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We analyze the equilibrium properties of a weakly interacting, trapped quasi-one-dimensional Bose gas at finite
temperatures and compare different theoretical approaches. We focus in particular on two stochastic theories: a
number-conserving Bogoliubov (NCB) approach and a stochastic Gross-Pitaevskii equation (SGPE) that have
been extensively used in numerical simulations. Equilibrium properties like density profiles, correlation functions,
and the condensate statistics are compared to predictions based upon a number of alternative theories. We find
that due to thermal phase fluctuations, and the corresponding condensate depletion, the NCB approach loses
its validity at relatively low temperatures. This can be attributed to the change in the Bogoliubov spectrum, as
the condensate gets thermally depleted, and to large fluctuations beyond perturbation theory. Although the two
stochastic theories are built on different thermodynamic ensembles (NCB, canonical; SGPE, grand-canonical),
they yield the correct condensate statistics in a large Bose-Einstein condensate (BEC) (strong enough particle
interactions). For smaller systems, the SGPE results are prone to anomalously large number fluctuations, well
known for the grand-canonical, ideal Bose gas. Based on the comparison of the above theories to the modified
Popov approach, we propose a simple procedure for approximately extracting the Penrose-Onsager condensate
from first- and second-order correlation functions that is both computationally convenient and of potential use
to experimentalists. This also clarifies the link between condensate and quasicondensate in the Popov theory of
low-dimensional systems.
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I. INTRODUCTION

Following the first observation of Bose-Einstein conden-
sation of dilute gases, experimental and theoretical efforts
were mainly focused on the fundamental properties of such
degenerate quantum gases, including spatial and momentum
distributions, and collective excitations [1,2]. Mean-field
theory was initially found to be impressively successful in most
cases. Indeed, at temperatures well below the phase transition,
nearly all atoms occupy one wave function that satisfies
a nonlinear Schrödinger equation, the celebrated Gross-
Pitaevskii equation (GPE). The nonlinear term describes the
mean-field potential experienced by the atoms due to two-body
interactions. In the language of quantum field theory, the GPE
yields a zeroth-order approximation to the full matter-wave
field where both the noncondensed component of the gas and
quantum fluctuations are neglected.

The Bogoliubov theory provides an improved analysis
of this system by including small fluctuations around the
condensate wave function. Its predictions include, e.g., the
spectrum of collective excitations, the quantum depletion
of the condensate, and correlation functions at both zero
and nonzero temperature. We focus in this paper on a one-
dimensional trapped gas as a model for a weakly interacting
quasi-one-dimensional system confined tightly in the radial
direction. In such a system, the contribution of low-energy
modes is significant. From Bogoliubov theory, these modes
mainly affect the phase of the matter-wave field, the density
fluctuations being relatively weak. As a consequence, there is
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no Bose condensate in the homogeneous limit. Still, a so-called
quasicondensate can be identified where long-range coherence
manifests itself in the suppression of density fluctuations,
while the phase is correlated only over distances smaller
than the system size [3–8]. The situation is similar to a
“fragmented” condensate where several low-energy modes
appear with comparable weight [9].

The (quasi)condensate and atoms in excited states (“thermal
cloud”) are often treated as two subsystems that are coupled
to each other by scattering processes that exchange particles
and energy. Approaches based on such a splitting between
condensate and thermal dynamics lead to a generalized GPE
for the condensate dynamics that differs from its T = 0
counterpart through the inclusion of the thermal cloud mean
field (Hartree-Fock potential). In addition, a source term may
describe the scattering of particles between the condensate and
thermal cloud [10,11]. The thermal cloud itself is described by
a quantum Boltzmann equation [12–14] self-consistently cou-
pled to the condensate [15–19]. In its kinetic formulation, the
resulting self-consistent, coupled Gross-Pitaevskii-Boltzmann
approach, which extends earlier work by Kirkpatrick and
Dorfman [20], and Eckern [21], is often referred to as the
Zaremba-Nikuni-Griffin (ZNG) scheme within the context of
trapped atomic gases [15,22]. This method reproduces the
two-fluid hydrodynamics in the collisional, hydrodynamic
regime [23,24], and has been tested successfully against
experiment for collective modes [25–27] and macroscopic
excitations [28,29]. Since the ZNG approach is numerically
formulated in a purely three-dimensional context, we shall not
be considering it further within the present work, based on
purely one-dimensional simulations.
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Despite their elegant formulation, kinetic theories based on
mean-field potentials have the drawback in lower dimensions
of not fully capturing the large phase fluctuations in the
quasicondensate. In addition, so-called anomalous averages
(or pair correlations) in the thermal cloud, typically omitted
in such approaches, are expected to become particularly
relevant at lower dimensions. The latter pose a challenge
to construct theories with a gapless excitation spectrum
in the homogeneous limit, as required by the Hugenholtz-
Pines theorem [6,7,30–34]. A modified mean-field theory for
low-dimensional quasicondensates was developed by Stoof’s
group and one of the present co-authors [6,7], building on
previous path-integral approaches pioneered by Popov [3,5].
In this “modified Popov theory,” the infrared divergences
due to phase fluctuations are systematically removed, leading
to a gapless, convergent, and computationally convenient
scheme that applies in all dimensions, for homogeneous and
trapped systems. This approach has been used in particular to
construct the phase diagram of weakly interacting 1D systems
[35], and to investigate the interplay of density and phase
fluctuations [36].

The quasicondensate dynamics at nonzero temperature
is a challenging problem as the Bogoliubov approximation
becomes invalid, at least at large times [37,38], and large
thermal phase fluctuations have to be taken into account even
at low temperatures where density fluctuations are small [39].
Classical field methods have been developed to simulate nu-
merically those modes of the system that feature a macroscopic
occupation. These methods rely upon the observation that for
highly occupied modes, the field operator can be replaced by
a classical complex field which evolves in time according to
the GPE [40–42]. This description extends the T = 0 GPE,
by adding stochastic elements that describe fluctuations of the
(quasi) condensate modes; these may be further coupled to
the thermal cloud where the mean occupation numbers are
small. (In fact, too small to be treated in the classical field
approximation, and more appropriately described by quantum
Boltzmann equations [43].) Within the class of classical field
techniques, we mention the projected GPE (PGPE) [41,44],
the truncated Wigner (TW) method [37,45–47] the stochastic
Gross-Pitaevskii equation (SGPE), when implemented in the
classical limit [43,48–53], and closely related classical field
methods [42,54]. Hybrid simulation techniques were also
recently developed that attempt to go beyond the classical
limit [55–58].

These stochastic approaches, the relation between them
and other kinetic theories and their respective applications
have been reviewed in Refs. [52,53,59,60]. A key appeal is
that they provide an approximation to the full distribution
function of the ultracold gas and give access to physics
beyond the mean field. They have been used, e.g., to probe the
large critical fluctuations near the phase transition [61–63], to
study dynamical effects of fluctuations on condensate growth
[48,49,64] and macroscopic excitations [65–69]. Another
quantity of interest is the counting statistics of the condensate
mode [63,70–73], which is analogous to the photon number
distribution in quantum laser theory [74].

As the use of classical field simulations becomes more
widespread, a quantitative study of their relative properties
is essential. The main purpose of this paper is to initiate

such a quantitative study by comparing two methods that
can be implemented with reasonable effort, each of which
generates an ensemble of stochastic initial states to mimic
a finite-temperature Bose gas at equilibrium in a trap. For
simplicity, we focus on a one-dimensional, weakly interacting
system.

Number conserving Bogoliubov (NCB) method. The first
method is a Bogoliubov approach in which the total atom
number N is conserved (formulated within the canonical
ensemble) [46,77–81]. This method has been used as a starting
point for dynamical calculations within the truncated Wigner
approximation (see Ref. [60] for a review). We henceforth
denote this by “TWNCB.” The TWNCB field contains both
condensate and noncondensate modes, calculated from the
Bogoliubov–de Gennes equations. The mode amplitudes are
sampled to capture both quantum and thermal fluctuations.
We adopt here a formulation developed in a low-temperature
expansion around the Gross-Pitaevskii mean field [46,80],
assuming that Nth, the number of atoms in noncondensate
modes, is small compared to N .

Stochastic Gross-Pitaevskii equation (SGPE). The second
method is the stochastic Gross-Pitaevskii equation (SGPE),
which prepares a grand-canonical ensemble dynamically by
simulating a Langevin equation (see Refs. [43,48,49] for
details of the scheme used here). We consider it here within
the classical approximation where the mode occupations are
large. The stochastic field in the SGPE represents the low-lying
modes of the field which are coupled to a thermal cloud, treated
as a heat bath. The exchange of particles and energy through
incoherent scattering processes between these two subsystems
is represented by a damping term and the Langevin force in
the SGPE [43].

We wish to show that there exist regimes where the two
methods are equivalent despite the physically very different
pictures behind them. To this end, we calculate and analyze
relevant observables like density profiles, spatial correlation
functions, and condensate statistics. Where feasible, we also
compare to alternative finite temperature theories, as detailed
in Table I. This study is by no means complete (e.g., there
is no comparison to ZNG or PGPE), but we believe that it
represents an important step toward benchmarking commonly
used simulation methods for finite-temperature Bose gases.
Other comparisons undertaken to date are summarized in
Ref. [82].

More specifically, we explain the origin of discrepancies
between the two methods considered here, building on previ-
ous investigations of the validity conditions of the TWNCB
method [38]. We find in particular that the low-temperature (or
small Nth) expansion behind the TWNCB breaks down quite
early, as the temperature T increases toward the characteristic
temperature Tφ for phase coherence within a trap [4]:

kBTφ = N
(h̄ω)2

µ
< kBTc = N

ln 2N
h̄ω (1)

(ω is the trap frequency and µ the chemical potential) where
Tc is the critical temperature for Bose-Einstein condensation
in an ideal trapped Bose gas in 1D [76]. This failure, that
also happens when the theory of Ref. [71] is applied to an
interacting, trapped gas, is attributed to a distribution function
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TABLE I. Summary of “benchmark” theories used in analyzing the stochastic approaches. A
√

in the “NCB” or “SGPE” columns indicates
inclusion in the comparison. Tφ [Eq. (1)] is the “critical” temperature above which the system’s coherence length is smaller than its size due to
phase fluctuations [4]. Tc [Eq. (1)] is the critical temperature for an ideal Bose gas in a one-dimensional harmonic trap [76]. These temperatures
are illustrated in Fig. 4 in relation to our parameters.

Temperature “Benchmark” theory
regime Physical property SGPE NCB for comparison Ref. Sec.

T < Tφ/2 Density profiles: Total
√ √

modified Popov [6,7] III A
Density profiles: condensate (Penrose-Onsager)

√ √
modified Popov [6,7] III B

Spatial correlation function: 1st order
√ √

modified Popov [6,7] III C 1
Petrov et al. [4]

Spatial correlation function: 2nd order
√ √

Kheruntsyan et al. [75] III C 2
Condensate statistics

√ √
Svidzinsky and Scully [71] III D

Pair anomalous average
√ √

(T = 0) Bogoliubov theory [1,2] III C 3
0 < T < Tc Quasicondensate/condensate density profiles

√
modified Popov [6,7] IV A

for Nth that is broadened by thermal fluctuations beyond the
limit set by the total number of particles N . In addition,
these fluctuations are overestimated because of spurious
contributions from phase fluctuations. We have observed that
the breakdown of the TWNCB approach is not completely
“cured” by propagating the stochastic ensemble of wave fields
under the GPE.

At low temperatures and for smaller systems, we have found
a large number of fluctuations in the SGPE results, in particular
in the counting statistics of the condensate. This is related to the
anomalous number fluctuations of the ideal gas in the grand-
canonical ensemble [70,83,84]. This feature does not occur
for the canonical TWNCB method, and it is removed in larger
condensates where particle interactions become important. We
emphasize that this agreement illustrates how moments of the
quantum field of very high order are correctly reproduced by
the stochastic approaches.

In addition, we discuss the influence of the thermal (noncon-
densate) density nth(z) and the so-called anomalous average (or
pair correlation) m(z) of the noncondensate field, by analyzing
their back-action on the shape of the (Penrose-Onsager)
condensate density. This anomalous average is related to
both a renormalization of the particle interactions due to the
background field, and to the Landau and Beliaev damping
of condensate excitations (together with triple averages)
[2,7,10,11,15,32,34,81,85–91].

Following on from this, we discuss the connection between
the condensate mode, as obtained by applying the Penrose-
Onsager criterion, and the quasicondensate, as predicted by the
modified Popov theory of Andersen et al. [6,7]. In stochastic
theories, the condensate mode is commonly extracted a
posteriori from the total matter field ensemble, which can
become a prohibitive computational task in large systems.
This is in stark contrast to kinetic theories based on symmetry
breaking, where the condensate is a separate quantity, obeying
its own equation of motion. We extend the analysis of Ref. [92]
to construct an approximate formula for the condensate density
involving first- and second-order correlation functions which
are straightforwardly obtained. This illustrates the conceptual
difference between the Penrose-Onsager condensate and the
quasicondensate.

The paper is organized as follows. We first describe in
Sec. II the procedure of initial state generation within each of
the two selected stochastic approaches, highlighting the key
conceptual differences between them. We also briefly review
the modified Popov theory that is used to benchmark a number
of our results. Section III addresses the equilibrium properties
such as density profiles and correlation functions, comparing
to other, pertinent theoretical results where appropriate. In
Sec. III D, the condensate statistics is discussed and some
features of the one-body density matrix in the quasicondensate
regime are illustrated. Section IV uses the modified Popov
approach to address the physical meaning of the (Penrose-
Onsager) condensate mode, which may be extracted from the
stochastic theories, and contrasts this to the quasicondensate
concept. Section V shows that the NCB initial state under
GPE evolution does not lead to improved predictions for
equilibrium properties. Section VI summarizes our results,
with some additional material presented in two appendices for
completeness.

II. SIMULATION TECHNIQUES UNDER CONSIDERATION

Each of the stochastic simulation techniques we describe
here are based on the mapping of a quantum field theory of
atoms to noisy c-number fields. In this section we discuss them
in turn, paying particular attention to two important practical
elements: (i) the method of equilibrium initial state generation
and (ii) the nature in which the GPE arises as an energy and
number conserving means to treat the system dynamics away
from equilibrium.

