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Linear and nonlinear Zeno effects in an optical coupler
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It is shown that, in a simple coupler where one of the waveguides is subject to controlled losses of the electric
field, itis possible to observe an optical analog of the linear and nonlinear quantum Zeno effects. The phenomenon
consists in a counterintuitive enhancement of transparency of the coupler with an increase of the dissipation and
represents an optical analog of the quantum Zeno effect. Experimental realization of the phenomenon based on

the use of chalcogenide glasses is proposed. The system allows for observation of the crossover between the
linear and nonlinear Zeno effects, as well as the effective manipulation of light transmission through the coupler.

DOI: 10.1103/PhysRevA.83.043811

I. INTRODUCTION

Decay of a quantum system, either because it is in a
metastable state or due to its interaction with an external system
(say, with a measuring apparatus), is one of the fundamental
problems of quantum mechanics. More than 50 years ago it
was proved that the decay of a quantum metastable system
is, in general, nonexponential [1,2] (see also the reviews in
Refs. [3,4]). Years later it was pointed out in Ref. [5] that a
quantum system undergoing frequent measurements does not
decay at all in the limit of infinitely frequent measurements.
Misra and Sudarshan termed this remarkable phenomenon
the quantum Zeno paradox. The Zeno paradox, i.e., the total
inhibition of decay, requires, however, unrealistic conditions
and manifests only as the Zeno effect, i.e., a decrease of
the decay rate by frequent observations, either pulsed or
continuous. The Zeno effect was observed experimentally
by studying the decay of continuously counted beryllium
ions [6], the escape of cold atoms from an accelerating optical
lattice [7], the control of spin motion by circularly polarized
light [8], the decay of an externally driven mixture of two
hyperfine states of rubidium atoms [9], and the production of
cold molecular gases [10]. There is also the opposite effect, i.e.,
the acceleration of decay by observation, termed the anti-Zeno
effect, which is even more ubiquitous in quantum systems [11].

It was argued that the quantum Zeno and anti-Zeno effects
can be explained from a purely dynamic point of view, without
any reference to the projection postulate of quantum mechanics
[12]. In this respect, Refs. [13,14] show that the Zeno effect
can be understood within the framework of a mean-field
description when the latter can be applied, thus providing the
link between purely quantum and classical systems.

The importance of the Zeno effect goes beyond quantum
systems. An analogy between the quantum Zeno effect and the
decay of light in an array of optical waveguides was suggested
in Ref. [15]. Namely, Longhi found an exact solution that
showed a nonexponential decay of the field in one of the
waveguides. Modeling the quantum Zeno effect in the limit of
frequent measurements using down-conversion of light in the
sliced nonlinear crystal was considered in Ref. [16]. The effect
has been mimicked by the wave process in a x® coupler with
linear and nonlinear arms since in the strong-coupling limit the
pump photons propagate in the nonlinear arm without decay.
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The analogy between the inhibition of losses of molecules and
the enhanced reflection of light from a medium with a very
high absorption was also noticed in Ref. [9].

At the same time, in the mean-field models explored in
Refs. [13,14], interatomic interactions play an important role,
leading to nonlinear terms in the resulting dynamic equations.
The nonlinearity in turn introduces qualitative differences in
the Zeno effect, in particular, by dramatically reducing the
decay rate [14] compared to the case of noninteracting atoms.
In Ref. [14] this phenomenon of the enhancement of the effect
by the interatomic interactions was termed the nonlinear Zeno
effect (since, when the nonlinearity is negligible, it reduces to
the usual linear Zeno effect).

Mathematically, the mean-field descriptions of a Bose-
Einstein condensate (BEC) and the light propagation in Kerr-
type media are known to have many similarities due to the
same (Gross-Pitaevskii or nonlinear Schrodinger) equation
describing both phenomena. Furthermore, the linear Zeno
effect is observable not only in pure quantum systems, but also
in systems described by the mean-field approximation [14].
This immediately suggests that detection of the Zeno dynamics
is possible in classical systems and, in particular, in nonlinear
optics, thus offering different possibilities for managing light
[17]. Namely, one can expect the counterintuitive reduction
of attenuation of the total field amplitude (which would
correspond to a reduction of losses of atoms in the BEC case)
by increasing the losses in some parts of the system (which is
analogous to increasing the removal rate of atoms in the case
of a BEC).

