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Testing spontaneous localization theories with matter-wave interferometry
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We propose to test the theory of continuous spontaneous localization (CSL) in an all-optical time-domain
Talbot-Lau interferometer for clusters with masses exceeding 106 amu. By assessing the relevant environmental
decoherence mechanisms, as well as the growing size of the particles relative to the grating fringes, we argue
that it will be feasible to test the quantum superposition principle in a mass range excluded by recent estimates
of the CSL effect.
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I. INTRODUCTION

It is a basic unresolved question of quantum mechanics
whether the Schrödinger equation holds for truly macroscopic
systems. Unitarity would then imply that even measurement
devices or conscious observers could, in principle, be brought
into a superposition of macroscopically distinct states. Most
of the offered answers can be put into one of three categories.
The affirmative statement, preferred in quantum cosmology,
requires some interpretational exercise to explain why definite
measurement outcomes are perceived in spite of all outcomes
being simultaneously realized in a multitude of “Everett
worlds.” A quite different attitude, expressed most stringently
in the operationalist formulation of quantum mechanics,
attributes a fundamental role to the divide between “quantum
system” and measurement device, such that it is meaningless
to pose the question in the first place. The third option is
to hypothesize that there is an objective modification of the
unitary Schrödinger dynamics that gives rise to a macrorealist
description of the physics on macroscopic scales [1].

Whatever one thinks about the need or plausibility of such
unconventional theories of the quantum-to-classical transition,
they have the clear advantage that they can be tested in
principle. In this way they bring back to physics what is
otherwise an issue of logical consistency and epistemology.
Another motivation to consider the possibility that quantum
physics is only an approximation to a deeper underlying theory
may be drawn from the difficulties encountered when trying
to reconcile it with the theory of gravity [2].

One of the best-studied models for the emergence of
macrorealism is the theory of Ghirardi, Rimini, and Weber
(GRW) [3], along with its refinement, the theory of continuous
spontaneous localization (CSL) [4]. Its predictions are con-
sistent with all quantum experiments so far, but they strongly
deviate from quantum theory when applied to macroscopic ob-
jects [5]. According to the model, a delocalized quantum state
of a material particle may experience a random “collapse,”
which localizes the wave function to a scale of about 100 nm.
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In the case of composite objects, the rate of these collapse
events increases with mass, due to an inherent amplification
mechanism. The values of the localization parameters are
chosen such that they affect only systems considered to be
in the macroscopic domain.

In this paper, we propose to test the CSL model by
performing matter wave interference with clusters in the mass
range between 106 and 108 amu. We assess the various relevant
environmental decoherence processes expected to occur in
an optimized time-domain Talbot-Lau interferometer with
ultraviolet laser gratings, paying particular attention to the
enhanced signal loss due to the finite cluster size. We conclude
that it will become technologically feasible to test the quantum
superposition principle at mass and time scales at which it is
predicted to fail according to recent estimates by Adler and
Bassi [6,7].

II. EFFECTS OF CONTINUOUS
SPONTANEOUS LOCALIZATION

The observable consequences of the CSL model are
accounted for in the framework of second quantization by
adding the Lindblad term,

8π3/2r3
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[
m(x)� m(x) − 1

2
{m2(x),�}

]
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to the von Neumann equation for the many-particle density
operator � of a system of massive particles. Here, m(x) is the
spatially blurred mass density operator, defined in terms of the
number density operators nk(x) of the constituent boson and
fermion species and their respective masses mk ,

m(x) =
∫

dx′ g(x − x′)
∑

k

mknk(x′). (2)

The function g(x) is a normalized Gaussian whose width
rc = 100 nm is one of the parameters of the model. The
second parameter is the term λ0/m2

0. One conventionally
chooses the reference mass m0 to be given by a nucleon,
m0 = 1 amu; as discussed in [6,7], reasonable lower bounds
for the associated localization rate λ0 are then in the range of
10−8 to 10−12 Hz. This is substantially larger than the value
of 10−16 Hz originally suggested by GRW [3], since the CSL
model implies a quadratic mass dependence of the effective
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localization rate. It is a consequence of the second quantization
formulation, which guarantees that the exchange symmetry
of bosons and fermions remains unaffected by the collapse
events.