A. Truncated Wigner

In the truncated Wigner (TW) method, the temporal
dynamics is governed by the familiar nonlinear Schrödinger
or Gross-Pitaevskii equation (GPE):

ih̄
∂ψ

∂t
= HGP[|ψ |2]ψ − µψ,

(2)

HGP[|ψ |2] = − h̄2

2m

∂2

∂z2
+ V (z) + g|ψ(z)|2,
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where the nonlinear Hamiltonian HGP contains the trapping
potential V (z) and the effective two-body interaction strength
g, and µ is the chemical potential. While Eq. (2) looks
identical to the usual T = 0 GPE equation, the meaning of
ψ is quite distinct: (i) The complex field ψ(z,t) represents the
condensate, its elementary excitations, and the “thermal cloud”
surrounding it. (ii) The initial conditions are stochastic and in-
clude quantum and thermal fluctuations of the condensate and
its excitations. This is essential for incorporating spontaneous
processes (scattering or decay) that are not captured within
mean-field theory, see, e.g., Refs. [93,94]. (iii) Averages of
operator products are first symmetrized before being mapped
to classical fields, so that the one-body density matrix becomes,
for example,

〈�̂†(z)�̂(z′)〉 �→ 〈ψ∗(z)ψ(z′)〉W − nqδz,z′ , (3)

where the average 〈· · ·〉W is taken over the initial conditions.
The second term is a δ function on a spatial grid and
proportional to the “quantum density”

nq = 1

2�z
, (4)

where �z is the grid spacing. As a consequence of this “Wigner
symmetrization,” the density in the nonlinear term in the
Hamiltonian HGP [Eq. (2)] should appear with a subtraction,
|ψ(z)|2 − nq . We have incorporated the corresponding (small)
energy shift gnq into the chemical potential µ. (See, e.g.,
Ref. [95] for how to generalize the mapping (3) to two-time
correlations.)

B. Number conserving Bogoliubov initial state

To obtain a thermal initial state for use in the TW
simulations, we employ a stochastic sampling for the canonical
density operator at thermal equilibrium, based on the (number-
conserving) Bogoliubov (NCB) approximation. In the usual
Bogoliubov theory, one shifts the Bose field operator by
a c-number field (the order parameter), which is equiva-
lent to assuming that the system is in a superposition of
states with different particle number (coherent state). The
number-conserving version of the Bogoliubov theory [78,79]
preserves the total number of atoms, N , and is constructed to
provide the correct counting statistics for the condensate mode,
in the limit of a small thermal component. [The distribution
function P (Nc) for the number of atoms in the condensate
is discussed in Sec. III D.] Here, we summarize a practical
scheme to sample the canonical equilibrium density operator
for the quantum field at a fixed number of atoms N , as
explained in Refs. [37,46]; a number of technical details can
be found in Appendix A.

1. Condensate mode

The initial value for the classical field ψ(z,0) is split as

ψ(z,0) = acφc(z) + ψ⊥(z) , (5)

where the first term describes the condensate, ac is the
corresponding complex amplitude, and Nc = |ac|2 the number
of condensate atoms. The condensate mode function φc(z) is
normalized to unity and is given in Eq. (A1). The splitting (5)
is motivated from an expansion in the limits of large particle

number N and small interaction constant g [78,80,81,96].
More precisely, the condensate mode and its excitations are
calculated self-consistently up to second order in (Nth/N)1/2,
where Nth is the number of noncondensed particles, respec-
tively. (This number also has a small quantum contribution.)

2. Elementary excitations

The noncondensate field ψ⊥(z) in Eq. (5) arises in the next-
order contribution of the NCB expansion. It is expanded in the
basis of the Bogoliubov modes:

ψ⊥(z) =
∑

k

[bk uk(z) + b∗
k v∗

k (z)]. (6)

The mode functions are the eigenvectors (uk,vk)T to the
eigenvalue Ek of the Bogoliubov–de Gennes operator LQ

given in Eq. (A3). The Bogoliubov spectrum {Ek} is positive
and gives the quasiparticle energies relative to the chemical
potential. The Bogoliubov amplitudes bk , b∗

k in Eq. (6) are
sampled as independent complex Gaussian random numbers
with zero mean and variance σ 2

k = (1/2) coth(βEk/2) [37,38].
The mean population of a Bogoliubov mode is thus equal to

〈|bk|2〉W = σ 2
k = N̄ (Ek) + 1

2 , (7)

the Bose-Einstein occupation number N̄ (Ek) plus an extra
contribution 1/2. This extra term appears due to the symmetric
ordering of the quantum operators:

〈|bk|2〉W ← 1
2 〈b†kbk + bkb

†
k〉, (8)

and represents quantum fluctuations. Quantum fluctuations
mimic spontaneous scattering into otherwise empty modes
within a classical field approximation [53]. They also lead to
the depletion of the condensate mode [97]. The condensate
mode function φc(z), indeed, contains a correction that
depends on these amplitudes [the field φ2(z) discussed after
Eq. (A8)]. Within the number-conserving scheme of Ref. [38],
this correction reflects the change in the condensate number
(quantum and thermal depletion), the interaction between
condensate and noncondensate particles via the Hartree-
Fock potential 2g〈|ψ⊥(z)|2〉W and via the anomalous average
g〈[ψ⊥(z)]2〉W , see Eqs. (A9) and (A10).

3. Condensate number

The stochastic ensemble of the noncondensate fields ψ⊥(z)
now determines the sampling of the condensate number. The
number of condensed atoms Nc is calculated from [37,38]

Nc = N − Nth({bk}) + A({bk}) , (9)

Nth({bk}) = �z
∑

z

|ψ⊥(z)|2 − M/2 . (10)

Here, Nth gives the number of noncondensed atoms, while M
is the number of terms in the expansion (6) and depends on
the computational grid, and acts so as to subtract the “one-
half atom per mode” from the quantum fluctuations in ψ⊥.
The quantity A({bk}), given in Eq. (A7), averages to zero and
implements the “canonical constraint” at the level of variances:
it ensures that the fluctuations of the condensate number Nc

are anticorrelated to those of Nth (calculated in normal order),
since the two number operators sum to the fixed total particle
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FIG. 1. (Color online) Condensate density Nc|φc(x)|2 (dashed,
black) and a typical realization of the noncondensate density
|ψ ′(x)|2 ≡ |ψ⊥(x)|2 (noisy red curve; data are multiplied by 5 to
be visible on this scale). The depletion correction to the condensate
mode, φ2(z), is illustrated by plotting the “interference term”
2 Re [φ∗

0 (z)φ2(z)] (dot-dashed, green; also multiplied by 5). Note that
the condensate atom number Nc ≈ 19 500 depends on the realization.
The zero-temperature Thomas-Fermi shape for the same parameters
(inverted parabola; thin, solid brown line) is also plotted. Here
(and in most of the paper) we fix µ = 22.41 h̄ω (corresponding to
N = 20 000 for the GPE at T = 0), choosing here kBT = 46 h̄ω.
Densities are plotted in units of g/µ.

number N . Once Nc is calculated for each member of the
ensemble, the condensate amplitude ac in Eq. (5) is taken as
ac = √

Nc. The global phase is arbitrarily fixed here but the
NCB construction is actually U(1) invariant (see [98]), and
the phase drops out in our observables of interest. A typical
example for a Wigner field is given in Fig. 1.

4. Validity range

We summarize a few issues that have to be considered
for the initial state preparation within the NCB expansion
and the TW scheme. There are two aspects here: First, the
truncation made in order to obtain the evolution equation (2)
assumes that third derivatives of the Wigner functional for
the quantum field are negligible [37,45,53]. This should be
the case when the total number of particles is much larger
than the number of relevant modes in the simulation, i.e.,
N � M. Given this restriction, however, the TW scheme
gives approximate physical results even beyond the time scale
where the Bogoliubov theory, in its number-conserving form,
fails [37].

The second aspect is related to the low-temperature expan-
sion of the number-conserving Bogoliubov approach that is
behind the initial state preparation [37,38,46]. The canonical
distribution of the Bose gas is calculated by approximating
the Hamiltonian of the quantum field theory by the quadratic
Bogoliubov Hamiltonian (as also done in Refs. [71,99]).
This is valid when the number of noncondensate particles is
small: Nth  N which implies relatively low temperatures.
The sampling of the condensate statistics, Eq. (9), is also
an approximation that has been discussed in Ref. [37]: in

the quantum field theory, Nc is restricted to be an integer
(eigenvalue of the number operator â

†
c âc), while the classical

simulation returns continuous values for Nc. Both schemes
coincide when the counting statistics P (Nc|ψ⊥) (conditioned
on a given noncondensate field ψ⊥) is broad enough, and
can be extended to a smooth function of Nc. It has been
shown that this condition can be met when ψ⊥ is sampled
with sufficiently many modes (Mth, say) having a significant
thermal occupation (see [38] for more details). For a typical
mode spacing h̄ω, this gives a lower limit on the temperature
because we need Mth ≡ kBT /(h̄ω) � 1. Under these condi-
tions, one can also justify the gaussian probability distribution
for the noncondensate field ψ⊥ that is used in the simulation
scheme [38].

In summary, since the Bogoliubov approximation is used
for the representation of the N -body density operator, the
temperature should be not too high but at the same time also not
too low because of the smoothness of the distribution function.
This poses limits on the applicability of the state preparation
protocol within the TWNCB method. The above requirements
can be checked from the inequalities [37]

Mth � 〈Nth〉  σ 2(Nc), (11)

where σ 2(Nc) is the variance of the (unconditional) condensate
statistics P (Nc), obtained from the sampling (9). The first
inequality precludes very low temperatures because Nth would
be too small. In addition, the condensate statistics must not be
too broad,

σ (Nc)  〈Nc〉 = N − 〈Nth〉 (12)

because otherwise the probability of returning negative values
for Nc would become significant. The method gives unphysical
results if a large fraction of negative values of Nc is returned
and we find that this happens already at moderate temperatures,
when 〈Nth〉/N becomes of the order of ∼0.2.

C. Stochastic Gross-Pitaevskii equation

Within the stochastic Gross-Pitaevskii equation, a finite
temperature equilibrium state is obtained dynamically by
evolving a complex field ψ(z,t) that is coupled to a thermal
cloud which, when approximated as in thermal equilibrium,
acts as a heat bath (energy and particle reservoir) [43,48,51,
53,100].

1. System plus bath split

We may physically motivate a division into two subsystems:
the system is represented by the field ψ(z,t) and describes
the low-lying modes of the ultracold gas. These are highly
occupied, therefore a classical field description is appropriate;
the “thermal cloud” of atoms whose energies are high above
the typical energies of the condensate and its excitations,
obeys a separate quantum Boltzmann equation [43]. Both
subsystems are naturally coupled to each other by exchanging
energy and particles, hence the description is given within the
grand-canonical ensemble. This leads to a nonlinear Langevin
equation [see Eq. (13)], often termed the stochastic GPE
(SGPE). The system dynamics now combines deterministic

043619-5



COCKBURN, NEGRETTI, PROUKAKIS, AND HENKEL PHYSICAL REVIEW A 83, 043619 (2011)

aspects (encapsulated within the usual GPE) and a stochastic
coupling to the heat and particle reservoir of thermal atoms.

We note that there are two distinct formulations of such
a nonlinear Langevin equation, which are motivated by the
same physical ideas, but which arise from very different
formalisms (see Ref. [52] for a review and a discussion of
subtle differences). The derivation of Stoof, which we shall
adopt in this work, is based on the Keldysh nonequilibrium
formalism [43,49,101] and the resulting theory was first
implemented numerically in Ref. [48]. An equation that differs
in some details was formulated by Gardiner, Anglin, and
Fudge [50] and cast into its current form by Gardiner and
Davis [51], as a limiting case of the quantum kinetic theory put
forward by Gardiner and Zoller [18,102,103]. The stochastic
equation which results, differs primarily in the use of a
projector operator restricting dynamics to low energy modes,
and is termed the stochastic projected GPE (SPGPE) [53].

Technically, the particular SGPE discussed here is obtained
by expanding the system density matrix over coherent states
using functional integration techniques, which leads naturally
to the Keldysh nonequilibrium formalism. Ultimately, this is
found to give a Fokker-Planck equation for the Wigner distribu-
tion function of the entire atomic quantum field [101,104]. This
procedure maps symmetrically ordered correlation functions
of field operators onto stochastic field correlations, as is evident
from the fact that each mode k of the classical field ψ occurs in
the stationary limit with an occupation number N̄ (Ek) + 1/2
[43,60] [cf. also Eq. (7)]. Within the modes which are
predominantly classical, i.e., highly occupied, N̄ (Ek) � 1/2,
and this symmetrization is no longer important, a common
consideration in all classical field methods [40–42,53]. This
approximation will permit us to move from the quantum
relation Eq. (14) below to its classical counterpart Eq. (15)
which makes the simulation scheme much simpler.

2. Stochastic equation of motion

Making a Hartree-Fock type ansatz for the probability
distribution representing the entire trapped gas, leads to two
separate probability distributions, representing separately the
high- and low-lying system modes. Integrating out the low-
energy modes, one finds that the former may be treated by a
quantum Boltzmann equation (QBE) [43]. Integrating instead
over the high-energy modes leads to a nonlinear Langevin
equation,

ih̄
∂ψ

∂t
= {HGP[|ψ |2] − µ − iR̂(z,t)}ψ + η(z,t), (13)

where R̂(z,t) is a damping term, which should in general be
time dependent, and η(z,t) a stochastic “force”. Note that it is
for convenience in later discussions only that we use the same
symbol for the TWNCB method and SGPE wave functions,
despite the differences in physical content. Assuming that the
dynamics of the high-energy modes may be neglected, the
physical picture underlying this equation is a splitting of
the quantum field into low-lying modes [the “system,”
described by ψ] and a “thermal particle bath,” which is
considered to be at equilibrium and so, on average, Bose-
Einstein distributed [49] (since this is the equilibrium solution
to the QBE). The term −iR̂(z,t)ψ(z,t) describes the particle

exchange due to collisions between system and bath atoms.
The real part of the operator R̂ can be positive or negative,
corresponding to loss or growth, as for the analogous operator
appearing in the ZNG scheme [22]. Since collisions occur
randomly, the SGPE contains an associated “noise” term η(z,t)
in Eq. (13). The presence of both terms, dissipation and noise,
is essential to ensure that the fluctuation-dissipation theorem
is satisfied: the system is thus guaranteed to reach the correct
equilibrium at a given temperature.

