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Local-field correction in the strong-coupling regime
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The influence of the local-field correction on the strong atom-field coupling regime are investigated using
the real-cavity model. The atom is positioned at the center of a multilayer sphere. Three types of mirrors
are considered: perfectly reflecting, Lorentz band gap, and Bragg-distributed ones, with special emphasis on
experimental practicability. In particular, the influence of the local field on the spectral resonance lines, the
Rabi oscillation frequency and decay rate, and the condition indicating the occurrence of the strong-coupling
regime are studied in detail. It is shown that the local-field correction gives rise to a structureless plateau in
the density of states of the electromagnetic field. The level of the plateau rises with increasing material density
and/or absorption, which may eventually destroy the strong-coupling regime. The effect of the local field is
especially pronounced at high-material densities due to direct energy transfer from the guest atom to the medium.
At lower material density and/or absorption, variation of the material density does not seem to affect much the
strong-coupling regime, except for a small shift in the resonance frequency.
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I. INTRODUCTION

For a long time it has been known that when a guest
atom is embedded in a host medium then the electromagnetic
field acting on it differs in general from the macroscopic
field obtained by performing an unweighted spatial average
over an appropriately chosen unit cell [1,2]. This leads to
the need to locally correct the field. In quantum optics the
problem of local-field correction has been typically studied
in conjunction with the problem of spontaneous decay of an
excited guest atom. Microscopic theories have been developed,
for example, for crystals [3,4] and disordered dielectrics [5–8].
In macroscopic approaches to the problem, local-field effects
have been taken into account by regarding the guest atom
as being enclosed in a sufficiently small virtual [1,9] or real
(spherical) cavity [2,10–14]. In the virtual-cavity model the
cavity is regarded as being part of the host medium. In the
real-cavity model, on the contrary, the cavity is assumed to
be empty so that the guest atom is situated in a free-space
region between the host atoms, with the cavity radius being
a measure of the average distance from the guest atom to the
medium constituents. Microscopic models often agree with
the virtual-cavity results [3,5,6,8], while recent experiments
on spontaneous emission of atoms embedded in dielectrics
support the real-cavity model [15–18]. It has been presumed
that while the virtual-cavity model may apply to interstitial
atoms, the real-cavity model may be specific to substitutional
atoms, the case of substitutional atoms occurring prevalently
for impurity atoms in disordered dielectrics [4].

As known, spontaneous emission is caused by resonant
interaction of an excited atom with a typically continuous
radiation field. If the spectral width of the field in the
neighborhood of the atomic transition frequency considered
is much larger than the atom-field coupling strength expressed
in terms of the Rabi frequency, the spontaneous decay can be
regarded as being an irreversible process, and the atom and the
field are said to be in the weak-coupling regime. When, on the
other hand, the spectral width of the radiation is sufficiently

small so that effectively an almost single-mode field interacts
with the atomic transition, then the energy initially stored in
the excited atom will bounce back and forth between the two
systems, which in this case are said to be in the strong-coupling
regime.

In previous treatments of local-field effects in spontaneous
emission, the host medium is typically assumed to be a
bulk medium that extends homogeneously to infinity, and
the atom-field interaction is in the weak-coupling regime.
The effect of finite size and shape of the host medium
on the local field for weak atom-field coupling has been
considered recently [12,19]. In this regime the dynamics of
the atomic upper-level population just follows an exponential
decaying law. A more interesting behavior appears in the
strong-coupling regime, which manifests itself in vacuum
Rabi oscillations of the atomic inversion and in the vacuum
Rabi splitting of the spontaneous emission spectrum. Due
to recent developments in quantum cavity electrodynamics
where high-quality resonators are fabricated and applications
in light-emitting devices and quantum information processing
are envisaged, the need to evaluate the local-field correction in
the strong-coupling regime becomes actual from the viewpoint
of both fundamental research and practical applications.

To study the effect of local-field correction on the atom-field
interaction in the strong-coupling regime, we consider a system
consisting of a two-level atom embedded at the center of a
sphere made of a nonmagnetic material of permittivity ε(ω).
The sphere is coated by a highly reflecting mirror which
confines the electromagnetic field in all three dimensions
guaranteeing that conditions for the strong-coupling regime
can be met. Three types of mirror made from purely electrically
responding matter will be considered: a perfectly reflecting
mirror, a Lorentz band-gap mirror, and a Bragg-distributed
mirror [20,21]. Local-field effects are described by assuming
a real cavity surrounding the guest atom. The radius of the
cavity RC is typically much smaller than the characteristic
wavelength in the system, in which case the local-field effects
become significant. The fact that the Green tensor of concentric
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spheres is known in closed form [20–22] makes this system
well suited for an investigation of the effect of local-field
correction on the atom-field interaction in the strong-coupling
regime. Bragg-distributed dielectric microspheres can now be
fabricated in laboratories using, for example, a combination of
etching and chemical-vapor deposition [23], multistage emul-
sion polymerization [24], or thermal printing [25], meaning
that the system under consideration is within the reach of
today’s experimental techniques.

The appearance of Rabi oscillations of the upper-level
population of the two-level atom, which is assumed to be
initially prepared in the upper state, can be regarded as an
evidence for the strong-coupling regime. The strength of the
local-field correction can be manipulated by varying the radius
of the real cavity, which, as already mentioned, represents
the average distance from the guest atom to the neighboring
constituents of the material, and by tuning the degree of
material absorption. Effects of the local-field correction on
the Rabi frequency, the Rabi-oscillations damping rate, and
the conditions under which the strong-coupling regime can
occur, will be discussed.

The paper is organized as follows. Basic formulas necessary
for the calculation of the Rabi frequency and damping rate
are summarized in Sec. II. The local-field corrections in the
case of a perfect mirror, a Lorentz band-gap mirror, and a
Bragg-distributed mirror are investigated in Secs. III, IV, and
V, respectively. Conclusions are made in Sec. VI.