The main goal of the present paper is to report on a very
basic system where analogs of linear and nonlinear Zeno
effects can be observed and exploited. More specifically,
we explore the mathematical analogy of the semiclassical
dynamics of a BEC in a double-well potential subject to the
removal of atoms [14] with light propagation in a nonlinear
optical coupler in which one of the arms is subject to
controllable losses.

The paper is organized as follows. In Sec. II we consider
two well-known models of dissipative oscillators that illustrate
the classical analogs of the Zeno phenomenon (originally
introduced in quantum measurement theory). In Sec. III we
discuss possible experimental settings that allow observation
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of the phenomenon in optics. In Sec. IV the theory of the
optical nonlinear Zeno effect is considered in detail. Section V
is devoted to a comparative analysis of the linear and nonlinear
Zeno effects. The results are summarized in Sec. VL.

II. TWO TRIVIAL EXAMPLES

Before going into the details of the optical system, we
provide basic insight into the pure classical origin of the
phenomenon of inhibition of the field attenuation by strong
dissipation. We recall the well-known fact that an increase
in the dissipation o of an overdamped (@ >> w) oscillator
¥ 4+ ax + w’x = 0 results in a decrease in the attenuation of
the oscillations. Indeed, the decay rate R & w?/a approaches
zero as the dissipation coefficient o goes to infinity. The
amplitude of the oscillations in this case is also nearly zero.
However, the coupling of another linear oscillator to the
dissipative one,

X1 +ax; + a)2x1 +Kkxo =0, i+ w2x2 +kx; =0,

allows one to observe an inhibition of attenuation due to strong
dissipation by following a finite amplitude x,. Indeed, the
characteristic equation

Lo Mt o
o a(A? 4+ w?)

evidently has the small root A =~ (x> — w*)/aw?, which
appears for o > k?/w* — > > 0. Thus one of the dynamic
regimes of the system is characterized by the decay rate
that goes to zero in the overdamped case. Moreover, the
relation between the amplitudes of the damped and undamped
oscillators reads |x;/x;| — w?/k < 1 as @ — oo. In other
words, strong dissipation in one of the oscillators can attenuate
the energy decay in the whole system. The last example
illustrates that if the coupling is of the same order as the
eigenfrequencies of the subsystems, the energy is distributed
between the two subsystems in approximately equal parts. This
does not allow for a further decrease of the decay rate of the
energy because its large part is concentrated in the damped
subsystem.

The phenomenon described above for the linear oscillators
can be viewed as a classical analog of the linear Zeno effect.
The nonlinearity changes the situation dramatically. This case,
however, no longer allows for a complete analytical treatment,
which is why we now turn to a specific nonlinear system,
which we study numerically. We consider an optical coupler
composed of two Kerr-type waveguides, one arm of which is
subject to relatively strong field losses. We show that such a
coupler mimics the quantum Zeno effect, which allows one to
follow, in a simple optical experiment, the crossover between
the linear (weak intensities) and nonlinear (strong intensities)
Zeno effects, thus providing an analogy between the effects of
dissipation in the classical and quantum systems. In particular,
we show that strong losses of the field in one of the waveguides
can significantly enhance the transmittance of the coupler as a
whole.
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III. THE COUPLER AND A POSSIBLE
EXPERIMENTAL SETTING

The optical fields in the two tunnel-coupled nonlinear
optical fibers [18] (alternatively one can consider two linearly
couple waveguides [19]) are described by the system

.day

i = (B1 +ia)ar £ yla*ay + kas, (1a)
.daz . 2
—ld—Z = (B +ia)ar T y|az|"ar + kay. (1b)

Here a, > are the properly normalized fields in each arm
of the coupler, « is the coupling coefficient measuring the
spatial overlap between the channels, the plus-minus signs
correspond to the focusing (+) and defocusing (—) media, B;
(j = 12) are the modal propagation constants of the cores,
y = 2mny /LA, ny is the Kerr nonlinearity parameter, Acg
is the effective cross section of the fiber, A is the wavelength,
and the loss coefficient o; > 0 stands for the field absorption
in the jth waveguide.

