Hence, the temperature of the environment is not
detrimental to the EIT behavior.

The effects discussed above occur under a wide range of
parameters. We demonstrate this by using the experimen-
tal parameters [22] λ = 2πc/ωc = 1064 nm, L = 25 mm,
g ≈ 2π × 11.28 MHz/nm

√
h̄/(2mωm), m = 145 ng, ωm =

2π × 947 kHz, κ = 2π × 215 kHz, κ/ωm = 0.227, γm =
2π × 141 Hz, and Q′ = ωm/γm = 6700. The values for the
parameters T , ℘, N , M , �, and � are the same as those in
Fig. 4. Shown in Fig. 5 is the homodyne spectrum X(ω) of the
output field as the normalized frequency ω/ωm is varied for
T = 100 mK and ℘ = 0 and 10 mW. Note that the EIT exists
for N = 1 and 5 in the presence of the coupling field. The
linewidth of the dip for N = 5 is about 0.2ωm and as expected
gets broadened due to power. We have further studied the effect
of temperature, and we find that there is a rather weak depen-
dence of the EIT curves on temperature. Therefore, current
optomechanical designs can be used to realize quantum optical
memory at the single-photon level. This can be demonstrated
using the numerical simulations and following the standard
procedure as in Refs. [19–21]. One has to modulate the
squeezed vacuum field cin so that it is a pulse field and uses, say,
a super-Gaussian for the coupling field. The super-Gaussian
enables one to conveniently switch on and off the coupling
field [28].
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V. CONCLUSIONS

In conclusion, we have demonstrated EIT using quantum
fields in optomechanical systems under a wide range of
conditions. For squeezed quantum fields, we obtained the
perfect EIT. The EIT gets degraded in phase-insensitive
quantum fields. We have shown that even temperature is not
critical for observations of EIT. The results can be generalized
to optomechanical systems working on the reactive coupling

[23–25]. Our work suggests that optomechanical systems
could be used as elements for quantum memory, but explicit
demonstration will be given elsewhere.
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