II. BASIC FORMULAS

The calculations are based on the quantization scheme for
the electromagnetic field in purely electrically responding
media [26,27], which leave the magnetic field unaffected,
and has been used to describe the atom-field interaction in
the presence of such media [28]. Let us consider a neutral
two-level atom (position rA, transition frequency ωA) that
resonantly interacts with the medium-assisted electromagnetic
field via an electric-dipole transition (dipole moment dA).
The atom is initially prepared in the excited state while the
medium-assisted field is initially in the ground state, that
is, the medium-assisted vacuum state. A resonator usually
can support multiple resonance lines. When the atomic
transition frequency ωA approaches a resonance frequency ωm,
contributions from other resonances can be neglected. Suppose
the density of the medium-assisted field states is a Lorentzian
centered around ωm, with half width at half maximum δωm,
then the amplitude Cu(t) of the overall-system state where the
atom is excited and the field is in the vacuum state satisfies [28]

C̈u(t) + [i(ωm−ωA) + δωm] Ċu(t) + (�/2)2Cu(t) = 0, (1)

where

� =
√

2A(ωm)δωm (2)

is the Rabi frequency,

A(ω) = 2ω2

h̄ε0c2
dAIm G(rA,rA,ω)dA (3)

gives us a measure of the density of field states, G(r,r′,ω) is
the Green tensor describing the medium surrounding the guest

atom, and the electric-dipole and rotating wave approximations
have been employed.

Equation (1) is obviously an equation of motion of a damped
oscillator. When ωA= ωm and

�

δωm

=
√

2A(ωm)

δωm

� 1, (4)

then damped Rabi oscillations are observed, with δωm being
the damping rate,

|Cu(t)|2 = e−δωmt cos2(�t/2), (5)

and we are in the so-called strong-coupling regime. The
inequality (4) is an indicator of whether the strong-coupling
regime is realized or not. In the opposite limit when � � δωm,
then an overdamped or purely decaying behavior is observed
|Cu(t)|2 = e−A(ωm)t , and we are in the weak-coupling regime,
in which A(ωm) has the physical meaning of the spontaneous
decay rate. The Rabi frequency (2), the damping rate δωm, and
the strong-coupling condition (4) depend on the Green tensor,
and therefore, on all changes when we vary the size of the
cavity or exclude it altogether.

For all three types of resonators under consideration,
the resonator, including the cavity surrounding the atom, is
considered to be a sphere consisting of L concentric layers,
each having permittivity εi(ω), i running from 1 to L starting
from the outermost layer. The spherical surfaces have radii
Rj (j = 1,2, . . . ,L − 1) [see Fig. 1]. The Green tensor at equal
positions can be decomposed into a bulk part, which is the
vacuum part in our case, and a reflection part,

G(rA,rA,ω) = GV(rA,rA,ω) + GR(rA,rA,ω). (6)

For a multilayer sphere and rA = 0, after some algebra it can
be found that [28]

GR(rA,rA,ω)
∣∣∣
rA→0

= iω

6πc
CLL

N (ω)I (7)

(I is the unit tensor). The index N indicates contributions of
the TM waves to be distinguished from those of the TE waves.
As can be seen from above, only TM waves are involved,
which is a consequence of the fact that the atom is located at
the sphere center. Substitution of Eq. (7) into Eq. (3) yields

Ā(ω) = 1 + Re CLL
N (ω), (8)

where Ā(ω) ≡ A(ω)/A0, A0 = k3
Ad2

A/(3h̄πε0) is the sponta-
neous decay rate in free space (kA = ωA/c),

CLL
N = T21

T11
, (9)

and T is a 2 × 2 matrix defined as

T = TL−1
N TL−2

N · · · T1
N, (10)

Tf

N =

⎡
⎢⎣

1
T N

Ff

RN
Ff

T N
Ff

RN
Pf

T N
Pf

1
T N

Pf

⎤
⎥⎦ . (11)
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FIG. 1. Schematics of the resonators with a (a) perfectly reflecting
mirror, (b) Lorentz band-gap mirror, and (c) Bragg-distributed mirror.

The symbols T N
(P,F )f and RN

(P,F )f represent the centripetal and
centrifugal transmission and reflection contributions,

RN
Pf = kf +1H(f +1)f H ′

ff − kf Hff H ′
(f +1)f

kf +1J
′
ff H(f +1)f − kf Jff H ′

(f +1)f

,

RN
Ff = kf +1J(f +1)f J ′

ff − kf Jff J ′
(f +1)f

kf +1J(f +1)f H ′
ff − kf J ′

(f +1)f Hff

,

(12)

T N
Pf = kf +1

(
J ′

(f +1)f H(f +1)f − J(f +1)f H ′
(f +1)f

)
kf +1J

′
ff H(f +1)f − kf Jff H ′

(f +1)f

,

T N
Ff = kf +1

(
J(f +1)f H ′

(f +1)f − J ′
(f +1)f H(f +1)f

)
kf +1J(f +1)f H ′

ff − kf J ′
(f +1)f Hff

,

where

Jil = jn(zil), Yil = yn(zil), (13)

Hil = h(1)
n (zil) = jn(zil) + iyn(zil), (14)

J ′
il = 1

z

d[zjn(z)]

dz

∣∣∣∣
z=zil

, Y ′
il = 1

z

d[zyn(z)]

dz

∣∣∣∣
z=zil

, (15)

H ′
il = 1

z

d[zh(1)
n (z)]

dz

∣∣∣∣
z=zil

= J ′
il + iY ′

il , (16)

with zil = kiRl , ki = √
εi(ω) ω

c
, jn(z) [yn(z)] being the first-

kind [second-kind] spherical Bessel functions, and h(1)
n (z)

being the first-kind spherical Hankel function. The Green
tensor contains, in general, sums over n. Note that due to
the fact that the atom is put at the sphere center, only spherical
functions of order n = 1 contribute [28].

Clearly local-field corrections will be noticeable only when
the medium is sufficiently dense. In our model this means that
the radius of the cavity should be much smaller than the atomic
transition wavelength

kARC � 1. (17)

Under this condition it was conjectured in Ref. [12] and later
proved in Ref. [19] for an arbitrary geometry of the material
body surrounding the guest atom that the Green tensor can be
decomposed as

GR(rA,rA,ωA) = kA

6π

{
3(ε − 1)

2ε + 1

1

(kARC)3

+9(ε − 1)(4ε + 1)

5(2ε + 1)2

1

kARC
+ i

[
9ε5/2

(2ε + 1)2
− 1

]}
I

+
(

3ε

2ε + 1

)2

GR
B(rA,rA,ωA) + O(kARC), (18)

where ε ≡ ε(ωA) denotes the permittivity of the medium in
which the guest atom is embedded and GR

B is the scattering
part of the Green tensor without the cavity. This decomposition
is not only helpful in the study of the local-field correction in
the weak-coupling regime [19], but, as we shall see below, it
also proves to be insightful in the strong-coupling regime.

We now can proceed to distinguish various types of mirrors.
In particular, RC = R2, ε = ε2 in the perfectly reflecting
mirror model, RC = R3, ε = ε3 in the Lorentz band-gap mirror
model, and RC = RL−1, ε = εL−1 in the Bragg reflecting
mirror model (Fig. 1). If Rw denotes the radius of the inner
resonator wall, it is equal to R1, R2, and RL−2 in the three
respective models.