In a molecule or a cluster, where the interparticle distances
are much smaller than the localization scale rc, the collapses
affect only the quantum state ρ of the center of mass
motion. One arrives at an effective master equation ∂tρ =
(ih̄)−1[H,ρ] + Lρ, with

Lρ = λ

[
8π3/2r3

c

∫
dx′ g(X − x′)ρ g(X − x′) − ρ

]
. (3)

Here, X is the center-of-mass position operator, and λ =
λ0(m/m0)2, the effective localization rate depending quadrat-
ically on the total mass m [6,7].

We note that the master equation (3) is equivalent to a
collisional decoherence master equation [8]. This implies that
it induces a basis of localized, soliton-like pointer states for
sufficiently large λ, which move without dispersion on the
classical Newtonian trajectories [9].

III. TESTING SPONTANEOUS LOCALIZATION
WITH NEAR-FIELD INTERFERENCE

We learn from Eq. (3) that continuous spontaneous local-
ization can be tested as soon as a very massive particle is
brought into a superposition state of different positions that
exceed the distance of rc = 100 nm for a sufficiently long
time. We propose that a viable experiment can be based on the
optical time-domain ionizing matter (OTIMA) interferometer
described in [10].

In that experiment, a pulsed slow cloud of clusters is
subjected to three pulsed standing light waves, generated for
instance by an ultraviolet fluorine laser beam (λL = 157 nm),
such that the particles in the antinodes are ionized and removed
from the cloud. The number of remaining neutral clusters is
then recorded as a function of the delay times between the
grating pulses. This way, the first laser pulse generates spatial
coherence in the cluster cloud by modulating its initial density.
After a delay time T , the second pulse acts as a combined
absorption and phase grating, where the nodes of the standing
light field play the role of the “grating slits” with a period of
d = λL/2, while the phases of the matter waves get shifted by
the dispersive light-matter interaction. Talbot-Lau-type near-
field interference finally produces a periodic cluster density
pattern after a second time delay T , provided that T is close
to an integer multiple of the Talbot time TT = md2/h—that
is, T = NTT + δT , with δT /T � 1. The recorded signal is
predicted [10] to show high-contrast interference fringes as a
function of δT , which are conveniently characterized by the
sinusoidal visibility V defined as the ratio of amplitude and
offset of a fitted sine curve.

If CSL exists, we predict a reduction of the interference
visibility, which can be calculated by incorporating the CSL
master equation (3) into the theoretical description of the
interferometer, as in the case of environmental decoherence
[11]. One arrives at the closed expression
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FIG. 1. Critical mass mc for testing continuous spontaneous
localization (CSL) as a function of the localization rate λ0, assuming
the geometry of the proposed experiment with N = 2. The shaded
area indicates the parameter region where interference should be
unobservable according to the CSL model. The dashed arrows mark
the critical masses associated with reasonable estimates for the lower
bound of λ0 [6,7].

Here, we introduced the Talbot time per atomic mass unit
T0 = m0d

2/h. The cubic mass dependence in the exponent
is the reason why an interferometric test of the CSL model
becomes conceivable.

Figure 1 shows the critical cluster mass mc where CSL
predicts the reduction VCSL = V/2 in the proposed OTIMA
experiment. Observing substantial interference at mc thus puts
a strict upper bound on the localization rate λ0 by ruling out
values greater than those given by the solid line. Here, we take
N = 2—that is, the second Talbot order. This ensures that the
effective interference path separation Nd = 157 nm exceeds
the localization scale rc, such that the factor in square brackets
takes an appreciable value.