3. Damping and noise

The damping operator is given by the relation

−iR̂ = h̄�K

4
[N̄ (εc − µ) + 1/2]−1, (14)

where h̄�K is the so-called Keldysh self-energy (a complex
quantity) and N̄ (εc − µ) is the Bose-Einstein distribution,
representing the occupation of low-lying modes as a function
of mode energy εc. While this relation is exact at equilibrium,
it cannot be easily implemented in this form in numerical
simulations for the following reasons: firstly, the mode energy
εc actually corresponds to the nonlinear differential operator
appearing in the GPE (13); moreover, �K is determined by
the thermal particle distribution, whose accurate temporal
representation would require solving a QBE. We therefore
restrict the SGPE to its classical limit, as all current numerical
applications of this theory do. In the approach of Stoof, this
means that the action of the damping operator takes the simple
form

−iR̂ψ = h̄�K

4kBT
(HGP[|ψ |2] − µ)ψ, (15)

where h̄�K is still spatially dependent in general [49,66], as
the thermal particle energies are affected by the condensate
mean field. This enables the equation to be cast in the form

ih̄
∂ψ

∂t
= (1 − iγ ) (HGP[|ψ |2] − µ)ψ + η(z,t), (16)

where γ = ih̄ �K/4kBT . The form of this equation is the same
as the stochastic PGPE (SPGPE) implemented numerically by
Davis and collaborators, except for the projector [53] (see
Ref. [52] for a more detailed comparison).

In Eq. (16), the term η(z,t) is a complex, Gaussian, white-
noise process with correlations

〈η∗(z,t)η(z′,t ′)〉 = 2h̄γ kBT δ(t − t ′)δ(z − z′). (17)

This relation can be read as a fluctuation-dissipation theorem
for the system, since the strength of fluctuations is proportional
to the damping parameter γ , on the one hand, and the
temperature T of the heat bath, on the other. This link is
essential for the preparation of a thermalized system. A similar
stochastic scheme was formulated in Ref. [57] for the ideal
Bose gas where the noise was filtered in order to preserve the
total atom number (canonical ensemble).

Since our primary interest in the present work is in
generating an ensemble of equilibrium states, we make a
further, numerically convenient, simplification and treat �K

as a parameter independent of time and, additionally, space.
This is also a standard approximation in SPGPE simulations
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[53], and we have tested that a spatially varying �K does
not strongly affect the equilibrium state. So, for our present
purposes, we solve Eq. (16) with the dimensionless quantity
γ = 0.01.

4. Validity range

The main limitation behind the SGPE used here is the clas-
sical approximation (highly occupied modes), as highlighted
by the relation (15). In the case of a trapped system, this
means that the applicability of the theory varies spatially.
Indeed, the classical approximation is better suited to the
low-energy, central region of the trap, in which there are many
particles due to the presence of a Bose-Einstein condensate.
In the outer trap regions, there are fewer atoms, and hence
there comes a point beyond which the classical approach is
no longer well justified. In general, this point is dependent
upon the choice of grid spacing, as a finer grid includes
more high-energy modes. For a given grid with spacing �z,
the accuracy of the classical approximation can be checked
by comparing, for example, the average density 〈|ψ(z)|2〉 to
the “quantum density” nq = (2�z)−1 [this value arises from
operator symmetrization in Eq. (3) on the grid]. We shall see
that this limits the applicability of the classical approximation
to the SGPE typically to the spatial range where the trapping
potential is not too large, V (z) − µ � kBT . Within this study,
we are interested primarily in the central region |z| < R

where the condensate is present (R is the Thomas-Fermi
radius), as also highlighted in the original SGPE numerical
implementation [48]. We have verified that changes in the
properties which form the basis of our comparison are
negligible over a range of grid spacings. This is physically
equivalent to the statement that our equilibrium results are
unchanged for a range of cutoff energies, which mark the
split between the low- (“classical”) and high-lying (“thermal”)
modes (see also Refs. [44,53,100,105]).

5. State preparation

We now briefly explain how the SGPE (16) works in
practice—more details on this can be found in recent reviews
[53,100,105]. As an initial condition for the system, one can
start with ψ(z,0) ≡ 0. The dissipative term −iγ in Eq. (16),
leads to a change in the norm of ψ(z,t), but this cannot increase
a zero initial condition. It is the Langevin force η(z,t) that
“seeds” the field, as discussed in [48]. The particle number
N (t) = ∑

i �z|ψ(zi)|2 increases until ψ(z,t) relaxes to the
solution of the stationary GPE, at a given chemical potential

HGP[|ψ |2]ψ = µψ, (18)

as illustrated in Fig. 2. The state preparation in the SGPE is thus
performed dynamically, as the system grows to equilibrium in
contact with a heat bath at a specified temperature.

Once the dynamical equilibrium is reached, the presence of
the noise term η(z,t) ensures that N (t) fluctuates about its final
value. The final, average atom number 〈N〉 depends on the heat
bath parameters (temperature T , chemical potential µ), on the
trap parameters and the atomic species (through the interaction
constant g). Although the subsequent dynamical evolution
requires these noise terms to be maintained, a simpler scheme,
bearing close analogies to the truncated Wigner method, can
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FIG. 2. (Color online) Growth to equilibrium obtained by numer-
ical solution to the SGPE. (a) Snapshots of the atomic density profile
〈|ψ(z,t)|2〉, with time increasing from bottom to top. (b) Growth in
the average central density vs. time—here the times highlighted by
colored squares label the corresponding colored density profiles in
(a). (c) Growth in the particle number as the system approaches
equilibrium. The inset shows trajectories from single numerical
realizations, which illustrates the fluctuating particle number between
these, compared to the result of the main plot in (c), which was
obtained by averaging over 1000 such trajectories. (Parameters as
stated in Sec. II F, but with kBT = 860 h̄ω.)

be based on dynamical propagation of the SGPE equilibrium
state via the GPE; such an approach was first implemented
in [64] to discuss quasicondensate growth on an atom chip.

It is clear that in the grand-canonical ensemble, N has a
statistical distribution of nonzero width; this width is related
in the case of the SGPE to the “history” of the particle transfer
between system and heat bath as modelled by the Langevin
seed η(z,t). In the simulations, we observe indeed that N

differs quite substantially from realization to realization,
however the equilibrium value is obtained with reasonable
accuracy after averaging over a few hundred of them. The
temporal variations in the ensemble-averaged particle number
then become relatively suppressed. For smoother results and
for improved accuracy, all results presented in this work are
based on a sample of at least 1000 individual realizations.

D. Linking the theories

At T = 0, the Gross-Pitaevskii equation represents the
dynamics of a Bose-Einstein condensate by treating the system
as made up of a single, coherent mode. Within the TW
approach, the GPE is instead used to propagate a multimode
system, the initial conditions being chosen at random to sample
the initial density operator of the system. The ensemble of wave
functions ψ(x,t) represents all modes of the matter wave field,
within the limits set numerically by the spatial grid, which
physically corresponds to the energy cut-off choice for the
modes being probed. It is for this reason that no explicit noise
terms (Langevin forces) appear, and that the total number of
atoms [the norm of ψ(x,t)] is conserved. The initial mode
amplitudes combine quantum and thermal effects [see Eq. (7)]
consistent with the Wigner mapping to symmetrically ordered
operator products. Polkovnikov has shown that the truncated
Wigner approximation captures the next-order correction

043619-7



COCKBURN, NEGRETTI, PROUKAKIS, AND HENKEL PHYSICAL REVIEW A 83, 043619 (2011)

beyond Gross-Pitaevskii in an expansion in h̄ [47]. The initial
state that we prepare here is based on a fixed number of
atoms N (canonical ensemble), using the number-conserving
Bogoliubov approach, although alternative (grand-canonical)
schemes could be adopted as well [53]. Once we focus
on low-lying modes, like the condensate mode, we recover
nevertheless a broad distribution for the noncondensed atoms
Nth [the mirror image of the condensate statistics P (Nc)].
In this perspective, we can even consider µ in Eq. (2)
as a “chemical potential” for the Bogoliubov modes: the
condensate plays the role of a particle reservoir, as is perfectly
reasonable if its population is large [106].

In the SGPE approach, the wave function ψ(z,t) represents
instead the low-lying modes of the system; although higher-
lying modes should in principle be described by a quantum
Boltzmann equation, here they are assumed to remain at
equilibrium, thereby providing a heat bath to the low-energy
subsystem under consideration. In the Bose-condensed phase,
low-lying system modes are highly occupied and the classical
approximation, amounting to replacing the Bose-Einstein by
the Rayleigh-Jeans distribution, is well justified. The dynamics
of the low-lying modes is quite different, however, because
particle exchange with the bath is allowed for; this method is
therefore a grand-canonical one, as can be seen by the growth
plots of Fig. 2. The “system-bath split” can be applied to a
trapped gas (a closed system) by choosing modes below a
suitably small cutoff. For a fully self-consistent calculation, in
which the thermal cloud dynamics are also accounted for,
this cutoff should be not lower than the global chemical
potential [43]. For a classical field method not taking the entire
thermal cloud dynamics into account, this should be chosen
such that the highest modes simulated are macroscopically
occupied [53]. It has been proposed that a cutoff equal to
kBT yields optimum results for the condensate statistics of an
ideal gas [107]. For the purposes of our comparison, we have
adopted a different choice here, and have taken for consistency
the same spatial grid in the SGPE and the TWNCB simulations,
which gives a cutoff of the order of Emax ∼ h̄2/(m�z2).

Let us summarize the differences between the initial state
ensembles of the two methods:

(1) The total atom number N fluctuates in the SGPE (grand-
canonical), and is fixed in the TWNCB method (canonical).

(2) The system is thermalized either dynamically (SGPE) by
weakly coupling it to a heat bath, or by populating its excitation
modes with thermal statistics (TWNCB method). Low-lying
thermal modes above the condensate equilibrate under the
SGPE to the Rayleigh-Jeans statistics (classical equipartition).
This is actually the equilibrium distribution for the finite
temperature GPE, considered as a classical field equation, as
has been seen by studying thermalization in related classical
field methods [40–42]. Within the TWNCB scheme, these
modes are populated according to the usual Bose-Einstein
statistics, with the addition of 1/2 “quantum atom” per mode.
This coincides well with the Rayleigh-Jeans statistics for
modes with energies below kBT [108], but gives a larger
contribution to high-energy modes, up to the numerical cutoff.
The TW dynamics under the GPE redistributes these “quantum
atoms” with the others, leading, by the equipartition law, to
an effectively higher temperature. This restricts applications
of the TW scheme to relatively short simulation times. In

nearly integrable systems (like the quasi-one-dimensional
gas), thermalization can be quite slow, however [109,110].

(3) The energy spectrum of the elementary excitations is
calculated in the TWNCB method approximately, ignoring the
thermal depletion of the condensate. Indeed, the Bogoliubov–
de Gennes operator [Eq. (A4)] assumes that all particles are in
the condensate mode.

E. Modified Popov theory

1. Motivation

While the stochastic approaches discussed thus far are
suitable to describe both nonequilibrium and static properties
of the Bose gas, we focus in this study on the detailed analysis
of a partially condensed Bose gas at thermal equilibrium.
Mean-field theories [52] are often applied to study the
thermodynamics in higher-dimensional Bose systems, and
their solution is, in general, less involved than with stochastic
theories. In comparing the equilibrium properties of the SGPE
and NCB approaches, it will therefore prove useful to have an
independent method for comparison.

In lower dimensions, mean-field theories have to cope with
infrared divergences due to the enhanced role of fluctuations,
as predicted within the Mermin-Hohenberg-Wagner theorem
[111,112]. The Popov approach [3] where the fluctuations
are split into phase and density contributions, has proven
useful to treat phase fluctuations in low dimensions beyond
second order around the mean field. A consistent regularization
scheme has been developed in the modified Popov theory
of Andersen et al. [6,7,113], extending the work of Petrov
et al. [4] and Kagan et al. [5]. The resulting formulas apply to
any temperature and dimension, while simultaneously being
relatively straightforward to solve.

2. Quasicondensate density

In low dimensions, a condensate does not arise in a
homogeneous system, but still there is a temperature range
Tφ ∼ T < Tc where a so-called quasicondensate can be
identified whose density fluctuations are suppressed [3–7]. In
the modified Popov theory, the quasicondensate density nqc

may be obtained by solving self-consistently the following
equations for the total density [Eq. (4) from Ref. [6]]:

n = nqc + 1

V

∑
p

[
N̄ (Ep)

εp

Ep

+ εp − Ep

2Ep

+ gnqc

2εp + 2µ

]
,

(19)

and for the chemical potential

µ = g(2n − nqc). (20)

Here, Ep = [ε2
p + 2gnqcεp]1/2 is the Bogoliubov dispersion

relation, εp = p2/2m, V is the system volume, and g denotes
the two-body T matrix (evaluated at −2µ, which corresponds
to the energy cost of exciting two atoms from the condensate).
Equation (19) is evaluated numerically, replacing the sums
over momenta by an integral. (For a link with conventional
mean field theories see Sec. III B 2.)

Equations (19) and (20) can also be applied in a trap within
a local density approximation, using a local chemical potential
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FIG. 3. (Color online) Illustration of the procedure for solving the modified Popov theory. (Left) Graphical determination of the self-
consistent quasicondensate density: crossing point between the dashed and solid lines [left- and right-hand sides of Eq. (20), nqc is the
quasicondensate density and n the total density].The thin (red) line shows the classical (high-temperature) approximation to Eq. (19). If we take
µ as in the rest of the paper, the two temperatures correspond to N ≈ 23 800, T ≈ 1.3Tφ ≈ 0.63Tc and N = 20 000, T ≈ 0.16Tφ ≈ 0.074Tc,
respectively [see Eq. (1)]. (Right) Temperature-dependent Thomas-Fermi radius R(T ) determined by numerically solving for the (local)
chemical potential, where µ(z) = 2gn′

th(z). The trap is harmonic, chemical potential at the center µ = 22.41h̄ω as in the rest of the paper, and
g = 0.01(h̄3ω/m)1/2. The arrows mark the temperatures chosen for the simulations (the three leftmost arrows correspond to those shown in
Table II).