III. PERFECTLY REFLECTING MIRROR

The aim of this section is twofold. First we make use
of the small-cavity expansion (18) and second we elucidate
its domain of validity in the strong-coupling regime (for
its applicability in the weak-coupling regime see Ref. [19]).
Recall that the resonator consists of three layers, the innermost
one being the cavity in the real-cavity model [Fig. 1(a)]. To
simulate the perfectly reflecting mirror we let the permittivity
of the outermost layer be real and tend to infinity, ε1 → ∞.
Then RN

P 1 → H11
J11

[29] and

C33
N = T N

F2

T N
P 2

(
J ′

21H11R
N
P 2 − J11H

′
21R

N
P 1

J ′
21H11 − J11H

′
21R

N
P 1R

N
F2

)

→ T N
F2

T N
P 2

(
J ′

21R
N
P 2 − H ′

21

J ′
21 − H ′

21R
N
F2

)
. (19)

Using Eqs. (19) and (7) and performing an expansion in terms
of kARC , we recover the expansion (18) where the scattering
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part of the Green tensor of the resonator in the absence of the
cavity, also in the limit ε1 → ∞, is explicitly given by

GR
B(rA,rA,ωA) = − i

√
εkA

6π

H ′
21

J ′
21

I

= − i
√

εkA

6π

(
1 + i

Y ′
21

J ′
21

)
I . (20)

According to Eqs. (18) and (20) the density of states [Eq. (3)]
can be decomposed into two parts:

Ā(ω) = ĀC(ω) + ĀB(ω), (21)

ĀC(ω) = Im

[
3(ε − 1)

2ε + 1

1

(kRC)3
+9(ε − 1)(4ε + 1)

5(2ε + 1)2

1

kRC

]

= 9εI

|2ε + 1|2
1

(kRC)3
+9(28|ε|2 + 16εR + 1)εI

5|2ε + 1|4
1

kRC
,

(22)

ĀB(ω) = Im

[
9ε5/2

(2ε + 1)2

Y ′
21

J ′
21

]
. (23)

Here ĀB(ω) represents only the second term in GR
B

[Eq. (20)]. The first, trivial term cancels out a similar
contribution within the square brackets in the second line of Eq.
(18). The dependence of the local-field effect on the medium
density (manifested herewith via the magnitude of the cavity
radius RC) is exclusively represented by ĀC . This term shows
that the strength of the local-field correction increases with
increasing medium density, or reducing cavity radius, as can
be expected on physical grounds. Another factor that may
strongly affect the local-field correction is the strength of the
medium-electromagnetic field interaction, characterized by
the medium permittivity. The imaginary part of the permittivity
is especially important in two respects. It determines at which
rate the energy is irreversibly transferred from the guest atom
to the neighboring medium constituents, thus no longer being
available for the strong-coupling regime, and it determines at
which rate the emitted photon is absorbed while propagating
in the medium. Obviously the medium permittivity is present
in both terms ĀC and ĀB in Eq. (21) for Ā. As can be seen
from Eq. (22), the first term ĀC shows only a weak-frequency
dependence, and can be expected to contribute to Ā in the form
of a monotonous background. Meanwhile, the second term ĀB ,
which is associated with the Green tensor GR

B , is responsible
for the position and width of the resonance lines; factors which
are crucial for the strong-coupling regime [cf. Eqs. (2) and (4)].
Note that by restricting ourselves to the leading terms in the
expansion (18), the dependence of the resonance line positions
on the cavity radius RC is lost. Assuming that

εI � εR, (24)

a requirement that is usually fulfilled in practice, a resonance
frequency ωm can be found to satisfy [see Eq. (A14) in the
Appendix]

tan n̄R(ωm) = − n̄R(ωm)

ε̄R(ωm) − 1
, (25)

where

n = nR + inI =
√

ε(ωm), ε = ε(ωm) = εR + iεI , (26)

n̄ = n
ωm

c
Rw, ε̄ = n̄2, (27)

and Rw is the radius of the mirror wall. Disregarding ĀC, the
resonance line at ωm is of Lorentzian shape with peak values
for the density of state [see the paragraph below Eq. (A14) in
the Appendix],

ĀB(ωm) � Re

[
9ε5/2

(2ε + 1)2

]
ε̄2
R − ε̄R + 1

ε̄R(ε̄R − 2)

1

n̄I

, (28)

and half width at half maximum

δωm � n̄I

ε̄R(ε̄R − 2)

ε̄2
R − ε̄R + 1

c

nRRw

. (29)

The above formulas show that the amplitude of the peak
ĀB(ωm) is inversely proportional to nI , while the half width
at half maximum is proportional to nI . Note that in the case
of a normalized Lorentz distribution f (x) = 1

π
δ

(x−x0)2+δ2 , the
peak value and the half width at half maximum are related via
f (x0) = 1

π
1
δ
.

The local-field correction effects inferred from Eqs. (18)
and (20) are corroborated by the numerical results presented
in Fig. 2, where the density of states Ā(ω) [Eqs. (7) and (8)]
as a function of frequency is plotted using the approximate
formulas (18) and (20) for the Green tensor. Furthermore, the
medium surrounding the guest atom is assumed to be of the
Drude-Lorentz type with a single-resonance permittivity,

ε(ω) = 1 + ω2
P

ω2
T − ω2 − iωγ

, (30)

where the plasma frequency ωP characterizes the coupling
strength between the medium polarization and the electromag-
netic field, and ωT and γ , respectively, are the position and the
width of the medium resonance. Since the medium that fills the
resonator will be kept more or less the same in the three models
considered, all the frequencies and lengths, respectively, can be
scaled with respect to ωT and λT = 2πc/ωT . The imaginary

part of the permittivity reads as εI (ω) = ω2
P ωγ

(ω2
T−ω2)2+ω2γ 2 . If we

are off resonance with respect to the medium absorption line
and if γ is small, condition (24) is readily fulfilled. With the
parameters chosen in Fig. 2, as ω varies from 0.3ωT to 0.6ωT ,
the real and imaginary parts of ε(ω) range from 5.4 to 7.25
and from 2.9 × 10−4 to 1.17 × 10−3, respectively.