Our aim is to employ manageable losses, i.e., control over
the coefficients « 5, in order to observe different regimes of
light transmission through the coupler. Since in optics one
cannot easily manipulate z, i.e., the length of the coupler,
we are interested in realizing different dynamic regimes with a
single given coupler (rather than using several couplers having
different characteristics). This contrasts with the BEC case
where the propagation variable z corresponds to time (see,
e.g., Ref. [14]) and can be easily varied. For this reason the
most suitable experimental setting could be with a coupler
whose properties strongly depend on the wavelength of the
input beam (alternatively one can consider a flexible change of
the optical properties using temporal gradients, active doping,
etc.).

An experimentally feasible realization of the nonlinear
directional coupler described can be based on the use of
AsySes chalcogenide glass. For this material the intrinsic
nonlinearity can be up to three orders of magnitude greater
than that of pure silica fibers [20-22]. More specifically, one
can consider material losses in chalcogenide glasses, where
the Kerr nonlinearity parameter is ny = 1.1 x 10~ 3cm?/W,
which is 400 times greater than the nonlinearity of fused silica
fiber. However, what is even more important for our aims is
that the absorption rate of at least one of the coupler arms can
be changed dramatically during the experiment. For example,
in chalcogenide glass the coefficient o can be on the order
of a few dBm and is very sensitive to the wavelength. Thus
practical control over the absorption can be performed by using
the dependence of the loss coefficients ¢ , on the wavelength
of the incident light.

To implement this idea it is necessary to produce the arms
of the coupler using chalcogenide glasses of different types.
In particular, one can consider the standard sulfide fiber in one
arm of the coupler and the lowest-loss sulfide fibers [23] in
the other arm. Such sulfide fibers have a particularly narrow
attenuation peak at wavelength Ay &~ 3 um. The behavior of
the absorption coefficient « in the vicinity of this peak can be
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modeled by the Lorentzian curve (here we use the experimental
results reported in Ref. [24]):
o 1,1F2

(A —Ao)? +T2’
where I' ~ 0.5-1um and a9 =~ 0.5 dBm and «;; ~ 5 dBm
for a typical sulfide fiber. By varying the wavelength about
Ao & 3 um in the interval Ay £ 0.5 um the loss can be
varied in the standard sulfide fiber by 0.5-5 dBm and in
the lowest-loss sulfide fiber in the interval 0.05-0.2 dBm.
Even larger attenuation can be achieved for chalcogenide fibers

Ge0As198e39Te30 where the chosen attenuation is on the order
of 5-30 dBm for A &~ 4.5 um.

O{l()L)ZOll,O‘i‘ (2)

IV. THE NONLINEAR OPTICAL ZENO EFFECT

As a result of the preceding discussion we consider the
situation when one of the waveguides (waveguide 1) is subject
to controllable losses (as discussed above) while another one
(waveguide 2) is operating in the transparency regime, i.e.,
when «; > o. We simplify the problem by setting o, = 0 in
the following.

We start with an estimate of the effective losses, designated
below as @, in the transparent arm of the coupler, which
occur due to the energy exchange between the arms. For
> ay !, one can adiabatically eliminate @, from the system
[Eq. (D]. Moreover, if we assume that o >> k we obtain
lay|* ~ Z—f|612|2 < |az|? and

.day . = - 2
_ld_Z ~ (ias + B2 + Vlaz|M)as. 3)

Here By = fp + @2(B2 — B)/er and 7 = y (1 + &2 /er), with
the effective z-dependent attenuation rate:

0[1K2

(B2 — B+ vl +af’

First we observe that &, decays with an increase of the
difference B, — B or the nonlinearity (the term y|ay|* in
the denominator). This behavior is natural because the differ-
ence in the propagation constants f , results in an incomplete
energy transfer between the arms, whereas the nonlinearity ef-
fectively acts as an additional amplitude-dependent detuning.
In practical terms, however, the effect due to the constant linear
detuning is negligible because B, — f is typically too small,
whereas the nonlinearity can result in an appreciable effect.
Thus the effective attenuation rate &, decays either with an
increase of the absorption oy — oo (the linear Zeno effect)
or (for given losses «;) with the intensity of the light in the
transparent arm, tending to zero in the formal limit |a;|> — oo
(the nonlinear Zeno effect).