µ(z) = µ − V (z). The quasicondensate density is then found
by solving [Eq. (54) of Ref. [7]]

{HGP[nqc] + 2gn′
th(z)}√nqc(z) = µ

√
nqc(z), (21)

where 2gn′
th(z) = 2g[n(z) − nqc(z)] is the Hartree-Fock po-

tential due to the non-quasi-condensate particles. The spatial
point at which 2gn′

th(z) = µ(z) defines the temperature-
dependent Thomas-Fermi radius, R(T ), that gives an estimate
for the thermal depletion of the (quasi)condensate (see
Secs. III C 1 and IV). We emphasize that this quantity is
determined self-consistently within the modified Popov theory.
For |z| > R(T ), we have nqc(z) = 0, and adopting again the
local density approximation, the atomic density corresponds
to a thermal gas with a Hartree-Fock interaction,

n(z) =
∫

dp

2πh̄
N̄ (εHF(p,z) − µ),

(22)
εHF(p,z) = εp + V (z) + 2gn(z).

This procedure is illustrated in Fig. 3 where the left panel shows
both sides of Eq. (20) as a function of the quasicondensate
density nqc. The crossing with the dashed line determines the
self-consistent nqc(µ,T ). The (local) chemical potential can be
lowered, which corresponds to moving further from the trap
center, until a minimum µmin(T ) below which the solution
nqc = 0 must be taken [35]. This defines the temperature-
dependent Thomas-Fermi radius,

µ

(
1 − R2(T )

R2

)
= µmin(T ). (23)

The right panel shows R(T ) in the temperature range of interest
here: the quasicondensate is shrinking smoothly and is about
20% smaller at T ∼ Tφ . (This number applies to the parameters
introduced in Sec. II F.)

We recall that the central object within the modified
Popov theory is the quasicondensate, but this may be linked
to the “true” condensate (if it exists, as defined by the
Penrose-Onsager criterion), as is discussed in Sec. IV. We
will employ this modified Popov scheme in order to compare
to various equilibrium properties where appropriate. This has

the advantages of simplicity and speed over the stochastic
approaches, due to the relatively straightforward manner in
which the above equations may be solved.

F. Parameter choice for comparison

We wish to address the following issues:
(i) Initial state generation: How does the finite-temperature

initial state compare within each method?
(ii) Ensemble choice: What role does the choice of

thermodynamic ensemble play?
(iii) How does the quasicondensate and condensate ex-

tracted from the stochastic approaches compare to analogous
quantities within the modified Popov theory?

Our focus being on the relative merits of the stochastic
methods as thermal field theories, we choose to work in
a regime in which thermal effects dominate over quantum
effects. We consider a quasi-one-dimensional confinement
with a trap frequency ω (oscillator length �) and take an
effective coupling constant g = 0.01h̄ω � which corresponds
to the weakly interacting regime. We choose an (average)
particle number, N = 20 000, giving a chemical potential
µ = 22.41h̄ω for the ground state of the GPE. Within the
SGPE, the chemical potential is kept fixed as temperature is
varied, leading to a small variation in the particle number;
this is however below 6% for the three temperatures at which
we undertake the comparison. These are placed in context
in Fig. 4. In particular, we probe at the lowest temperature
a regime well suited to the TWNCB method due to the
requirement that Nth  N , an intermediate regime, and a
higher temperature in which the “classical” SGPE is expected
to be most appropriate, due to the occurrence of more highly
populated modes. These are highlighted in Table II, also
showing some other simulation parameters.

Length scales in the problem are scaled to the zero
temperature Thomas-Fermi radius,

R =
√

2µ

h̄ω
� ≈ 6.69�. (24)
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FIG. 4. (Color online) Characteristic temperatures and atom
numbers of the SGPE and NCB simulations (hollow black circles).
The filled black circle shows the higher temperature regime at which
only SGPE simulations were undertaken. The (1D) characteristic
temperatures in a trap are Tc [Eq. (1); Bose-Einstein condensation
in an ideal gas] and Tφ < Tc [Eq. (1); phase coherence], shown by
the dotted blue and solid black lines, respectively. The red squares
mark the parameters chosen for the condensate statistics comparison
of Sec. III D 1 at a fixed ratio T/Tc = 0.23, as indicated by the dashed
brown line.

Another relevant length scale is zT = √
2(kBT + µ)/h̄ω �,

which marks the boundary at which the thermal energy
becomes comparable to the trap energy. We take a grid size
L > 2zT (Table II) and a spacing �z/� = √

2π/(M + 1).
The number of grid points, M + 1 = L/�z, is increasing
with temperature in order to resolve the thermal wavelength
λT =

√
2πh̄2/mkBT . The grid spacing is chosen such that for

an ideal gas, the TWNCB approach returns the correct total
particle number 〈N〉. In addition, we check in the interacting
case that doubling M does not change 〈N〉. For time evolution
via the (S)GPE, we use a Crank-Nicholson approach, and a
fixed time step ω�t = 10−4. Ensemble averages are performed
over at least 1000 noise realizations.

A typical result of the stochastic methods is given in Fig. 5
where the data points give the realizations for the complex
field ψ(z) at selected values of position z and temperature. The
globally random phase of the SGPE data is quite obvious, from
the spread around the circle, while the NCB ensemble fixes the
condensate mode to have a real and positive amplitude. The
overestimation of density fluctuations is also quite visible in

TABLE II. Simulation parameters: Atom number and chemical
potential are fixed to N ≈ 20 000, µ = 22.41h̄ω, with the characteris-
tic temperatures Tc and Tφ as in Eq. (1). The computational grid covers
z = −L/2 to +L/2, with spacing �z, number of points M. R is the
Thomas-Fermi radius of Eq. (24) and � the size of the single-particle
ground state.

kBT /h̄ω T/Tφ T /Tc L/R M �z/�

(a) low T 46 0.052 0.025 4.2 127 0.220
(b) interm T 140 0.160 0.074 12.0 1023 0.078
(c) high T 430 0.480 0.230 17.0 2047 0.055

the NCB data at intermediate and high temperatures, shown
by the increased variation in the radius of the data points.
Outside the condensate region (Thomas-Fermi radius R),
there are no significant differences between either method,
where the wave function represents an incoherent thermal
gas.

III. EQUILIBRIUM PROPERTIES

We present here an analysis of the initial states pro-
duced by the two stochastic methods, that are expected to
represent thermal equilibrium in the trap. The accuracy of
this equilibrium state is important for modeling the finite-
temperature dynamics when perturbations take the system
far away from equilibrium, e.g., changes in the trapping
potential.

A. Density profile

We begin with the total density profile n(z). Similar to
experimental data, this contains both the condensate in the
trap center and thermally excited atoms that surround it. The
equilibrium densities in a harmonic trap are plotted in Fig. 6.
Here and in the following figures, the SGPE densities (solid
black) are calculated as n(z) = 〈|ψ(z,teq)|2〉 where teq is the
preparation time required for the system to reach a dynamical
equilibrium with the bath. In the NCB data (dashed red), we
subtract the “quantum density” nq = 1/(2�z) according to
Eq. (A12). This correction is small if the number of atoms per
grid cell is large. In addition, its impact on the mean field is
small since gnq ∼ (1−4) × 10−3 µ.

For an independent benchmarking, the total density profiles
are also compared to the total density of the modified Popov
scheme (green, dot-dashed). At the low and intermediate
temperature regimes, we find good agreement between all three
theories. At the higher T , Fig. 6(c), the NCB result deviates
from both the SGPE and modified Popov density profiles
(which are found to agree perfectly with each other [7]).
Although the total density profiles also include a contribution
from thermal atoms within the condensate region, we defer
their analysis in this region to Sec. III B below.

Instead, we focus first here on the representation of
thermally excited atoms outside the condensate region. These
atoms populate the “wings” R < |z| < zT , as illustrated in
Fig. 6(d). In this interval, the gas is still Bose degenerate
with large occupation numbers per mode. Here, the data
are well described by a semiclassical ideal gas model. At
each phase space point (z,p) with effective single-particle
energy ε(p,z) = p2/2m + V (z), assuming the Rayleigh-Jeans
law (equipartition) for the occupation numbers, gives a
density

nRJ(z) =
∫ +pmax

−pmax

dp

2πh̄

kBT

ε(p,z) − µ

=
√

2

π �

kBT√
(V (z) − µ)h̄ω

arctan

[√
Emax

V (z) − µ

]
.

(25)

Here, Emax = p2
max/2m is a cutoff energy that depends on

the maximum kinetic energy on the grid. As shown in
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FIG. 5. (Color online) Data points
representing the ensemble of stochastic
field values ψ(z) at three positions
z in the trap (from left to right, the
average density decreases). Temper-
ature increases from top to bottom.
Black: SGPE simulation, red: NCB
simulation. The dashed green circle in-
dicates, for |z| < R, the modulus of the
Thomas-Fermi wave function, and for
z = 1.5 R the square root of the Bose-
Einstein density (26). In the trap cen-
ter, the Thomas-Fermi approximation
yields for these parameters |ψTF(0)| ≈
47/

√
�. (Atom number N ≈ 20 000.)

Fig. 6(d) (dashed cyan), a good match to the SGPE data is
obtained for Emax = 2π (�/�z)2h̄ω [ or pmax = 2

√
π h̄/�z].

The divergence at z → ±R is an artefact due to an infrared
divergence of the semiclassical approximation.

Repeating this analysis with the Bose-Einstein distribution
gives a density

nBE(z) =
∫

dp

2πh̄
N̄ [ε(p,z) − µ] = 1

�

√
kBT

2π h̄ω
g1/2(x), (26)
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FIG. 6. (Color online) Average density profiles n(z), normalized as gn(z)/µ, returned by the stochastic Gross-Pitaevskii equation (solid
black) after an equilibration time teq and by the number conserving Bogoliubov expansion (dashed red). Plots (a)–(c) are for temperatures
kBT = 46, 140, 430 h̄ω listed in Table II, R is the Thomas-Fermi radius at T = 0 [Eq. (24)]. The dot-dashed green curves give the prediction of
the modified Popov theory, as developed by Andersen et al. [6]. Plot (d) analyzes, on a logarithmic scale, the density in the “thermal wings” of
plot (c) for R < z <∼ zT where zT (grey vertical line) is the point where the trap energy becomes comparable to temperature, V (zT ) = kBT + µ.
The Rayleigh-Jeans density (dashed cyan) and the Bose-Einstein density (dot-dashed green) are calculated for an ideal gas. The brown solid
line corresponds to the NCB density plus the quantum density level which asymptotes to the latter, nq [Eq. (4)], indicated by the blue dotted
line.
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where x = exp{[µ − V (z)]/kBT } and the Bose function has
the asymptotics g1/2(x) ≈ x for x  1. Good agreement with
the NCB data is obtained in the limit of infinite cutoff, [see
Fig. 6(d) dot-dashed green]. Indeed, it is easy to see that the
contribution of momenta above pmax is exponentially small
provided Emax � kBT , as is the case here.

At positions beyond zT , the gas enters a nondegener-
ate regime where the occupation numbers are small for
a large range of momenta. Indeed, the fugacity satisfies
exp{[µ − V (z)]/kBT }  e−1 for |z| � zT , and one can make
the Boltzmann approximation, n(z) ∝ exp[−V (z)/kBT ]. This
corresponds to the “thermal cloud” familiar from the bimodal
density distributions of a partially condensed Bose gas in
a trap [2]. The NCB data provide a smooth crossover into
this region provided the subtraction of the quantum density
is performed. The brown solid line in Fig. 6(d) shows the
nonsubtracted density that reduces to a flat background of
quantum density, n(z) = nq , in the “Boltzmann tail”. In this
region, the actual number of atoms per mode is much smaller
than unity, and classical field methods are no longer strictly
justified.

By comparing the Rayleigh-Jeans and the Bose-Einstein
densities (Fig. 6), it is clear that the SGPE overestimates the
number of atoms in the thermal wings. The numbers that one
gets by integrating nRJ(z) and nBE(z) in this region, are quite
small, however, when compared to the total number of atoms.
This is summarized in the last two columns of Table III.

In the following, we calculate the total atom number by
integrating the density of each method between z = −zT and
zT , where the classical approximation is valid.

Consider now the significant difference between the SGPE
and NCB approaches in Fig. 6(c), that occurs within the
condensate region at the highest temperature. We attribute this
to the large thermal amplitudes of the Bogoliubov modes that
are no longer small compared to the condensate mode (see
Fig. 5), and therefore the calculation of the noncondensate

TABLE III. Average atom numbers in the “classical region”
outside the condensate and beyond. First and second column: average
number within |z| < zT where V (z) � µ + kBT , as obtained from
the numerical simulations (including the Wigner subtraction for the
TWNCB data). Columns four and five are based on the ideal gas
densities obtained in the classical approximation (Rayleigh-Jeans
law) and using Bose-Einstein occupation numbers. The column
“wing” gives the excess atoms present in the noncondensate, but
still highly populated region R � |z| � zT outside the condensate
(Thomas-Fermi radius R). The column “tail” gives the atoms that
are located in the “tails” zT � |z| < ∞ of an ideal gas with the
Bose-Einstein distribution. For the Bose-Einstein density, an infinite
momentum cutoff is taken, as in Eq. (26). For the Rayleigh-Jeans
density (26), we take a kinetic energy cutoff Emax = 2π (�/�z)2h̄ω

with grid spacing �z as given in Table II.

〈N〉 [−zT ,zT ] 〈N〉 wing 〈N〉 tail

kBT /h̄ω SGPE NCB RJ − BE BE

(a) 46 20 007 19 994 30.9 7.5
(b) 140 20 132 19 981 114.9 24.6
(c) 430 20 795 20 498 338.6 78.5

density has to be done more carefully. In the modified Popov
theory of Ref. [6], fluctuations are split into contributions to the
density and phase, and phase fluctuations are systematically
discarded when calculating the average density. We find that
the SGPE data agree well with this total density and are
therefore confident that it captures the correct result.

B. Condensate and thermal excitations

Having considered the total atomic density profiles, a fur-
ther important temperature-dependent quantity is the conden-
sate fraction. The classical field methods under consideration
here provide a unified description of the lowest modes of
a trapped Bose gas, and so further analysis is necessary to
isolate the condensate fraction, as in experiment. We choose
to compare the coherent and incoherent phases of the gas,
and so focus on a partitioning based on those atoms within
the Penrose-Onsager ground state, and those in orthogonal
states [53].