Figure 2 shows that the resonator supports multiple res-
onances. In Fig. 2(c) for example, the quality factor Q =
ωm/(2δωm) decreases from 1.9 × 104 for the peak in the very
left to 9.3 × 103 for the one in the very right. Note that in
this idealized model of a perfect mirror, there is no output
loss and the only source of line broadening is the material
absorption. In Figs. 2(a) and2(b), together with the total Ā, we
have plotted ĀC separately (lines marked by crosses), which
reveals that the appearance of the plateau at the base of the
peaks is predominantly due to the contribution from ĀC . For
case (a) (the smallest chosen cavity radius RC = 0.001λT )
the contribution of the local-field correction ĀC to Ā is
considerable, a third or even more of the peak values, and the
resonance lines clearly cannot be regarded as Lorentzian. Note
that RC cannot be set arbitrarily small because as RC decreases
at some point the macroscopic theory would cease to be valid.
As the cavity radius increases [compare Figs. 2(a)–2(c)], the
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FIG. 2. The density of the field states Ā(ω) of a perfect resonator
having radius Rw(= R1) and filled by a Lorentz-type dielectric
with permittivity (30). The parameters are ωP = 2ωT , γ = 2 ×
10−4ωT , Rw = 6λT (λT = 2πc/ωT ), and (a) RC = 0.001λT , (b)
RC = 0.0015λT , and (c) RC = 0.01λT . The lines marked by crosses
in (a) and (b) are the contributions from ĀC(ω). The inset in (c)
compares the approximate result (solid line) with the exact result
(dashed line) for RC = 0.03λT .

plateau level is gradually lowered and eventually becomes
negligible.

In general, the numerical results as shown in Fig. 2
can be based on the the small-cavity approximation [Eq.
(21) together with Eqs. (22) and (23)]. For same values
of RC and on the same scale as in the figure, the exact
curves derived from the second line of Eq. (19) would be
visually indistinguishable from the approximate ones. Clearly
the approximation becomes less satisfying with increasing
cavity radius. In the inset of Fig. 2 the exact curves are
compared with the approximate ones for RC = 0.03λT , where
the peak near ω � 0.32ωT , meaning that kARC � 0.06, is
considered. This is the peak to the very left in the main

figure. The inset shows that the approximate (solid line) curve
is shifted to the left and its amplitude is somewhat higher
compared to the exact one. Numerical calculations show that
the larger the resonance frequency is, the more pronounced
these discrepancies become. The linewidths however remain
roughly the same for the exact and the approximate curves, in
consistency with the fact that the line broadening has its only
source in the material absorption.

The behavior of the resonance linewidth, the Rabi fre-
quency, and the ratio between them as functions of the cavity
radius RC are illustrated in Fig. 3 using the exact Eqs. (8)
and (19). Different curves correspond to different degrees of
material absorption. The curves begin at RC/λT = 0.0011
for γ /ωT = 10−4, RC/λT = 0.0015 for γ /ωT = 2 × 10−4

[cf. Fig. 2(b)], and RC/λT = 0.005 for γ /ωT = 10−3. These
are values of RC such that the plateau level of Ā(ω) is about
one tenth of its amplitude at the chosen resonance frequency.
Since this plateau level gets lowered when RC increases, the
resonance line can be roughly regarded as being Lorentzian for
all data presented in Fig. 3. Figure 3(a) shows that the linewidth
normally increases with increasing material absorption, in
accordance with δωm ∼ nI (ωm) ∼ εI (ωm) ∼ γ , which can be
inferred from Eqs. (29), (A11), and (30). However in the region
of small RC at the beginning of each curve, one observes an
increase of the linewidth as RC decreases, which is obviously
due to an enhancement of direct energy transfer from the
guest atom to the closely located neighboring constituents of
the medium. The decrease may become quite drastic as can
be seen on the scale used in the inset in Fig. 3(a). When
the medium becomes more absorbing, the region of drastic
change moves toward higher values of RC . For values of RC

below this region of drastic change (not shown), together with
line broadening, the plateau level rises fast in proportion with
1/R3

C [Eq. (22)] and it can be expected that the strong-coupling
regime, if it exists, would quickly disappear. This is also
manifested in the behavior of the ratio �/δωm [Fig. 3(c)]
discussed below. Beyond this region direct energy transfer
is apparently no longer significant, and the linewidth is now
determined by the gradual absorption that takes place when the
emitted light propagates inside the medium enclosed within the
resonator wall. As a consequence, δωm levels off and can be
described reasonably well by the approximate equation (29).
Note that the resonance line actually chirps slightly toward
higher frequencies with increasing RC [see Fig. 2(c), inset].
In particular at RC/λT = 0.0015, 0.03, 0.1, ωm/ωT takes on
the values of 0.3206 1811, 0.320 625 33, 0.320 862 49, respec-
tively. For ωm/ωT = 0.3206 1811 and the three values of γ in
Fig. 3(a), Eq. (29) predicts δωm/ωT � 4.67 × 10−6, 9.35 ×
10−6, and 4.67 × 10−5, which is in good agreement with exact
results represented by the solid, dashed, and dotted curves,
respectively.

Assuming exact resonance ωA = ωm between the guest
atom and the medium-assisted electromagnetic resonator field,
and choosing A0λT /(2c) = 10−6 as representative value of the
atom-field coupling strength, in Fig. 3(b) we have plotted the
RC dependence of the Rabi frequency [Eq. (2)] for the same
parameters as in Fig. 3(a). As the cavity radius RC decreases,
both A(ωm) and δ(ωm) increase, resulting in an increase in �

[cf. Eq. (2)]. Note that an increase in � does not necessarily
imply the strong-coupling regime, since it is the ratio �/δωm,
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FIG. 3. (a) The half width at half maximum, (b) the Rabi
frequency, and (c) the ratio between the two �/δωm as functions of
the cavity radius RC/λT for different degrees of material absorption:
γ /ωT = 10−4 (solid line), 2 × 10−4 (dashed line), and 10−3 (dotted
line). The insets present the behavior of the respective quantities on a
larger scale for the middle case of γ /ωT = 2 × 10−4. The atom-field
coupling strength is set at A0λT /(2c) = 10−6 and the resonance line
at the very left of Fig. 2 is chosen. The remaining parameters are
taken from Fig. 2.

not � alone, that can signal the onset of the strong-coupling
regime. So the steep increase of � with decreasing RC at the
beginning of each curve is not indicative of the strong-coupling
regime, since it originates from the enhanced nonradiative
decay associated with the direct energy transfer to the medium.
Around RC/λT ∼ 0.03, the curves for different values of γ

merge into one, which can be explained as follows. For large
enough RC , the contribution of ĀC to Ā becomes insignificant,
Ā = ĀC + ĀB � ĀB [see Eqs. (21)–(23) and Fig. 2]. Then
using Eqs. (2), (28), and (29) we find

�

A0
→

√
2πĀB(ωm)

δωm

ωT

2c

A0λT

=
√

Re

[
9ε5/2

(2ε + 1)2

]
λT

nRRw

2c

A0λT

, (31)

which, in leading order, does not depend on γ . Figure 3(b)
and the inset also show that the curves do not converge
to a constant value but keep going down. This trend is
not covered by the approximate equation (31) above, which
produces an almost constant �/A0 � 561. Further numerical
calculations show that the long-range reduction of the Rabi
frequency is caused by an enlargement of the size of the
real cavity. As the cavity radius increases, the cavity wall
interferes with the constructive interferences that are the origin
of the resonance lines, thereby lowering their heights. Clearly
when the cavity radius approaches that of the mirror, then
high-quality resonance lines reappear.