Using Fig. 1, we can assess whether the literature values
for the CSL rate can be tested in the proposed setup. The most
recent calculations suggest that λ0 = 10−10±2 Hz [6,7], while
the original GRW estimate was λ0 = 10−16 Hz [3]. These
values require the cluster mass to reach mc = 105.9±0.7 and
9 × 107 amu, respectively, as marked by the dashed arrows
in Fig. 1. Remarkably, the lower value already touches the
range that should be reached with present-day technology in
the OTIMA interferometer [10]. However, for a distinctive test
of CSL, one must venture beyond that, which requires one to
cope in particular with two additional types of contrast limiting
effects [12].

First, the total interference time 2NTT grows linearly
with the cluster mass. At 106 amu, it already amounts to
about 60 ms at the second Talbot order, if a 157 nm laser
is used. At 108 amu, the gravitational free fall must be
compensated for and the cluster velocity must be controlled
with high precision. This requires motional slowing, guiding
[13], and trapping techniques [14,15] for large clusters, and
possibly a microgravitational environment [16]. The increased
interference time also aggravates the decohering influence of
environmental interactions and external forces, as discussed in
the following section.
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Second, the size of the clusters grows with increasing mass.
Apart from enhancing the interaction with the radiation field
and with residual gas particles, this implies that the cluster
size becomes comparable to the period d = λL/2 of the optical
gratings. Starting with this last problem, we proceed to analyze
under what conditions OTIMA interference will be possible
with ultramassive clusters, so as to provide a testing ground
for spontaneous localization.

IV. OTIMA INTERFERENCE IN THE LIMIT OF HIGH
PARTICLE MASSES

In the molecular matter-wave interference experiments
carried out so far, it was justified to treat the delocalized objects
as polarizable point particles. Since this approximation breaks
down beyond 106 amu, we formulate the interaction between
the ionizing optical gratings and the finite-size spherical
clusters using Mie theory [17]. As explained in [10], both
coherent diffraction and photoabsorption are described by
n(x), the average number of photons absorbed by each cluster
during a laser pulse,

n(x) = n0 + n1 cos

(
2πx

d

)
. (5)

Here, x is the transverse center-of-mass position of the cluster,
and n0 is the position-averaged mean number of absorbed
photons. Only the modulation n1 gives rise to interference; the
corresponding visibility [10]

V = 2
I 2

1 (n1)I2(n1)

I 3
0 (n1)

(6)

is independent of the Talbot order N , and involves modified
Bessel functions of the first kind. The position average n0,
on the other hand, determines the total transmissivity T of
the three gratings—that is, the fraction of remaining neutral
clusters after three grating pulses,

T = exp(−3n0)I 3
0 (n1). (7)

For clusters that are small compared to the laser wave
length, the point particle approximation yields n1 = n0 =
2FLσabs/hνL, proportional to the absorption cross section and
to the energy flux FL of the running-wave laser input [10]. For
large clusters, the corresponding expressions can be obtained
by computing the absorbed power of a dielectric sphere with
radius R in a standing-wave field. A lengthy calculation yields

n1
0

= 4FL

hνL

∞∑
	=1

(2	 + 1)π

k2
Lρ

(∓)	−1
(
σ

(E)
	 ± σ

(H )
	

)
, (8)

with the electric and magnetic multipole components

σ
(E)
	 = Im{εj	[

√
ερj	−1 − 	j	]∗}

|	(ε − 1)j	h	 + √
ερ[j	−1h	 − √

εj	h	−1]|2 ,

σ
(H )
	 = Im{√εj ∗

	 j	−1}
ρ|j	h	+1 − √

εj	+1h	|2 . (9)

The latter are determined by the scaled cluster radius ρ =
kLR = 2πR/λL and by the relative permittivity ε of the
material. We use a shorthand notation for the spherical Bessel
function in the dielectric, j	 ≡ j	(