1. Density profiles and depletion

The phase coherent fraction of the gas is identified
by making use of the Penrose-Onsager (PO) criterion for
Bose-Einstein condensation [114]. The stochastic simula-
tions provide us, again through the operator-classical field
correspondence, with the so-called one-body-density matrix
ρ(z,z′) = 〈ψ∗(z)ψ(z′)〉. This matrix is hermitian and positive;
evaluating its trace by integrating spatially, we get 〈N〉 in
the SGPE method, and N + M/2 within the NCB approach.
The PO criterion states that Bose-Einstein condensation has
occurred when the largest eigenvalue of ρ(z,z′), denoted here
by 〈Nc〉, is comparable to N , the other eigenvalues being
much smaller [9]. The eigenvector φc corresponding to 〈Nc〉
gives us the (PO) “condensate mode,” whose spatial width
characterizes the long-range phase coherence of the degenerate
Bose gas. This mode provides a numerical way to implement
the splitting in Eq. (5) between condensate and excitations,
since we get the condensate amplitude from

ac = �z
∑

z

φ∗
c (z)ψ(z), (27)

and ψ⊥(z) := ψ(z) − acφc(z) is by construction orthogonal
to φc.

Figure 7 plots the condensate density nc(z) = 〈Nc〉|φc(z)|2
and the “thermal density” nth(z) = n(z) − nc(z), with corre-
sponding thermal fractions given in Table IV. At the lowest
temperature (left images), the condensate dominates [Fig. 7(a)]
and the thermal density is globally weak [Fig. 7(d)]. The two
broad peaks at z ∼ ±R arise because the repulsive interaction
with the condensate pushes the thermal component out of
the trap center. In the intermediate temperature data (middle
images), the thermal fraction is larger, yet the two methods
give good agreement, with only a marginal difference in the
peak value of the condensate density which now becomes
noticeably smaller than the T = 0 solution for the same µ (thin
blue line). At the relatively higher temperature kBT = 430h̄ω

(right images), the two methods disagree: their condensates are
similar in axial extent, but the TWNCB mode (dashed red) has
a lower peak than the SGPE (solid black), so contains fewer
atoms, and as a result the thermal fraction is higher. For all

043619-12



COMPARISON BETWEEN MICROSCOPIC METHODS FOR . . . PHYSICAL REVIEW A 83, 043619 (2011)

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

gn
(z

)/
µ

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

SGPE PO 
NCB PO
T=0 Thomas-Fermi
NCB <N

c
>|φ

c
(z)|

2

Mod. Popov 
condensate (see Sec. IV)

-1 -0.5 0 0.5 1
z/R

0

0.15

0.3

0.45

gn
(z

)/
µ

-1 -0.5 0 0.5 1
0

0.15

0.3

0.45

-1 -0.5 0 0.5 1
0

0.15

0.3

0.45

SGPE
NCB
Bogoliubov
Bogoliubov with N=<N

c
>

(<N
c
> from SGPE data)

mod. Popov

(a) (b)

(e)(d)

(c)

(f)

condensate density

non-condensate density

FIG. 7. (Color online) Condensate (top row) and thermal cloud (bottom row) densities for temperatures (a),(d) kBT = 46h̄ω; (b),(e)
kBT = 140h̄ω; and (c),(f) kBT = 430h̄ω. Condensate density nc(z) = 〈Nc〉|φc(z)|2 obtained from Penrose-Onsager analysis of the one-body
density matrix [solid (black), SGPE; dashed (red), TWNCB method]. Also shown for reference is the T = 0 stationary solution to the GP
equation with eigenvalue µ (thin solid, turquoise), which coincides with the zeroth order condensate mode within the NCB approach. In (c)
the condensate density 〈Nc〉|φc(z)|2 following the second-order correction within the NCB expansion is also shown (dot-dashed, blue), as
well as the modified Popov condensate density (dot-double dashed, green) [see Sec. IV Eq. (56) for details]. Bottom row: thermal density
nth(z) = n(z) − nc(z) [solid (black) SGPE; dashed (red), TWNCB method]. As in Fig. 6, the Wigner correction was made for the TWNCB
method case. Shown in (d)–(f) is the T = 0 Bogoliubov prediction, Eq. (A4), with N (solid brown) and, in (f) only, also N = NPO of the SGPE
(dotted maroon), alongside the modified Popov result (dot-double dashed, green).

temperatures, the approximate condensate mode constructed in
the NCB theory [φc(z) as given in Eq. (A1); dot-dashed, blue]
agrees well with the PO condensate extracted from the density
matrix of the NCB simulations (dashed red): we show data in
Fig. 7(c) only as these quantities become indistinguishable at
lower temperatures.

Although the modified Popov theory inherently solves for
the quasicondensate density, nqc(z) (rather than the phase
coherent, Penrose-Onsager condensate mode plotted here), we
also show in Fig. 7(c) a prediction for the phase coherent
condensate which may be extracted from the modified Popov
approach (dot-dashed, green curves), and whose calculation
does not require the full one-body density matrix, as we discuss
in more detail in Sec. IV. At this moderate temperature, this
prediction agrees well with the SGPE, except for a small region
near the center; at lower temperatures, we have found an even
better agreement.

The difference between the NCB approach and SGPE
results is likely due to the overestimation of the thermal density
in the condensate region within NCB approach. Consider the
complex values of ψ(z) in the bottom images of Fig. 5 for

TABLE IV. Thermal fraction 〈Nth〉/〈N〉 versus temperature for
the SGPE and TWNCB method initial states for the three chosen
temperatures, where 〈Nth〉 is the integral over nth(z) in the region
|z| < zT , and the correction due to symmetric operator ordering is
applied to the TWNCB method data as for Fig. 6.

kBT /h̄ω SGPE TWNCB

(a) 46 0.047 0.047
(b) 140 0.141 0.143
(c) 430 0.365 0.450

z <∼ R: the density is determined by the modulus of ψ(z),
and the TWNCB method data clearly have more points
with larger modulus. Another reason may be the way the
Bogoliubov energy spectrum is calculated: indeed, it is based
on a condensate wave function, denoted φ0 in Eq. (A1), which
contains all the particles of the system, whereas an improved
approach would account for the depletion of the condensate
in calculating the Bogoliubov spectrum. To illustrate this, we
consider as a first step an improved spectrum based upon a
a condensate with the same number of atoms as contained
within the SGPE PO condensate. The thermal density which
results is shown as the dotted maroon line in Fig. 7(f), and is
already in better agreement with both the SGPE and modified
Popov results, despite the quite rudimentary nature of the
modification to the Bogoliubov spectrum.

The thermal fraction, 〈Nth〉/〈N〉 = 1 − 〈Nc〉/〈N〉, varies
slightly depending on the simulation method, as shown in
Table IV. Since the total atom number N varies across the
statistical ensembles, we calculate the condensate fraction
from 〈Nc〉/〈N〉. We observe again larger values for this quan-
tity in the TWNCB method at higher temperatures [row (c)].
We suggest that the depletion in this range is not small enough
to warrant the NCB expansion around a “large” condensate.
Indeed, if we identify from Eq. (14), Ref. [80], (Nth/Nc)1/2 as
a small expansion parameter, within the NCB calculation this
reaches the value ≈0.90 that is clearly not small.

2. Condensate shape

The back-action of the noncondensate particles can be made
visible by a careful analysis of the shape of the condensate
wave function φc(z), the results of which are summarized in
Fig. 8. The simplest generalization of the GPE that applies to
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FIG. 8. (Color online) Analysis of the back-action of the non-
condensate atoms on the shape of the condensate mode φc. We plot
the effective potential of Eq. (34) with (lower curves, HFB theory)
and without the last term (upper curves, HF theory), normalized to µ.
The condensate mode function φc(z) is taken from a Penrose-Onsager
analysis of the one-body density matrix. Solid black/brown lines:
SGPE data, (dot-)dashed red/green lines: TWNCB method data. The
HFB theory that includes the back action from the anomalous average
is closer to the actual chemical potential.

nonzero temperature is a Hartree-Fock (HF) potential due to
noncondensate particles [analogous to Eq. (21)]

{HGP[Nc|φc(z)|2] + 2gnth(z)}φc(z) = µφc(z), HF, (28)

where the thermal density is

nth(z) = 〈ψ̂†
⊥(z)ψ̂⊥(z)〉. (29)

One could however also take into account the anomalous
average m(z) due to noncondensate modes. If the condensate
field acφc is chosen real, the anomalous average is simply
given by

m(z) = 〈ψ̂⊥(z)ψ̂⊥(z)〉. (30)

[A definition not based on U(1) symmetry breaking can be
found in Eq. (47) below.] Within the Bogoliubov approxima-
tion, one has

nth(z) =
∑

k

{N̄(Ek)|uk(z)|2 + [N̄(Ek) + 1]|vk(z)|2}, (31)

m(z) =
∑

k

[2N̄ (Ek) + 1]uk(z)v∗
k (z). (32)

(In a homogeneous gas of dimensions D � 2, the sums in
Eqs. (31) and (32) are ultraviolet divergent [10,11,85] and
are regularized routinely by a renormalized coupling constant.
This is not needed in the one-dimensional case considered
here, due to the decay of vk(x) for Ek � µ.) This leads to

the following Hartree-Fock-Bogoliubov (HFB) extension of
Eq. (28):

{HGP[Nc|φc(z)|2] + 2gnth(z)}φc(z) + gm(z)φ∗
c (z) = µφc(z),

HFB, (33)

where we allowed momentarily for a complex-valued con-
densate wave function to illustrate the U (1) invariance of the
theory [98].

The data shown in Fig. 8, taken from both stochastic
methods, suggests that Eq. (33) is more appropriate for the
(PO) condensate mode, at least in the central region of the trap.
This effect, along with the role of higher anomalous averages,
has been studied in detail in the context of the microcanonical
PGPE theory in [115]. There are significant differences at
higher temperatures in the TWNCB data, similar to those
appearing in the average density.

We recall that the HFB theory has been put into question
because it leads, for a homogeneous system, to a gapped
excitation spectrum, in contradiction to the Hugenholtz-Pines
theorem [30–34,52].

One should also compare to the modified Popov theory
(Sec. II E). Indeed, we can interpret the HFB potential in
Eq. (33) for the condensate mode, as a modification of the
thermal density. Going back to a real-valued condensate φc(z),
the effective potential in Eq. (33) takes the form

VHFB = V + gNcφ
2
c + 2gnth + gm (34)

while the last term is missing in Eq. (28). Now in Bogoliubov
theory, we have [adopting real mode functions normalized
according to Eq. (A6)]

nth(z) + m(z) =
∑

k

{N̄k[uk(z)]2 + (N̄k + 1)[vk(z)]2

+ (2N̄k + 1)uk(z)vk(z)}
=

∑
k

{N̄k[uk(z) + vk(z)]2

+ [uk(z) + vk(z)]vk(z)} (35)

with the shorthand N̄k = N̄ (Ek). Equation (35) is closely
related to the thermal density n′

th of the modified Popov theory
[Eq. (19)] which can be expressed in terms of Bogoliubov
amplitudes (normalized to u2

p − v2
p = 1) as

n′
th = n − nqc

= 1

V

∑
p

{
N̄p(up + vp)2 + (up + vp)vp + gnqc

2εp + 2µ

}
.

(36)

This clearly contains an additional term; this term is, however,
small in the temperature regime considered for our numerical
simulations, leading to a good analogy when the above
reinterpretation of mean-field potentials is made. This is in
fact somewhat analogous to the work of Ref. [116].

The analogy cannot be pushed further, since the modified
Popov theory does not directly deal with the condensate mode
(in the PO sense), but with the quasicondensate. See Sec. IV
for a link between the two quantities.
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C. Correlation functions

The focus in this section is upon spatial coherence in
phase and density. These show a rich physics in weakly
interacting one-dimensional Bose systems due to the separate
characteristic temperatures for the suppression of phase and
density fluctuations.

1. First-order coherence: Phase fluctuations

To study the phase coherence, we begin with the first-order
coherence function (a normalized one-body density matrix)

g(1)(z′,z) = 〈ψ∗(z′)ψ(z)〉
[n(z)n(z′)]1/2

, (37)

where n(z) is the average density and the normalization gives
g(1)(z,z) = 1. For simplicity, we fix one position in the trap
center, z′ = 0, and write g(1)(z) = g(1)(0,z). As illustrated
in Fig. 9, g(1)(z) scales roughly linearly in the center and
drops quickly to zero toward the border of the condensate
mode (z ∼ R). The slope in the center agrees well between
the two methods (SGPE vs. NCB approach: solid black vs.
dashed red), but for z ∼ R/2, differences appear at the highest
temperature. Quite striking are the negative values for g(1)(z)
which then occur, within the NCB formalism, in the region
of the Thomas-Fermi radius (anticorrelation between central
region and condensate edge).

At the low temperatures probed, the behavior of g(1)(z)
compares well with the theory of phase fluctuations in weakly
interacting Bose gases: One starts from the ansatz

g(1)(z) = exp{−〈[θ̂ (z) − θ̂ (0)]2〉/2} (38)

and works out the thermal statistics for the phase operator θ̂ (z).
From this point, the required exponent may be calculated

within the modified Popov theory [7,113,117]. Making the
classical approximation N̄ (Ej ) ≈ kBT /Ej , we can write this
exponent as

〈[θ̂ (z) − θ̂ (0)]2〉
= 4T

3Tφ

∑
j>0

[
2j + 1

j (j + 1)
{Pj [z/R(T )] − Pj (0)}2

− (2j + 1)(h̄ω)2

8µ2

(
Pj [z/R(T )]

1 − z2/R(T )2
− Pj (0)

)2 ]
, (39)

where Pj (z) are Legendre polynomials of order j . Here
kBTφ ≈ 40 µ is the characteristic temperature for phase fluc-
tuations [Eq. (1)].

The first term of Eq. (39) was derived by Petrov et al. [4]
who, focusing on the temperature range h̄ω  kBT , did not
explicitly include in their expression the temperature depen-
dence of the Thomas-Fermi radius R(T ). For the parameters
considered, the second term within the sum of Eq. (39)
typically gives a small contribution, but leads to a rounding
off of the central peak in g(1)(0,z). This additional term leads
to a divergence in g(1)(0,z), however, as |z| → R(T ), due to
the assumption that the condensate density is parabolic. The
results of Eq. (39) are shown by the dot-dashed, green curves
in Fig. 9. In particular, at the highest temperature [panel (d)],
the shrinking of the quasicondensate [R(T ) < R] is clearly
seen, due to the increased thermal component of the density.