The approximate equations (28) and (29) can be also very
helpful in predicting the occurrence of the strong-coupling
regime. Indeed, using them in Eq. (4) yields

�

δωm

� ε̄2
R − ε̄R + 1

ε̄R(ε̄R − 2)

1

πnI

ωT

ωm

√
Re

[
9ε5/2

(2ε + 1)2

]
nRλT

Rw

A0λT

2c
,

(32)

which indicates that the strong-coupling regime is favored
under the conditions of large atom-field electric dipole cou-
pling strength, small material absorption, small resonance
frequency, and small resonator size. Equation (32) yields
�/δωm � 38.2, 19.1, 3.8 for γ /ωT = 10−4, 2 × 10−4, 10−3,
respectively, in good agreement with the exact numerical
results presented in Fig. 3(c). However, it cannot describe
the details of the curves including the sharp drop near the
beginning [see Fig. 3(c), inset] and the subsequent downward
going trend. Recall that we have not extended the curves
towards values of RC smaller than those in the figure for
the reason that then the resonance lines can no longer be
regarded as Lorentzians. If RC is slightly reduced further, the
nonradiative energy transfer to the medium would predominate
the radiative emission process leading to an irreversible loss
of the emitted photon. One can notice that all three curves
gradually go down as RC increases, which is consistent with
the fact that the linewidth remains almost the same [see
Fig. 3(a), inset], while the Rabi frequency decreases rather
quickly [see Fig. 3(b), inset]. This phenomenon is clearly
a consequence of the fact that, as already mentioned below
Eq. (31), when the cavity size is sufficiently enlarged, then
the cavity boundary starts to interfere destructively with the
formation of the resonance lines. Since this is noticeable
even at cavity sizes much smaller than the atomic transition
wavelength, it can be regarded as a local-field correction.

IV. LORENTZ BAND-GAP MIRROR

In the previous section we have assumed the idealized
situation where the resonator wall—the outermost, infinitely
extended layer 1—is described by ε1 → ∞, so that no light
can leak from the resonator. Suppose now that the resonator
wall is of finite thickness and has a Drude-Lorentz permittivity
εw defined as in Eq. (30). In the spectral range between
the transverse resonance frequency ωwT and the longitudinal

frequency ωwL =
√

ω2
wT + ω2

wP , the permittivity exhibits a
so-called Lorentz band gap, making the resonator wall well
reflecting, while still allowing for a finite amount of output
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coupling. A similar resonator model is employed in Ref. [28]
for a study of the strong-coupling regime in the absence
of a medium surrounding the guest atom. The expansion in
Eq. (18) again turns out to be quite helpful. Since the resonator
now consists of four layers [Fig. 1(b)], the Green tensor
GR

B(rA,rA,ω) is that of a three-layer geometry, which in the
case of rA = 0 reads as

GR
B(rA,rA,ω)

= iω

6πc
I
{

[k3H32H
′
22 − k2H

′
32H22][k2J21H

′
11 − k1J

′
21H11]

− [k2H21H
′
11 − k1H

′
21H11][k3H32J

′
22 − k2H

′
32J22]

}
×

{
[k3J32H

′
22 − k2J

′
32H22][k2J21H

′
11 − k1J

′
21H11]

− [k2H21H
′
11 − k1H

′
21H11][k3J32J

′
22 − k2J

′
32J22]

}−1
. (33)

We are specifically interested in resonators large enough to
feature at least one resonance line, that is, Rw

ω
c

= Rw

λ
2π � 1

[Rw = R2 in the three-layer cavityless geometry described
by the Green tensor (33)]. To simplify Eq. (33) in order to
gain some insight analytically, we make the more stringent
assumption that

Rw

ω

c
� 1. (34)

Within the band gap and away from the medium absorption line
we have εwR(ω) < 0, εwI (ω) > 0, and εwI (ω) � |εwR(ω)|,
resulting in nwR(ω) � εwI (ω)

2
√|εwR(ω)| , nwI (ω) � √|εwR(ω)| ∼ 1,

and nwR(ω) � nwI (ω). Recalling that εw(ω) ≡ ε3(ω) in a four-
layer geometry which includes a cavity, but εw(ω) ≡ ε2(ω) in a
three-layer cavityless geometry, it then follows that J21, J ′

21 ∼
exp(−ik2R1). Taking into account that Hil, H ′

il ∼ exp(ikiRl)
[see Eqs. (A3) and (A6) in the Appendix], and requiring that
the resonator wall has a sufficiently high reflectivity,

e−nwI (R1−R2)ω/c � 1, (35)

we may simplify Eq. (33) greatly, which together with
Eqs. (3) and (6) again leads to Eqs. (21) and (22), but with
ĀB(ω) being replaced by

ĀB(ω) � Im

[
9ε5/2

(2ε + 1)2

k3Y32H
′
22 − k2Y

′
32H22

k3J32H
′
22 − k2J

′
32H22

]
. (36)

The resonance frequencies ωm of ĀB(ω) can be found to
satisfy the equation [see the paragraph below Eq. (A19) in
the Appendix]

tan n̄R(ωm) = − nR(ωm)

nwI (ωm)
, (37)

where n̄R is defined as in Eq. (27). Again, it can be shown
that ĀB(ω) gives rise to resonance lines of Lorentzian shape
with peak values [see the paragraph below Eq. (A19) in the
Appendix]

ĀB(ωm) � Re

[
9ε5/2

(2ε + 1)2

]
n2

wI + n2
R

n̄I (|nw|2 + |n|2) + nwRnR

(38)

and linewidths

δωm = (δωm)1 + (δωm)2, (39)

(δωm)1 � |nw|2 + |n|2
n2

wI + n2
R

n̄I

c

nRRw

� n̄I

c

nRRw

, (40)

(δωm)2 � nwR

n2
wI + n2

R

c

Rw

. (41)