Moreover, the optical analog of the anti-Zeno effect, i.e., of
the increase of the attenuation (and the associated dynamics
of the field distribution in the coupler) with the growth of the
loss coefficient oy, can also be observed merely due to the
presence of a strong nonlinearity. Such an effect, however,
is not counterintuitive in our setup. In fact, it is obvious that
for y|as|> > ay, Eq. (4) tells us that the ratio |a;|?>/|az|* ~
@y/a; is independent of o, which means that, in the Zeno
regime z 3> «, ', increasing the loss coefficient must increase
the actual attenuation.

Oy =

“4)
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In order to perform a complete numerical study of the cou-
pler we introduce the real amplitudes and phase of the fields,
aj = pjexp(i¢;), with j = 12; the relative difference in the
energy flows in the two arms F = (Ja1|> — |a2|?)/(|a1)? +
las|?); the total energy flow in the coupler Q = (|a;|* +
|a2|2)/P0, normalized to the input flow Py = laiol? + |asol?;
as well as the phase mismatch ¢ = ¢; — ¢,. Then the original
system [Eq. ()] is reduced to

Fy = —g(1 — F3) +2y/1 — Fsin(¢), (5)

b7 = M +48FQ — ZL cos(¢), (5b)

K J1— F?
0z =—gQ(U+F), (¢

where ¢ = o1/, § = Py/P,, and the distance is normalized
on the linear coupling length L = 1/«, i.e., Z = z/L = zk.
Here we also introduce the critical power P, = 4« /y, which
separates the regimes with a periodic energy exchange between
the arms for P < P, and the localization of energy in one
of the waveguides if P > P, [18]. For a fiber based on the
chalcogenide glass described above, the critical power P, ~
1W and the coupling length L varies in the interval 0.1-1 m.
Notice that mathematically the system [Eq. (5)] coincides
with the one describing a BEC in a double-well trap subject to
elimination of atoms from one of the wells [14]. The coupler
mimics the nonlinear Zeno effect in a BEC in a double-well
trap, where time is replaced by propagation distance in the
coupler and the electric fields in the arms of the coupler
correspond to the number of quantum particles in the potential
wells. The system [Eq. (5)] also resembles the evolution of a
Bose-Hubbard dimer with a non-Hermitian Hamiltonian [25].

V. LINEAR VERSUS NONLINEAR ZENO EFFECTS

We now proceed to the numerical study of the system
[Eq. (5)] to estimate that, for length L on the order of 1 m,
the value of the absorption coefficient g can be changed in
chalcogenide fibers by up to 20 times. In the empiric formula
[Eq. (2)] the values of the dimensionless parameters are
810 =010/« ~ 1and g a;1/k ~ 10-20, while § = Py/ P,
is in the interval 0-2.5.

Our main results are summarized in Fig. 1. Three different
regimes are evident in Figs. 1(a) and 1(b), where we show the
dependence of the output signal versus the coupler length.
At small distances from the coupler input, Z < 0.2, the
standard exponential decay occurs. This stage does not depend
significantly on the intensity of the input pulse (i.e., on § in
our notation). At larger distances, 0.2 < Z < 2, the system
clearly reveals powerlike decay. The power of the decay,
however, appears to be sensitive to the magnitude of the input
power, i.e., to the nonlinearity of the system. The decay is
much stronger at lower powers (8 & 0), corresponding to the
linear Zeno effect, and much weaker for the input intensities
above the critical value (§ = 2), in which instance it may
be termed the nonlinear Zeno effect. In all the cases the
output beam is concentrated in the waveguide without losses
[Fig. 1(a)] and the output power is still sufficiently high
above 70% of the input power. We also notice that, while
we have chosen a relatively large g, the phenomenon is also
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FIG. 1. (Color online) (a) Relative and (b) total energy flows
vs the propagation distance Z. Here F(0) = —0.8, ¢(0) =0, B, =
B1 =0, g =15, = 0 (dashed lines), and § = 2.5 (solid lines). The
dash-dotted lines in (b) show the reduced rate attenuation given by
Eq. (3) (also obtained by numerical simulations). Also shown are (c)
the output energy distribution F and (d) the total output energy flow
Q in the coupler of length Z = 2 as functions of the deviation of the
input light wavelength from the attenuation pick intensity Aq. The
output results for different values of § [6 = 0 (dashed lines), § = 0.5
(dotted lines), § = 1 (dash-dotted lines), and § = 2.5 (solid lines)]
demonstrate the linear and nonlinear Zeno effects.