A closed form for g(1)(0,z) may be obtained by neglecting
the second term of Eq. (39), since the mode summation for
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FIG. 9. (Color online) First-order correlation function g(1)(z) = g(1)(0,z), as defined in Eq. (37), from the SGPE data (solid black) and the
NCB data (dashed red). Temperatures in (a)–(c) as given in Table II, in (d), we have T ≈ 1.3Tφ (only SGPE data shown). We plot the real part
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Penrose-Onsager condensate mode (dashed blue) and from noncondensate modes (dot-dashed red) are shown separately, from Eq. (43). In
(a)–(d) the vertical dashed thin lines indicate R(T ). (e) Estimated temperature based on fitting g(1)(z) near z = 0 to Eq. (42) (dashed line) for
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the first term can be performed analytically, as pointed out
previously in [4,118]. This gives

〈[θ̂(z) − θ̂ (0)]2〉 = 4T

3Tφ

∣∣∣∣ln
(

1 + z/R(T )

1 − z/R(T )

)∣∣∣∣ , (40)

where we have kept the temperature-dependent Thomas-Fermi
radius, thereby generalizing the expressions of Refs. [4,118].
We note that Ghosh considered a quantized hydrodynamic
approach to the correlations of a quasi-1D Bose gas [119],
which also extends the work of Petrov et al. in Ref. [4].

Equation (40) is shown with R(T ) taken from the modified
Popov simulations by the solid, thin brown lines in Figs. 9(a)–
9(d) and agrees well with the numerical data. At the highest
temperature [Fig. 9(d)], we see a clear deviation between an
approach like the modified Popov theory that takes condensate
depletion into account [taking R(T ) < R, solid, thin brown],
and the original expression of Ref. [4] where the condensate
size is fixed at a constant Thomas-Fermi radius (dotted
maroon).

In the central trap region |z|  R, we can approximate
Eq. (40) as

〈[θ (z) − θ (0)]2〉 ≈ 2z

Lφ(T )
, Lφ(T ) = 3Tφ

4T
R(T ), (41)

where Lφ(T ) is the phase correlation length. This expression
illustrates that as T � Tφ , the system is (first-order) coherent
over a scale significantly shorter than the Thomas-Fermi
radius [4]. Assuming R(T ) ≈ R and using the Thomas-Fermi
formula for the condensate profile, we can rewrite the product
TφR in Eq. (41) in a model-independent way

g(1)(z) ≈ 1 − g

2h̄ω �

z kBT

�µ
, |z|  R. (42)

Based upon Eq. (42), the slope of g(1)(z) in the region 0 < z <∼
R/2 yields an independent measure of the temperature. We
compare the temperature extracted in this way (denoted Tfit) to
the input temperature of the simulations. Both simulations give
coherence functions g(1)(z) that are consistent with Eq. (42),
except for the NCB approach data at T ≈ 0.48Tφ where the
phase coherence is decaying faster. The ensemble prepared by
the NCB approach in the latter case appears not only to be at
a higher temperature [as in Fig. 7(c)], it is actually not even
stationary, as we illustrate in Sec.V.

Let us come back to the link between the phase coherence
function g(1) and the one-body density matrix. As explained
in Sec. III B, the latter can be expanded in orthogonal
modes, with the (PO) condensate mode φc(z) giving the
dominant contribution. In the notation of the NCB approach
[Eq. (5)], one can decompose the stochastic wave function
in condensate and excitation parts, acφc(z) + ψ⊥(z), where
ψ⊥(z) represents all modes orthogonal to the PO mode. The
first order correlation function may then be broken down into

〈ψ∗(0)ψ(z)〉 = 〈Nc〉φ∗
c (0)φc(z) + 〈ψ∗

⊥(0)ψ⊥(z)〉. (43)

This gives two contributions to g(1)(z) that are illustrated
in Fig. 9(d). The condensate mode (dashed blue) provides
the largest contribution and is positively correlated. The
contribution due to modes orthogonal to the PO mode
(dot-dashed red) becomes negative toward the condensate
border because these modes have additional nodes (only even
mode functions contribute). This reduces g(1)(z) below the
condensate contribution. The “spike” near the center is also due
to higher modes and contains the approximately exponential
decay due to phase fluctuations [Eqs. (38) and (41)] that
becomes narrower as T ∼ Tφ .

2. Second-order coherence: Density fluctuations

We now consider correlations of order four, namely,
fluctuations of the atomic density. These are captured by the
coherence function

g(2)(z) = 〈|ψ(z)|4〉
[n(z)]2

. (44)

In terms of field operators, we actually consider the probability
of detecting two atoms at z, g(2)(z) ∝ 〈�̂†�̂†�̂�̂〉. This
operator ordering is mapped to the following combination of
the TW method data:

〈�̂†�̂†�̂�̂〉 = 〈|ψ(z)|4〉W − 4〈|ψ(z)|2〉Wnq + 2n2
q, (45)

where nq is the quantum density level on the grid [Eq. (4)].
The local density n(z) used for normalization is also Wigner
corrected and given by Eq. (A12). The SGPE data are taken as
in Eq. (44).

It is well known that for a single-mode coherent field,
g(2)(z) = 1, while for a chaotic (multimode) field with Gaus-
sian statistics, g(2)(z) = 2 [120,121]. Antibunching, g(2)(z) <
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FIG. 10. (Color online) Density correlation function g(2)(z) [Eq. (44)] from the SGPE simulations (solid black) and the NCB simulations
(dashed red). For the NCB method case, the corrections of Eq. (45) are applied, so that in the quantum field theory, g(2)(z) has the meaning
of a second-order coherence function. The vertical dashed thin lines indicate R(T ) at the temperatures in (a)–(c), which are as in Table II.
(d) Comparison of results for g(2)(0) (black circles, SGPE; red squares, TWNCB method) with Lieb-Liniger theory, Eq. (46), taken from
Ref. [75] (dashed brown).
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1, is a nonclassical effect that we do not expect within the
classical stochastic theories used here; it occurs indeed at
lower temperatures, see Refs. [75,122]. Any value in between
the limits 1 and 2 is thus a measure of how many modes
effectively contribute to the density. The data shown in Fig. 10
follow the expected behavior [44,117,121,123]: a flat plateau
in the center and a jump from 1 to 2 at the border of the
condensate. [The oscillations outside the center are statistical
errors that are enhanced by the normalization in Eq. (44).] The
jump at the Thomas-Fermi radius becomes more gradual as the
temperature rises, and the single-mode region shrinks [117].
At the highest temperature, the NCB theory gives anomalously
large values g(2)(z) > 2 near the condensate border.

Since the lowest excitation modes of the condensate carry
mainly phase fluctuations [2], we expect a significant deviation
from g(2)(z) = 1 to set in at a higher temperature compared
to g(1)(z). This can be made more precise by comparing to
Ref. [75] where Kheruntsyan et al. use exact solutions of the
Lieb-Liniger model, within the local-density approximation,
to calculate the density correlation in a trapped gas. Their
result for the trap center, within the weakly interacting regime
µ  2kBT  kBTd = Nh̄ω of interest here, is (Eq. (5.10)
of [75]):

g(2)(0) ≈ 1 + 4
√

2 T

3Td

. (46)

The linear increase in temperature is in good agreement with
the results of our classical field simulations, see Fig. 10(d),
and [117]. The high-temperature NCB approach data, however,
is much too large compared to both the SGPE and Lieb-
Liniger theory. This suggests either a higher temperature,
consistent with the findings of previous tests, or a significant
overestimation of density fluctuations. We mention that values
g(2)(z) → 3 [124] would arise when the field ψ(z) has a fixed
phase and behaves like a real-valued random number. This is
related to a large contribution from the “squeezing correlation”
m(z) ∼ 〈ψ(z)ψ(z)〉 that we discuss now.

3. Squeezing and anomalous average

We finally consider the anomalous average of the noncon-
densate field defined as (cf. [125])

m(z) =
〈

[(acφc(z))∗ψ⊥(z)]2

|acφc(z)|2
〉
, (47)

where acφc(z) is the component of the matter wave field along
the condensate mode [Eq. (27)] and ψ⊥(z) is the perpendicular
component. Note that m(z) as defined in Eq. (47) is invariant
under global phase transformations of both the total field
ψ(z) and the condensate mode function φc(z). It vanishes
if the condensate amplitude ac and ψ⊥(z) have no fixed
phase relation: we thus probe the phase locking between the
condensate and noncondensate fields. We use for our data
analysis the Penrose-Onsager condensate mode introduced in
Sec. III B. This interpretation of the anomalous average can be
rephrased in the squeezing language of quantum optics [126]:
the interference term between condensate and noncondensate
fields is split in two quadrature fields (both have the dimension
of a density)

[acφc(z)]∗ψ⊥(z) = Xn(z) + iXθ (z). (48)

The real part Xn indeed gives the (local) density fluctuation on
top of the condensate density |acφc(z)|2, while the imaginary
part Xθ describes phase fluctuations (if these are small). On
average, these quadratures are zero, and the difference of their
variances is〈

X2
n(z)

〉 − 〈
X2

θ (z)
〉 = Re 〈{[acφc(z)]∗ψ⊥(z)}2〉 (49)

which is just the real part of m(z) defined in Eq. (47). The sum
of these variances equals the normalization factor in Eq. (47)
times the noncondensate density nth(z) = 〈|ψ⊥(z)|2〉.

Within the Bogoliubov approximation, we calculate m(z)
by choosing a phase reference where the condensate field
φc(z) is real valued. By expanding ψ⊥(z) over Bogoliubov
modes with operator amplitudes βk = a∗

c bk/|ac| instead of
bk , global phase invariance holds (see Refs. [70,80,98]). In
the Bogoliubov limit, condensate number fluctuations can be
ignored, |ac|2 = 〈Nc〉, and we recover Eq. (32)

m(z) =
∑

k

〈[uk(z)βk + v∗
k (z)β†

k ][uk(z)βk + v∗
k (z)β†

k ]〉

=
∑

k

[2N̄ (Ek) + 1] uk(z)v∗
k (z), (50)

where N̄ (Ek) = 〈β†
kβk〉. This quantity is thus sensitive to the

“anomalous” or “hole” part vk(z) of the Bogoliubov modes.
In particular, we note that the anomalous average shows a
quite precise linear scaling in T in the temperature range
of interest. This illustrates the relative dominance of highly
populated modes that are well described within the classical
approximation.

The data in Fig. 11 show a reasonable qualitative agreement
between the stochastic simulations and Bogoliubov theory:
m(z) has a large negative real part. Beyond this, there are
clearly differences on a quantitative level, particularly as
temperature is increased. Note that the anomalous average
is of comparable magnitude to the noncondensate density
nth(z), which points toward a strong enhancement of the phase
fluctuation quadrature Xθ (z) relative to density fluctuations.
The agreement between SGPE (solid black) and NCB ap-
proach (dashed red) remains reasonable at all temperatures
considered in our comparison, however both theories deviate
from the (T = 0) Bogoliubov prediction (brown, solid line).
Also shown in Fig. 11 is the result of Eq. (50), calculated with
Bogoliubov mode functions for a condensate with a reduced
number of atoms: we have replaced in the Bogoliubov–de
Gennes operator N |φ0|2 by 〈Nc〉|φc|2, where 〈Nc〉 is obtained
from the SGPE. Note that this does not significantly improve
the agreement, unlike the case of the thermal density of
Fig. 7(f).

The enhancement of phase fluctuations is nicely illustrated
in Fig. 12 where the realizations of the complex field
ψ(z)a∗

c /|ac| are plotted. The additional phase factor, relative
to the data of Fig. 5, removes the random phase of the
condensate mode, and reveals the squeezed distribution of
the complex field, with enhanced fluctuations in the quadrature
orthogonal to the condensate mode. At higher temperatures,
the SGPE data show that these fluctuations are channeled into a
“crescent”-shaped region, maintaining the relative suppression
of density fluctuations. The NCB expansion does not take
this into account, and the fluctuations keep their alignment
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FIG. 11. (Color online) Real part of the squeezing correlation (anomalous average) m(z), as defined in Eq. (47), for the temperatures of
Table II. Solid black, SGPE result; dashed red, NCB approach result. The Bogoliubov result [solid brown, Eq. (32)] is calculated with the mode
functions of the T = 0 BdG operator (A3), and also, in (c) only, using the Bogoliubov spectrum calculated for a condensate number equal to
the SGPE PO condensate number (blue, dot-dashed).

to orthogonal quadratures so that density fluctuations (in
the radial direction) become too large. This clearly happens
when the phase difference across different points in the
system becomes comparable (in standard deviation) to π/2 so
that linearization procedures break down (“quasicondensate
regime”).

D. Condensate statistics and fragmentation

We analyze in this section the one-body density matrix
〈ψ∗(z)ψ(z′)〉 in more detail. Its eigenvector with the largest
eigenvalue corresponds to the condensate mode φc(x) in the
sense of Penrose and Onsager, as explained in Sec. III B. The
distribution function of the corresponding complex amplitude
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ac [Eq. (27)] provides us with the probability of finding
Nc = |ac|2 atoms in the condensate, the so-called “counting
statistics”. We emphasize that this quantity depends on
moments (correlation functions) of arbitrarily high order of
the stochastic field. We also discuss the relative importance
of noncondensate modes whose occupation grows as the
temperature increases, illustrating a phenomenon similar to
fragmentation [9] for T ∼ Tφ and above.

1. Counting statistics

The statistics P (Nc) of the number of condensate atoms has
been well studied in the context of laser theory [74], and Bose-
Einstein condensation [71–73,83,84,99,127,128]. It is worth
mentioning that number distributions for an ideal Bose gas
provide an example where the canonical and grand-canonical
ensembles of thermodynamics are not equivalent: only the
average atom numbers coincide, while all higher moments of
the (total) atom number are anomalously large in the grand-
canonical ensemble [70,84]. This anomaly is removed in an
interacting gas due to the energetic cost of adding particles to
the condensate.

The counting statistics P (Nc) is found from the stochastic
data by drafting a histogram of the values for Nc = |ac|2
across the ensemble of realizations, with ac calculated from
Eq. (27). Obviously, the Nc need not be integers here, due to
the replacement of operators with classical fields. Figure 13
compares these data with the theory of Scully and co-workers,
in particular Ref. [71]. This is developed within the canonical
ensemble, and treats the noncondensate modes either within
Bogoliubov theory (low temperatures), or extrapolated to
higher temperature with the help of a rate equation approach.
We outline the main steps in Appendix B.