Note that for an empty resonator (nR = 1, nI = 0), Eqs. (37)–
(41) reproduce the results in Ref. [28]. On the other hand, if the
absorption by the resonator wall is negligibly small, εwI � 0,
then (δωm)2 � 0, δωm � (δωm)1 � n̄I

c
nRRw

, and the perfectly
reflecting-wall result (29) is recovered [under condition (34)
the coefficient ε̄R(ε̄R−2)

ε̄2
R−ε̄R+1

tends to one].
The linewidth in Eq. (39) consists of two parts, where

(δωm)1 is clearly attributable to the absorption by the medium
enclosed within the resonator wall, and (δωm)2 is attributable
to the absorption by the resonator wall itself. When a photon
leaks from the resonator, it can either be captured by the cavity
wall or can escape to the outer (empty) space. Due to the
thick-resonator-wall assumption (35), the results (38)–(41)
clearly can account for the first process only. Finally, the
ratio between the Rabi frequency and the linewidth that
determines whether the strong-coupling regime occurs reads
as, in accordance with Eqs. (4) and (38)–(41),

�

δωm

� 2
n2

wI + n2
R

n̄I (|nw|2 + |n|2) + nwRnR

×
√

Re

[
9ε5/2

(2ε + 1)2

]
nRRw

λT

A0λT

2c
. (42)

In Fig. 4 the Rabi frequency/linewidth ratio as functions
of γw and R1 − R2 is plotted, and the inset shows the density
of states Ā(ω) as a function of ω. The medium inside the
resonator is the same as in Fig. 2. We have fixed the parameters
of the resonator-wall permittivity in such a way that the
Lorentz band gap covers the range from ωwT /ωT = 0.3 to
ωwL/ωT � 0.35. Hence only two peaks located within the gap
survive (cf. Fig. 2), the remaining ones being absent because
their frequencies are beyond the zone of high reflectivity. The
positions of the two peaks do not coincide exactly with any one
in Fig. 2 due to the difference in the geometry. For the value
of the cavity radius used in Fig. 4, RC/λT = 0.005 [larger
than that in Fig. 2(b) but smaller than that in Fig. 2(c)] the
plateau level is insignificant. Otherwise the two resonances
fit well in to the pattern in Fig. 2 in the sense that the
smaller the resonance frequency is, the higher its quality factor
becomes. In Fig. 4(a) the resonator wall thickness is fixed at
a large value such that the photon has very little chance of
escaping to the outer space. The value of �/δωm at γw = 0
is better than that in Fig. 3(b) (dashed line) because as we
just mentioned the resonance line here has a higher Q factor.
As the wall absorption increases, �/δωm decreases. At about
γw/ωT � 5.5 × 10−5, the contribution from the wall material
absorption nwRnR to the denominator of �/δωm [Eq. (42)]
becomes equal to that from the material-inside-the-resonator
absorption n̄I (|nw|2 + |n|2), and the ratio �/δωm is reduced
by a factor of 2. As γw/ωT increases further to about 10−4, the
condition �/δωm � 1 is no longer satisfied, meaning that the
weak-coupling regime takes over. In Fig. 4(a) we also plotted
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FIG. 4. The ratio �/δωm for (a) the fixed resonator-wall thickness
(R1 − R2)/λT = 5 and varying resonator-wall absorption and (b) the
fixed resonator-wall absorption γw/ωT = 10−5 and varying resonator
wall thickness. The medium that fills the resonator has a Drude-
Lorentz type permittivity [Eq. (30)] with transverse frequency ωT and
ωP /ωT = 2,γ /ωT = 2 × 10−4. The resonator wall is described by
the same kind of permittivity with ωwP /ωT = 0.3,ωwP /ωT = 0.18.
Other parameters are the atom-field coupling strength A0λT /(2c) =
10−6, the cavity radius RC ≡ R3/λT = 0.005, the radius of the
inner resonator wall R2/λT = 6, and the resonance frequency
ωm/ωT = 0.311 379 14. This resonance is the one on the left in
the inset, which shows Ā(ω) for the same parameters as above,
and for (R1 − R2)/λT = 5 and γw/ωT = 10−5. The solid lines are
obtained on using the exact Green tensor for a four-layer geometry,
while the dashed line in (a) is obtained on using the approximate
equation (42).

the approximate result (42) (dashed line) which shows a good
qualitative agreement with the exact one. The discrepancy
arises mainly from the error caused by Eqs. (39)–(41) for the
linewidth.

Figure 4(b) shows an example of the dependence of the ratio
�/δωm on the thickness of the resonator wall. The degree of
the wall absorption is kept at an insignificant value of γw/ωT =
10−5. Figure 4(b) shows that when the resonator wall is too
thin, then light can leak easily to the space outside the wall
and thus has a very little chance of being recaptured by the
guest atom, that is, no strong coupling regime can be observed.
Clearly, as the wall becomes thicker, light can be trapped better
by the resonator, giving rise to the appearance of more and
more distinct regions of the strong-coupling regime. Beyond
a certain range of thicknesses, which is determined by the
degree of material losses in the wall, an increase in the wall
thickness no longer leads to an increase in �/δωm because the
electromagnetic field has only a finite penetration depth into
the wall.
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FIG. 5. (a) The ratio �/δωm for the 23-layer configuration. The
mirror consists of 20 layers having alternating low εL [defined as
in Eq. (30) with ωLT /ωT = 20, ωLP /ωT = 22.35 78175, γL/ωT =
10−3, i.e., εL(ω0) = 2.25 + i × 10−6], and high permittivity εH

[Eq. (30) with ωHT /ωT = 20, ωHP /ωT = 67.0734523]. The mirror
absorption is varied by tuning γH . The inset shows Ā(ω) for
γH /ωT = 10−3. (b) The ratio �/δωm for a fixed γH /ωT = 10−3 and
varying (total) number L of layers in the system. The number of
mirror layers is (L − 3). The resonance at ωm/ωT = 0.305 089 31 is
chosen in (a) while in (b) it shifts slightly from this value to ωm/ωT =
0.30508250 when the number of layers decreases from 23 to 9. In
both cases, the innermost layer of the mirror has permittivity εL. The
medium that fills the resonator and other parameters are the same as
in Fig. 4.