observable (although less pronounced) for lower levels of light
absorption.

In practice, however, Figs. 1(a) and 1(b) will not correspond
to a real experiment with an optical coupler because in
the standard settings its length, i.e., Z, is fixed. Instead, as
mentioned above, observation of the Zeno effects can be
achieved by varying the wavelength of the light. From Fig. 1(b)
one concludes that the best observation of the phenomenon can
be achieved at some intermediate lengths of the coupler, where,
on the one hand, the powerlike decay is already established
and, on the other hand, the output power is still high so that
the system is still in the nonlinear regime (we do not show
the transition to the linear regime, which for the data used in
Fig. 1 occurs at Z = 0.3). In our case the coupler lengths
satisfying the above requirements correspond to the interval
0.2< Z £ 2. By choosing Z =2 in Figs. 1(c) and 1(d) we
show how the output intensity depends on the wavelength of
the incident beam, which can be manipulated experimentally.
In particular, in Fig. 1(d) one is able to see clearly the
linear Zeno effect as a dramatic increase of the output power
(the transparency window of the coupler) exactly at the pick
attenuation (note the dashed curve) achieved at the wavelength
Ao, as well as practically lossless propagation of the field in
the nonlinear case (cf. the solid line with the dashed curves).
Remarkably, for the strongly nonlinear case we also observe a
local increase of the output power, which, however, is preceded
by a small decay of the power. The local decay of the intensity
appears when the input power is approximately equal to the
critical one (§ =~ 1).

So far we have considered the case of the zero-phase
mismatch between the two arms of the coupler. In Fig. 2 we
show the dependence on the phase mismatch between the two
cores. One observes that the input phase mismatch does not
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FIG. 2. (Color online) (a) Output energy distribution F and
(b) total output energy Q vs the relative input phase ¢(0). Here
F0)=-0.8,g =15,Z = 2,and 5, = f; = 0. The lines correspond
to different values of §, representing the nonlinear Zeno effect: § = 0
(dashed lines), § = 0.5 (dotted lines), § = 1.5 (dash-dotted lines),
and § = 2.5 (solid lines).

destroy the phenomenon, but it can affect the output energy
flow by an order of 10% (the relative energy distribution being
practically unchanged).

VI. CONCLUSION

To conclude, we have shown that by using a simple optical
coupler subject to the wavelength-dependent absorption of the
light in one of the arms one can observe linear and nonlinear
Zeno effects. The phenomenon consists in an increase of the
output energy with an increase of the absorption coefficient of
one of the arms. The linear Zeno effect shows an especially
strong dependence on the wavelength of the input signal, as
expected from the design of the system. The nonlinear Zeno
effect, which is observed at intensities above the critical one, is
characterized by a much larger transparency of the system and,
consequently, is accompanied by a much weaker dependence
on the input wavelength.

The effect of light localization in a linear coupler with
strong losses in one waveguide has been observed recently
[26]. Guo et al. attributed this phenomenon to the parity-time
(PT) symmetric configuration of their passive coupler (to
which it can be reduced by the proper change of variables).
Since the presence of nonlinearity rules out a change of
variables, the present work proposes an alternative explanation
of the experiment reported in Ref. [26] and, moreover, shows
that this is a quite general phenomenon (not necessarily related
to the P7 symmetry), which can be observed in linear and
nonlinear systems and offers possibilities for the manipulation
of light transmission by means of controllable absorption
by making the absorption either intensity or wavelength
dependent.
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