Reasonable agreement between the stochastic simulation
methods and Scully and co-workers (dot-dashed green) is
apparent at all three temperatures shown in Fig. 13. At the
lowest temperature [Fig. 13(a)], the SGPE approach (solid
black) gives a slightly a broader distribution. This broadening
becomes more pronounced if the atom number is lowered
[Fig. 13(d)], bringing the system closer to an ideal gas. At the
highest temperature considered, the NCB distribution (dashed
red) gives too much weight on small condensate numbers.
This failure is particularly striking, given that the method
of Scully and co-workers uses a Bogoliubov description

of the noncondensate particles that is fairly close to the
NCB expansion. There is one additional ingredient, however,
namely the growth and depletion rates in the rate equation
ansatz for the counting statistics (see Appendix B for details):
these rates are calculated as a function of Nc, while in the NCB
expansion, the Bogoliubov spectrum is calculated only for the
extreme case Nc = N . We thus expect that some effects of a
strongly depleted condensate are not captured. This illustrates
again the importance of self-consistently adjusting Nc within
the theory as temperature is varied, see also Ref. [72].

2. Discussion

It may come as a surprise that a grand-canonical approach
like the SGPE where the total atom number is not fixed
(i.e., values Nc > 〈N〉 are not excluded), is able to repro-
duce the counting statistics of number-conserving theories
(like the NCB and Scully and co-workers methods). We
attribute this to the interatomic interactions in the system that
translate fluctuations in the condensate number into energetic
changes. This makes the system “stiffer” and suppresses
number fluctuations relative to the ideal Bose gas [70,84].
A complementary explanation is based on the observation
that the condensate mode acφc is a low-energy subsystem of
the total field (represented by ψ), where the noncondensate
fraction can play the role of a particle reservoir. This suggests
that the condensate subsystem can be described within a
grand-canonical scheme even if the total atom number is
fixed: for that it would be sufficient to consider a high enough
temperature so that a large number of noncondensate atoms
is present. Indeed, the width σ (Nc) of the canonical counting
statistics translates two physically different mechanisms: on
the one hand, the statistical uncertainty of the noncondensate
(Bogoliubov) occupation numbers in the NCB expansion
[exponentially distributed with mean N̄ (Ek)], and on the other
hand, the dynamical particle exchange with the noncondensate
modes due to interactions, similar to what is done between
system and bath within the SGPE.

These considerations also suggest an explanation for the
broader statistics that the SGPE method returns at low temper-
atures and small numbers [Fig. 13(d)]. It is symptomatic of the
grand-canonical ensemble which underlies the formulation of
the SGPE, and leads to anomalously large number fluctuations
for this nearly ideal gas. We have checked that the classical
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FIG. 14. (Color online) First three moments of P (Nc) vs. total
particle number 〈N〉 of SGPE (open circles) vs. theory of Ref. [71]
(filled green squares): (a) mean value 〈Nc〉 scaled to 〈N〉 (condensate
fraction), (b) relative standard deviation σ (Nc)/〈Nc〉, (c) skewness
or third centered moment, skew(Nc) = 〈(Nc − 〈Nc〉)3〉/σ 3(Nc). The
total particle number N is calculated over the region |z| < 2R.

approximation underlying the SGPE is not in error here:
indeed, the counting statistics of the NCB method (canonical
ensemble) is essentially the same when Bose-Einstein occupa-
tion numbers are replaced by their classical (Rayleigh-Jeans)
limit [Fig. 13(d), dotted blue curve].

Figure 14 shows the moments of the SGPE counting
statistics as a function of the total particle number. This is
compared to the theory of Scully and co-workers (canonical
ensemble). We vary 〈N〉 over more than one order of magni-
tude, as a way to change the importance of particle interactions.
The temperature is kept at a fixed ratio T/Tc = 0.23, where
Tc = Tc(N ) is the critical temperature for an ideal gas [see
Eq. (1) and Fig. 4]. The mean values [Fig. 14(a)] agree well
between the ensembles, as expected [70], except perhaps at the
smallest particle numbers. The standard deviation [Fig. 14(b)]
is larger at small 〈N〉 where one is closer to the ideal gas, but
converges to Scully and co-workers theory for larger systems.
In the third moment [Fig. 14(c)], which measures the deviation
from Gaussian statistics, we see that, at rather small numbers,
the SGPE predicts a more symmetric distribution compared to
the negatively skewed distribution obtained in the canonical
ensemble. This suggests that in weakly interacting systems, the
small noncondensate fraction cannot protect the condensate,
like a “buffer,” against the Gaussian noise in the stochastic
dynamics. The skewness builds up at higher particle numbers
where also more modes are highly occupied, which is of course
the regime where the SGPE should perform well.

3. Fragmentation

For T  Tφ , one mode dominates the system, as many
atoms are condensed and phase coherent (nearly pure conden-
sate), whereas at higher temperatures, many modes become
appreciably occupied (quasicondensate). This behavior can be
made quantitative by considering the set of eigenvalues of
the one-body density matrix 〈ψ∗(z)ψ(z′)〉, i.e., the average
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FIG. 15. (Color online) Schmidt number versus scaled tempera-
ture for the SGPE simulations. Inset: at the temperature T ≈ 1.3Tφ ,
the fractional occupation Nk/〈N〉 for the 30 lowest modes with
the largest occupation; condensate fraction (in k = 0 mode above)
〈Nc〉/〈N〉 ≈ 0.2, and 〈N〉 ≈ 23 800.

occupations Nk of the corresponding modes (k = 1, . . . ,M).
We recall that the eigenmodes of the one-body density matrix
are distinct from those of the Hamiltonian, since the latter is
not quadratic in the field.

The modes for k � 30 are shown for the system at
T = 1.3 Tφ in the inset of Fig. 15. The low-lying modes
(k < 10) share a significant fraction of the total occupation;
this is a consequence of the short-range phase coherence or
quasicondensation in the system, and similar to a “fragmented”
condensate where many modes share a macroscopic occu-
pation [9,129]. A quantitative measure of how many modes
contribute with a significant occupation can be given in terms
of the Schmidt number S defined as [130]

S−1 =
M∑
k=0

f 2
k , (51)

where fk is the fractional mode occupation given by

fk = Nk

/ M∑
k=0

Nk. (52)

The Schmidt number versus temperature extracted from SGPE
simulations is shown in the main plot of Fig. 15. In the limit of
zero temperature, it tends toward one: this is the signature of a
pure Bose-Einstein condensate. For temperatures approaching
Tφ , it increases quickly [a rather good fit is S ≈ 1 + 6(T/Tφ)2,
the thin brown line]. At temperatures where the phase
coherence length is shorter than the condensate size, one may
expect a scaling S ∝ R(T )/Lφ(T ) which would be slower
than linear. Modes outside the condensate region therefore
contribute as well.

IV. CONDENSATION VS. QUASICONDENSATION

Due to the 1D nature of the system we consider, fluctuations
in the density and phase are suppressed at different characteris-
tic temperatures [3]. In this section, therefore, we highlight the
distinction between the phase and density coherent portions of
the gas, for which we will use the terminology “condensate”
and “quasicondensate,” respectively. This is an important
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problem in its own right, since stochastic theories (such as
the SGPE [43,51], or the PGPE [41]) automatically generate
total densities of the field. The condensate mode is extracted
from these either using bimodal fits [not commonly done,
but experimentally well known], or via the Penrose-Onsager
(PO) prescription. This leads to a “gap” between stochastic
approaches and theories where a symmetry-breaking argument
(or a variant of it) assigns a special “condensate mode” from
the outset [22].

To investigate this issue further, we wish to establish here
a more direct link between the PO condensate and the quasi-
condensate often calculated in low-dimensional systems; we
do this by directly comparing the PO mode of the SGPE data
to the ab initio prediction of the modified Popov theory of
Refs. [6,7,92] outlined in Sec. II E. As we shall show, this link
has the advantage of providing an approximate PO condensate
density without performing additional manipulations of the
stochastic data like the diagonalization of the one-body density
matrix.

A. Identifying the quasicondensate

In Fig. 16, we compare the quasicondensate calculated
from the modified Popov theory (within the local density
approximation, see Sec. II E) to the definition (53) below,
based on the density correlation function (Sec. III C 2). In
order to reveal the different physics contained in each of
the approaches, in this figure, we have chosen a relatively
high temperature (T ≈ 1.3Tφ ≈ 0.63Tc) than for the previous
comparison (chemical potential and interaction constant are
kept the same). The breakdown of the NCB initial state in that
regime constrains us to use only the SGPE stochastic data for
this comparison.
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FIG. 16. (Color online) Normalized density profiles showing:
Total density (SGPE, solid black, noisy; modified Popov, dashed,
brown), quasicondensate density (SGPE, solid orange, noisy; modi-
fied Popov, dashed, blue) and (phase coherent) condensate densities
(SGPE PO, noisy, turquoise; modified Popov, dot-dashed/dotted,
maroon). The modified Popov condensate density is shown dotted at
small distances from the trap center, where the relation n′

c(z) = nc(z)
[see Eq. (56)] breaks down. The grey shaded region shows the
Penrose-Onsager condensate density. The dashed red line shows
n(z) − nqc(z) of the modified Popov theory. Here T = 1.3Tφ =
0.63Tc and 〈N〉 ≈ 23 800. There are no NCB data because the NCB
expansion no longer works at this temperature.

Due to the mapping between moments of the Bose field
operator to the stochastic field (Sec. II), one may extract
a quasicondensate density within these approaches in the
following way:

n2
qc(z) = 2〈ψ̂†(z)ψ̂(z)〉2 − 〈ψ̂†(z)ψ̂(z)ψ̂†(z)ψ̂(z)〉. (53)

This definition has been put forward in Ref. [131], and
implemented in Refs. [117,123]. Its equivalent form,

nqc(z) = n(z)
√

2 − g(2)(z), (54)

has also been used at lower temperatures with the aim of
extracting the (conventional) condensate mode in a 3D system
[121], where phase fluctuations were not expected to contribute
significantly.

The comparison of both the quasicondensate (solid orange
and dashed blue in Fig. 16) and the total densities (solid
black and dashed brown) between SGPE and modified Popov,
respectively, gives very good agreement [64]. The quasicon-
densate density profile is at this temperature clearly distin-
guishable from both the total density and the PO condensate
(grayed area). The physical meaning of the quasicondensate
in modified Popov theory is thus that part of the system
where density fluctuations are reduced such that g(2)(z) ≈ 1,
as is typical for a single-mode coherent state. The plateau
with g(2)(z) = 2 outside the quasicondensate in Fig. 10 is, on
the other hand, characteristic for a “chaotic” (or multimode)
field [75,126]. Note that this definition of the quasicondensate
is immune to phase fluctuations by construction [3]. Figure 16
shows that the density correlations obtained within the SGPE
[Eq. (54)] indeed capture a quasicondensate density consistent
with that of Popov theory.

B. Identifying the Penrose-Onsager condensate density

The modified mean-field theory of Andersen et al. [6,7]
splits the system into a quasicondensate and other modes and
thus avoids the “problem” of assuming the existence of long-
range phase coherence. This makes the theory valid in arbitrary
dimensions and at all temperatures. The approach can also
capture the (conventional, PO) condensate mode by calculating
the long-range limit of the one-particle density matrix [92] (see
also Ref. [113]). In a homogeneous system, this leads to the
definition

nc = lim
x→∞ nqc e− 1

2 〈[θ̂(x)−θ̂ (0)]2〉. (55)

This procedure recovers exactly the Popov results for quantum
depletion in two and three dimensions, as pointed out in
Ref. [92].

We wish to adapt Eq. (55) to the trapped case and construct
the quantity

n′
c(z) := nqc(z) e− 1

2 〈[θ̂ (z)−θ̂ (0)]2〉

= n(z)
√

2 − g(2)(z) g(1)(0,z). (56)

We expect that this agrees well with the PO condensate
density nc(z) for large |z|. As appears plausible on physical
grounds, Eq. (56) involves a combination of density and
phase correlation functions. This leads us to the second
interesting feature of Fig. 16: the density n′

c(z) defined by
Eq. (56) (dot-dashed, maroon) coincides, at large |z|, with the
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FIG. 17. (Color online) Comparison between Eq. (56) (dot-dashed, maroon) and the PO mode due to diagonalizing the density matrix (solid
turquoise and shaded) at three temperatures. Also shown is the quasicondensate density from Eq. (54) (noisy orange curve), used to generate
the dot-dashed maroon densities. The data here is extracted from the SGPE simulations.

condensate density nc(z) obtained from the PO analysis of the
one-body density matrix (solid light blue and shaded). This
is important, as it illustrates that the PO procedure produces
a condensate that coincides with that fraction of atoms for
which both phase and density fluctuations are reduced, i.e.,
the “true” condensate. Equation (56) is also appealing from
a practical point of view, as the extraction of the PO mode
from stochastic data usually requires diagonalization of the
one-body density matrix, which for very large systems can
become a significant computational task. In contrast, the
correlation functions g(1)(0,z) and g(2)(z) that enter Eq. (56) are
very straightforward to calculate, making the analysis much
quicker.

The condensate density predicted by Eq. (56) agrees well
with the one obtained by Penrose-Onsager analysis also for
a range of temperatures, as shown in Fig. 17. This figure
also illustrates how the distinction between quasicondensate
and PO condensate becomes more noticeable as T ∼ Tφ . For
all temperatures, Eq. (56) gives a good approximation to
the PO density, with an increasing difference evident only
in the central region of the trap. The size of this region
at T = 1.3Tφ corresponds roughly to the extent over which
the noncondensate part of g(1)(z) is positively correlated [see
Eq. (43) and the dot-dashed red curve in Fig. 9(d)]. The origin
of the “spike,” then, lies in the fact that the thermal component
is coherent over this small region too, so it is not just the
condensate which contributes to g(1)(z) at short scales. Again
from Fig. 9, it is interesting to note that the noncondensate
contribution to g(1)(z) is actually significant at larger |z| where
it reduces the condensate contribution (dashed blue curve).

C. Application: (quasi)condensate fraction

To test the reliability of the condensate density suggested in
Eq. (56), we have calculated the fraction of atoms in the (quasi)
condensate over a range of temperatures. The data are shown
in Fig. 18. The two upper curves give the quasicondensate
fraction which is systematically larger. At low temperatures,
T  Tφ , condensate and quasicondensate numbers are very
similar, as already noted in [44,117,132]. In this range, we
also get a good agreement between stochastic data and the
modified Popov theory. As T increases toward Tφ , however, the
deviation between condensate and quasicondensate increases.