V. BRAGG-DISTRIBUTED MIRROR

We now proceed to consider a type of mirror that can
serve as an example of an observation scheme for local-
field effects in the strong-coupling regime, namely spherical
Bragg-distributed mirrors. This type of mirror is extensively
discussed in Refs. [20,21] and realized recently [23–25].
They consist of multiple layers having interchanging low and
high permittivities [Fig. 1(c)] and quarter-wavelength optical
thickness dj = λ0/[4Re

√
εj (ω0)] (λ0 ≡ 2πc/ω0, ω0 is the

midgap frequency). In Fig. 5 we have chosen ω0/ωT = 0.32,
so that the gap is centered at roughly the same frequency
as in the case of the Lorentz band-gap mirror in Fig. 4.
The highly contrasting permittivity values εL(ω0) � 2.25 and
εH (ω0) � 12.25 are chosen such that the system resembles the
one materialized in Ref. [23], where periodic silicon dioxide
(refractive index 1.5) and silicon cladding (refractive index
3.5) is employed.

The numerical results presented in Fig. 5 are obtained by
using the exact formulas (6), (7), and (9)–(16) for the Green
tensor. It can be seen from Fig. 5(a), inset, that in contrast to the
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case of a perfectly reflecting mirror [cf. Fig. 2], and similarly
to the case of a Lorentz band-gap mirror [cf. Fig. 4(a), inset],
only resonances within the band gap are supported. Note that
there is no resonance at exactly the midgap frequency because
of the spherical geometry, and because the resonator is medium
filled. In Fig. 5(a) the ratio �/δωm is plotted as a function of the
material absorption in the mirror, which is tuned by varying γH .
The number of layer pairs in the mirror is fixed at 10 (the Bragg
onion resonator in Ref. [23] contains eight pairs of Si/SiO2

layers). It is seen that the ratio decreases with increasing γH ,
and around γH/ωT � 4.5 a transition from the strong-coupling
regime to the weak-coupling regime occurs. This corresponds
to εH � 12.25 + i0.04 or nH = √

εH � 3.5 + i0.005 79, with
the corresponding extinction coefficient being equal to κ �
0.001 65. In Fig. 5(b) the ratio �/δωm is plotted as a function of
the number of mirror layers. The degree of material absorption
in the mirror is assumed to be low, γH/ωT = γL/ωT = 10−3.
For the range of mirror-layer numbers used in Fig. 5(b),
photon radiated to the outer space dominates mirror material
absorption as a mechanism of radiationless loss. When the
mirror is too thin (data point with L = 9, i.e., three pairs of
layers in the mirror), the emitted photon can escape easily
from the resonator and no strong-coupling regime is found.
For L = 11 and up, the field confinement is good enough
to sustain the strong-coupling regime. The increase of the
(�/δωm) ratio is saturated near L = 19, so that eight pairs of
layers is the minimum number in order to achieve the most
pronounced strong-coupling regime for the parameters used
in Fig. 5(b).

So far we have assumed that the guest atom is located
in vacuum within the cavity. The question may arise as to
what happens if we remove the cavity altogether, that is, if we
neglect the local-field effects completely. Clearly we can do
so only when the material absorption is negligible, since only
then the imaginary part of the bulk Green tensor and together
with it the field density of states [Eq. (3)] is well behaved.
In Fig. 6 the density of the field states Ā(ω) at a particular
resonance is plotted for a resonator filled by a nonabsorbing
material. The lower solid curve is for a cavityless resonator
while the dashed, dotted, and dash-dotted curves are for the
case where the cavity is present. Figure 6 shows that in the
first case Ā(ω) is generally smaller than in the other case.
An argument is [as can be inferred from Eq. (18)] that one
of the local-field effects, namely the factor [3ε/(2ε + 1)]2 in
front of GR

B(rA,rA,ω) is absent. Indeed, by multiplying the
data of the lower solid curve by the factor [3ε/(2ε + 1)]2

we obtain a new set of data (upper solid curve) which is
comparable in values with the curves representing the case
where a cavity is present. Another phenomenon that would
be missing when the cavity is excluded is the resonance
frequency shift which becomes apparent when comparing the
upper solid curve (no cavity present) with the dashed curve
(cavity present, with a radius of RC/λT = 0.001). This shift
increases with increasing cavity radius, as the dotted curve
(RC/λT = 0.002) and the dash-dotted curve (RC/λT = 0.003)
indicate. Note that this shift is also absent if one employs the
approximate formulas (18) or (21)–(23) to take into account
the local-field corrections [see the discussion on the inset
of Fig. 2(c)].

0

5x106

107

0.30508927 0.30508928 0.30508929

A-

ω/ωT

FIG. 6. The density of the field states Ā(ω) at a particular
resonance of a resonator filled by a nonabsorbing dielectric having
the same Lorentz-type permittivity ε [Eq. (30)] as in Figs. 2–5, but
with γ = 0. The two solid curves are for the case where the cavity is
removed. The upper solid curve is the lower solid one multiplied by
[3ε/(2ε + 1)]2. The remaining curves are for the cases where a cavity
is included with radius RC/λT = 0.001 (dashed line), 0.002 (dotted
line), and 0.003 (dash-dotted line). Other parameters are the same as
in Fig. 5.

VI. CONCLUSIONS

Within the real-cavity model we have investigated effects of
local-field correction on the strong atom-field coupling regime
by studying a system where the guest atom is positioned at
the center of a spherical resonator. Three types of mirrors
have been considered: a perfectly reflecting mirror, a Lorentz
band-gap mirror, and a Bragg-distributed mirror. The first
configuration establishes a deeper understanding of the local-
field influence thanks to the simplicity of its Green tensor. The
second one allows for a treatment of the influence of the output
coupling, while the third one is an experimentally available
system. We have used both the exact and an approximate
formula of the Green tensor, the latter based on an expansion
with respect to the smallness of the cavity size (as compared
to the atomic transition wavelength), to gain insight into the
effects of the local field.

We have shown that the local-field correction manifests
itself in the form of a structureless background in the density
of the field states. The level of this background is higher
for higher material absorption and/or higher material density,
with a net result that the resonance line is broadened and
the strong-coupling regime may disappear. Although the
approximate formula already reveals this effect, they cause
an artificial shift in the frequency of the resonance line.
By combining approximate analytical and exact numerical
calculations, we have explored in detail the local-field effects
on the Rabi frequency, the resonance line broadening, which
also determines the exponentially decaying envelope of the
vacuum Rabi oscillations, and the ratio between the two.
In particular in the case of a Lorentz band-gap mirror, a
too large resonator wall material absorption can destroy the
strong-coupling regime. When the resonator wall is made
thicker, it provides a better field confinement, thus facilitating
the strong-coupling regime. However beyond some value
of the wall thickness saturation is observed. This can be
understood as resulting from the fact that the field has only
a finite penetration depth into the resonator wall. Hence an
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increase in the resonator wall thickness beyond this depth does
not provide additional field confinement.