√
ερ), and for the vacuum
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FIG. 2. Transmissivity [Eq. (7)] of the OTIMA interferometer vs
the gold cluster mass. The dashed line (right scale) gives the laser
flux, required to fix the visibility at V = 85%.

solutions h	 ≡ h
(1)
	 (ρ), given by spherical Hankel functions of

the first kind.
As the clusters grow in size, both absorption parameters n0

and n1 increase. This can be compensated for by turning down
the grating laser flux FL. However, if we want to maintain
a fixed visibility [Eq. (6)] for growing clusters, the detection
probability per particle T drops rapidly. This is because the
ratio n0/n1 grows drastically once the cluster radius becomes
comparable to the grating period, which is the main effect of
the cluster size in the subwavelength regime.

Figure 2 shows the OTIMA transmissivity for gold clusters
as a function of their mass. The relative permittivity at λL =
157 nm is approximated by the bulk value ε = 0.9 + 3.2i, as
is the mass density. We keep the interference fringe visibility
[Eq. (6)] at 85% by varying the laser flux (dashed line).
When comparing the medium-sized Au1000 with a cluster 1000
times more massive, a laser pulse almost 1000 times weaker
will suffice for the latter. The transmissivity, however, drops
then from T = 1% to 4 × 10−4 of the incident cluster flux.
This shows that the signal loss becomes prohibitively large
beyond 108 amu, where cluster size and wavelength become
comparable even for the densest metals.
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FIG. 3. The contour lines give the critical residual gas pressures
and the critical ambient temperatures for observing interference of
gold clusters with masses of 106, 107, and 108 amu.
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However, even before this size-induced mass limit is
reached, environmental decoherence will become important
if the cluster particles are not properly isolated and cooled.
We identify three relevant decoherence processes: (i) the
elastic scattering of laser photons during the grating pulses,
(ii) collisions with residual gas particles, and (iii) the emission,
absorption, and scattering of thermal black-body photons. The
first process was shown [10] to be negligible below 109 amu.
The other two effects pose constraints on the background
pressure and the temperature of the setup. Both effects are well
understood [11,18,19]. Their dependence on the cluster mass
differs from the CSL effect (4), and allows one in principle
to separate the environmentally induced visibility reduction
due to CSL by independently varying the temperature and the
pressure of the interferometer chamber.

In Fig. 3, we plot the critical background pressure pc and
temperature Tc, where environmental decoherence reduces
the interference visibility by a factor of 2. The contour
lines correspond to the cluster masses m/amu = 106,107,
and 108, with the shaded area indicating where interference
is largely suppressed by the environment. The area of high
fringe visibility shrinks with growing cluster mass, since the
optical absorption, the Rayleigh scattering cross section, and
the collisional cross section all grow with size. Here we assume
that the residual gas consists of N2, and we use the electric
properties of bulk gold to assess all decoherence processes. The
cluster temperature is assumed to be in equilibrium with the
environment, implying that in addition to the thermal emission
of radiation, both the absorption and the elastic scattering

of black-body photons contribute significantly to the thermal
decoherence effect.

We infer from Fig. 3 that decoherence can be fairly easily
controlled for 106-amu clusters at a pressure of 10−9 mbar and
room temperature. An experiment with 108 amu, in contrast,
will require cooling the setup and the clusters to below 200 K,
in a chamber evacuated below 10−12 mbar. This is challenging
but feasible, as demonstrated by cryogenic trap experiments at
10−17 mbar and 4.2 K [20].

V. CONCLUSIONS

For a long time, the implications of the theory of contin-
uous spontaneous localization were thought to be practically
unobservable. Our present assessment shows that this is not the
case. Indeed, experiments aimed at demonstrating matter-wave
interference with massive clusters in the range between 106

and 108 amu will provide an ideal testing ground for this
unconventional theory of the quantum-to-classical transition,
one of the leading contenders in resolving the fundamental
question of macroscopic realism.
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