The influence of the resonator wall on the strong-coupling
regime can guide a design of an experimental setup, such as in
the case with a Bragg-distributed mirror. For this configuration
we have compared the case where the (real) cavity is left out
altogether with the case where it is included, which can be done
when the material absorption is negligible. We have found that
the local-field correction leads to a resonance frequency shift,
which increases with increasing cavity radius.

Finally, it should be pointed out that the local-field effects
on the strong-coupling regime discussed here may be observed
using Bragg onion resonators with, say, eight pairs of Si/SiO2

of layers in the mirror [23]. This type of resonator can be
created at the tip of an optical fiber. The strong-coupling regime
can then be detected by looking out for the vacuum Rabi
splitting in the spectrum of the emitted light channeled out of
the resonator by way of a fiber.
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LORENTZIAN SHAPE OF THE RESONANCE LINES

For an arbitrary position the Green tensor of a concentric
multilayer sphere contains summations over spherical Bessel
and Hankel functions of order n and their derivatives [22].
In the special case of an atom located at the center of the
sphere, only spherical Bessel and Hankel functions of order
one contribute. Here we need [29]

Jil = cos zil

z2
il

(tan zil − zil), (A1)

Yil = −cos zil

z2
il

(1 + zil tan zil), (A2)

Hil = −eizil

z2
il

(i + zil), (A3)

J ′
il = cos zil

z3
il

( − tan zil + zil + z2
il tan zil

)
, (A4)

Y ′
il = cos zil

z3
il

(
1 + zil tan zil − z2

il

)
, (A5)

H ′
il = eizil

z3
il

(
i + zil − iz2

il

)
. (A6)

We treat the case of a perfectly reflecting mirror and that of a
Lorentz band-gap mirror separately.

Perfectly reflecting mirror

Using condition (24) we obtain from Eq. (23)

ĀB(ω) � Re

[
9ε5/2

(2ε + 1)2

]
Im

Y ′
21

J ′
21

. (A7)

From Eqs. (A4) and (A5) it follows that
Y ′

21

J ′
21

= 1 − z2
21 + z21t

z21 + (
z2

21 − 1
)
t
, (A8)

where
z21 = n(ω)

ω

c
Rw, (A9)

t = tR + itI = tan
[
n(ω)

ω

c
Rw

]
. (A10)

Under condition (24) we may write

nI 2nR + O
(
n3

I

) � εI , nR � √
εR + O

(
n2

I

)
, (A11)

tR � tan
(
nR

ω

c
Rw

) + O
(
n̄2

I

)
, tI � n̄I

(
1 + t2

R

) + O(n̄3
I ).

(A12)

Using Eqs. (A8)–(A12) in Eq. (A7) we obtain

ĀB(ω) � Re

[
9ε5/2

(2ε + 1)2

]
n̄I

(
1 + t2

R

)
ε̄R(ε̄R − 2)

× (
[n̄R + (ε̄R − 1)tR]2 + n̄2

I

{
[1 + 2n̄RtR

+ (ε̄R − 1)
(
1 + t2

R

)
]2 − 4n̄R[n̄R

+ (ε̄R − 1)tR]
(
1 + t2

R

)})−1
, (A13)

where terms proportional to n̄3
I are dropped. The resonance

lines ωm of the resonator can be found by determining the
complex roots of the denominator in Eq. (19) or, approxi-
mately, the denominator in Eq. (20). Then the real parts of the
complex roots yield the line positions while the imaginary
parts yield the corresponding linewidths. Here we employ
another method, namely the condition dĀB

dω

∣∣
ω=ωm

= 0, which
allows us to also easily figure out the line shape. For simplicity
we leave out the term proportional to n̄2

I in the denominator
while calculating dĀB

dω
. As a function of ω, ε typically varies

slowly compared with tR , and dε
dω

can be neglected. The afore
mentioned condition then yields

tR(ωm) = − n̄R(ωm)

ε̄R(ωm) − 1
+ O

(
n̄2

I (ωm)
)

(A14)

and the peak value (28). Making an expansion of tR(ω) around
ωm in the denominator of Eq. (A13) and keeping only terms
up to the second order in (ω − ωm), it can be shown that
the first-order term vanishes and the resonance lines have a
Lorentzian shape with the half width at half maximum (29).

Lorentz band-gap mirror

Under condition (24) we can approximately write ĀB

[Eq. (36)] as

ĀB(ω) � Re

[
9ε5/2

(2ε + 1)2

]
Im

(
k3Y32H

′
22 − k2Y

′
32H22

k3J32H
′
22 − k2J

′
32H22

)
.

(A15)

Using |z22|2 � 1, |z32|2 � 1, which are more relaxed than the
assumption (34), in Eqs. (A4)–(A6), we derive

J ′
32 � cos z32

z2
32

(1 + z32t), (A16)

Y ′
32 � cos z32

z2
32

(t − z32), (A17)
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H ′
22 � −i

eiz22

z2
22

(i + z22), (A18)

where t is the same as in Eq. (A10). Substitution of these and
Eqs. (A1)–(A3) in Eq. (A15) yields

ĀB(ω) � Re

[
9ε5/2

(2ε + 1)2

]
Im

[
ik3(1 + z32t) + k2(t − z32)

−ik3(t − z32) + k2(1 + z32t)

]

� Re

[
9ε5/2

(2ε + 1)2

]
Re

(
nw − int

n − inwt

)

� Re

[
9ε5/2

(2ε + 1)2

]
[n̄I (|nw|2 + |n|2) + nwRnR]

(
1 + t2

R

)
×{(nR + nwI tR)2 + [(nI − nwRtR + nwI tI )2

+ 2(nR + nwI tR)nwRtI ]}−1, (A19)

where in going from the first line to the second one we make
use of the relationships |z22| � 1 and |k3z32| � |k2|, which
are consequences of Eq. (34). In contrast to the perfectly
reflecting mirror model, here there are two small parameters
nI � 1 and nwR � 1, and products of three or more of these
small parameters are dropped in going from the second line
to the third one. We also use Eq. (A12) and neglect nInwI ,
which is much smaller than n̄I (|nw|2 + |n|2), due to Eq. (34).
Now we can again apply the condition dĀB

dω

∣∣
ω=ωm

= 0 to search
for the resonance frequencies. In doing so, the term in the
square brackets in the denominator, which is quadratic in
terms of small parameters, is neglected. The result is given in
Eq. (37), which in turn produces a Lorentzian line shape with
associated heights and widths given by Eqs. (38) and (39),
respectively.
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