This is clearly due to the shrinking of the PO condensate at
its borders, as seen in Fig. 17. A difference between the two
(PO) condensate numbers (lower curves of Fig. 18) might be
expected due to the central “spike” that follows from Eq. (56):
at z = 0, one has necessarily g(1)(0) = 1 and n′

c(0) = nqc(0),
but diagonalizing the one-body density matrix of the SGPE
yields nc(0) < nqc(0) (Fig. 17). Despite this difference, the
two condensate numbers agree very well and show the same
dependence on temperature.

The approximate condensate density n′
c(z) of Eq. (56) can

be evaluated in a simpler way by using Eq. (40) for the
calculation of the phase correlation function g(1)(0,z). This
means in practice that one only needs to extract the parameter
R(T ) from the modified Popov density profiles. We have
already shown in Fig. 9(d) that this simplified expression works
well to approximate g(1)(0,z).
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FIG. 18. (Color online) (1D) Quasicondensate and PO conden-
sate numbers from the SGPE (black circles) and modified Popov
theory (hollow green triangles). The SGPE results are based on the
condensate mode given by PO analysis of the one-body density
matrix (Sec. III B) and on Eq. (53) for the quasicondensate. For
the integration over nqc(z), only the region |z| � R(T ) is taken into
account. The modified Popov data are based on the quasicondensate
density described in Sec. II E and on the condensate density n′

c(z)
given in Eq. (56), where g(1)(0,z) is calculated from Eq. (40).
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V. SLOW THERMALIZATION OF THE INITIAL STATE

We have seen the importance of a consistent treatment
of phase and density fluctuations in calculating accurately a
finite-temperature initial state for our (quasi-)one-dimensional
system. From the physical observables probed, the picture
emerging so far is that equilibrium properties, like total densi-
ties, agree quite well over a range of temperatures well beneath
Tφ and in the spatial range where highly occupied modes
are dominant. The stochastic ensembles prepared by the two
methods are considered in this section as an initial condition for
the Gross-Pitaevskii equation, which will be used to describe
the subsequent dynamics. We take a temperature ≈ 0.48Tφ

where the NCB data are clearly not in equilibrium, and address
the question whether these data evolve dynamically into a
thermal equilibrium state. We shall find that even after a
fairly long evolution time (>5000ω−1), the system is not yet
stationary. This may be related to the absence of thermalization
in integrable homogeneous 1D systems [109,110,133,134].

The thermalization study presented here provides a link to
other classical field methods. These approaches, for example
the PGPE of Davis, Blakie, and co-workers [41], that employed
by Berloff and Svistunov [54] and the approach of the Polish
group [59], typically use a single field realization with suitably
randomized initial conditions as an input to evolution under
the GPE (with the possible addition of a projector [53]), rather
than an ensemble of initial states. The system then corresponds
to a microcanonical ensemble, as both particle number and
total energy are fixed in this scenario. The dynamics acquires
an irreversible character by spatial or temporal coarse graining
[135]. This can be mapped to a Boltzmann equation that yields
an irreversible evolution where the system thermalizes to an
equilibrium state with Rayleigh-Jeans statistics [41,136].

Figure 19 shows the density profile and its resolution into
condensate and thermal density, before (left panels) and after
(right panels) GPE evolution. While the total densities (top
row) agree well between the two methods, the NCB data evolve
toward a smaller condensate density (bottom row), suggesting
the system to be thermalized at a higher temperature.

The temporal evolution of the condensate statistics is illus-
trated in Fig. 20 (left). This data was extracted as follows: we
obtain the one-body density matrix at the indicated times and
get the condensate mode by Penrose-Onsager diagonalization.
Projecting the ensemble of wave functions onto this mode,
one gets a few snapshots of the evolving condensate statistics
P (Nc,t). While this distribution shows essentially no variation
for the SGPE initial data, the NCB case shows a significant
evolution. The peak at 〈Nc〉 disintegrates quite rapidly, and
the condensate is reformed gradually, with a broader peak
reappearing from smaller to higher numbers. At the final time,
the distribution does yet not appear to have reached a stable
distribution.

The right panel in Fig. 20 illustrates that over short time
scales, the average condensate number oscillates for the NCB
data, in contrast to the SGPE (note the shorter time scale
compared to the left panels, in order to resolve the oscillations
in the NCB data). This oscillation at roughly 2ω, whose
amplitude increases with temperature, may be due to a
nonlinear locking between the condensate mode and its low-
lying, highly excited excitations.

The evolution of the coherence functions is illustrated in
Fig. 21 for the g(1) and g(2) functions introduced in Secs. III C 1
and III C 2. The kinks in Fig. 21(a) could be due to a mode
coupling between the condensate and low-energy excitations
whose mode functions have nodes and are slightly broader.
But it is unclear whether this picture may explain the strong
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FIG. 19. (Color online) Top row (a),(b): total atomic density for the SGPE (solid, black) at equilibrium and the TWNCB method
(a) before (dashed red) and (b) after (dashed blue) evolution via the GPE. The TWNCB data contain the correction to normal order; the
evolution period is 5000ω−1. Bottom row (c),(d): condensate (thermal) density [SGPE, solid green (brown); TWNCB method, dashed], as
obtained by Penrose-Onsager analysis (see Fig. 7), (c) before (dashed red) and (d) after (dashed blue) evolution of the NCB state over 5000ω−1.
Upper curves: condensate density, lower curves with maxima at |z| <∼ R: thermal density.
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FIG. 20. (Color online) Left: condensate statistics at different evolution times under the GPE, at initial nominal temperature T ≈ 0.48Tφ .
Solid blue, TWNCB data; dashed green, equilibrium Scully and co-workers theory [71]. The SGPE data at equilibrium are not shown, as the
condensate statistics essentially stays the same as in Fig. 13. Right, mean condensate number 〈Nc(t)〉 for SGPE (upper, black line); TWNCB
method (lower, red curve) at the temperatures of Table II, with temperature increasing from top (g) to bottom (i).

density fluctuations [panel (d)]. The average density is quite
low for |z| > R, which amplifies sampling errors, however.

Recalling the discussion in Secs. III C 1 and III C 2
[Eqs. (42) and (46)], we can use the correlation functions to
measure the temperature of the ensemble. This may not yield a
consistent picture, since the system is not (yet) thermalized. At
least, we can place bounds on the temperature range that the
system might thermalize to, albeit after some longer time.
The results of this are summarized in Fig. 22. We probe
the system properties at nonconstant time intervals, in order
to account for the possibility of periodic behavior in the
correlation functions. For example, the last two data points on
the upper curve are separated by only 10ω−1 units of time.

The lower dashed red line indicates the input temperature
(0.48Tφ), but both g(1) and g(2) yield higher numbers. Notice
that g(1) gives a higher temperature, as might be expected in our
regime due to pronounced phase fluctuations. The temperature
extracted from g(2) is more stable in time, which may suggest
a faster damping rate for modes with density fluctuations. This
would be consistent with Landau-Beliaev damping, see e.g.,
Refs. [38,59].

To summarize this discussion, we emphasize that in
this example thermalization proceeds quite slowly. The 1D
character of the system that is nearly integrable probably plays
a role here, but also relevant are the large fluctuations that
are present in the initial state produced by the NCB method.
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FIG. 21. (Color online) Top row: g(1)(z) for the SGPE (solid black), (a) TWNCB method initially at (t = 0) (dashed red) and (b) TWNCB
method after GPE evolution up to t = 5000ω−1 (dashed blue); bottom row: as per top row for g(2)(z). In each plot, the vertical dashed line
indicates R(T ) at T = 430h̄ω.
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FIG. 22. (Color online) Temperature measurement using corre-
lation functions as a function of GPE evolution time: (upper data)
g(1)(z), for 0 < z < R/2 and Eq. (42) (blue triangles); (lower data)
g(2)(0) and Eq. (46) (black squares). Initial temperature (dashed red);
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g(2)(0) data (dot-dashed green); temperatures corresponding to the
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One may think of the 1/2 “quantum atoms” per mode that
are included in the truncated Wigner sampling: the observed
temperature increase is roughly comparable to the “classical
thermalization” of these atoms, as simple estimates show [38].
The different temperatures extracted from phase and density
correlations, however, are probably related to the wrong
account of phase fluctuations: the latter are misinterpreted in
terms of noncondensate density, as illustrated in Fig. 12. This
may be cured by formulating the stochastic scheme in terms
of phase and density variables, instead of the noncondensate
field ψ⊥(z), similar to the analysis of Ref. [39].

VI. CONCLUSIONS

We have analyzed the equilibrium properties of a weakly
interacting, trapped quasi-one-dimensional Bose gas at fi-
nite temperatures, which we modelled as an effective one-
dimensional system. The predictions of a number of inde-
pendent finite-temperature theories have been compared. We
focused in particular on two methods incorporating phase
and density fluctuations in a stochastic manner: a number
conserving Bogoliubov approach with stochastic sampling and
the stochastic Gross-Pitaevskii equation.

At low temperatures, we found average quantities, such as
total density profiles, condensate fractions and first and second
order spatial correlation functions to give good agreement
between the two theories. These properties were additionally
found to coincide with other theoretical predictions from
the literature, which we used in order to “benchmark” our
findings. As higher temperatures were probed, though still
within the regime T < Tφ , the NCB initial state was found
to give predictions for equilibrium properties in disagreement
with both the SGPE and the results of other, “benchmark”
theories, including the modified Popov theory of [6], while
the latter two showed good agreement. We attribute this
failure to the use of the T = 0 Bogoliubov spectrum in the
NCB expansion, i.e., the condensate number is assumed equal
to the total particle number at all temperatures, and to the
overestimation of the noncondensate density due to spurious
contributions of phase fluctuations at higher orders. The “point
cloud” in Fig. 12 illustrates the enhanced phase fluctuations
at higher temperatures, which mean that density fluctuations
in modes above the condensate were no longer suppressed in

the NCB method, as would be expected at temperatures much
below the “degeneracy” temperature (Td ). A procedure taking
condensate depletion into account in a temperature dependent
way, would likely improve the high-temperature behavior of
this method.

We have also probed quantities involving higher-order
statistical moments than just the density or its correlation,
in particular the full distribution function of the condensate
number. At low temperatures, and for not too small atom
numbers (where the assumption of a “classical” occupation of
modes fails), both the NCB approach and SGPE were found to
produce the correct statistics, in perfect agreement to the theory
of Svidzinsky and Scully [71]. However, for small total particle
numbers, and at low temperature, the SGPE results were found
to be broader than the NCB statistics, whereas the latter were
found to agree well with those of Ref. [71]. The incorrect
SGPE prediction at low particle numbers was attributed to
the onset of anomalously large number fluctuations, familiar
from the grand-canonical analysis of the ideal gas. As the
importance of interactions within the system was increased,
i.e., by increasing particle number with all other parameters
fixed, the SGPE and Svidzinsky and Scully results were then
found to match well.

We further propagated the NCB data via the (ordinary)
GPE, as done in the truncated Wigner approach. We found that
this leads to the correct profiles for the total system density,
but fails to predict all other features accurately, due to its
attempt to thermalize to a higher temperature classical field.
This thermalization was found to take extremely long here,
due to our 1D system configuration.

Finally, we have illustrated the conceptual difference
between the (phase-coherent) condensate and the (density-
coherent) quasicondensate. The former is usually obtained by
the Penrose-Onsager analysis of the one-body density matrix
while the latter appears, e.g., in the context of the modified
Popov theory of Refs. [6,7]. Building on the identification
of the (PO) condensate for a homogeneous system [92], we
have provided an alternative, numerically very efficient means
of extracting information about the condensate density that
involves only first- and second-order correlation functions;
apart from being applicable to numerical data, this procedure
could also be of use to experimentalists who can independently
measure total densities and correlation functions. Although
some issues remain to be improved near the trap center,
condensate density and fraction are perfectly matched to the
conventional PO approach over a broad range of parameters.
We believe that this identification, along with the systematic
benchmarking of observables to alternative theories for finite-
T Bose gases will provide a better understanding of the links
between stochastic theories and thermodynamics based on
mean field theories.
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APPENDIX A: SAMPLING THE NUMBER-CONSERVING
BOGOLIUBOV STATE

The condensate mode function φc(z) contains two terms

φc(z) = φ0(z) + φ2(z)/N

[1 + ‖φ2(z)/N‖2]1/2
, (A1)

that arise in zeroth and second order of the expansion. The
lowest-order contribution φ0(z) solves the stationary GPE

HGP[N |φ0|2]φ0 = µφ0. (A2)

Note that the “chemical potential” µ emerges here as the lowest
eigenvalue of a nonlinear eigenproblem: it depends on the
product gN and the trapping potential V (z). Equation (A2)
is conveniently solved by propagating the wave function in
imaginary time.

For the correction φ2(z), one needs the noncondensate field
ψ⊥(z), and we return to it in Eq. (A8). The noncondensate
atoms populate Bogoliubov mode functions uk(z) and vk(z).
These are eigenfunctions of the (projected) Bogoliubov–de
Gennes operator

LQ =
(Q 0

0 Q∗

)
L

(Q 0

0 Q∗

)
, (A3)

L =
(

HGP[2N |φ0|2] − µ gNφ2
0

−gNφ∗2
0 −HGP[2N |φ0|2] + µ

)
, (A4)

where Q (Q∗) is the projector orthogonal to φ0(z) [to φ∗
0 (z)],

respectively. On the spatial grid, its matrix elements are

Qzz′ = δzz′ − �z φ0(z) φ∗
0 (z′). (A5)

The numerical diagonalization of LQ may be approached
simply with a Fourier grid method [137], for example. We
need in Eq. (6) only those modes with εk > 0 that can be
normalized to

�z
∑

z

[u∗
k(z)ul(z) − v∗

k (z)vl(z)] = δkl, (A6)

where the sum represents the Bogoliubov scalar product on the
spatial grid (spacing �z). For a grid of length L, the number
of Bogoliubov modes is M = L/�z − 1.

The quantity A({bk}) in Eq. (9) is calculated as

A({bk}) =
∑

k

|bk|2 − σ 2
k

4σ 4
k

+
∑
k,q

�z

2 σ 2
k σ 2

q

×
∑

z

{
Re

(
bk b∗

q − δkqσ
2
k

)
v∗

k (z)vq(z)

− Re(bk bq)u∗
k(z)vq(z)

}
, (A7)

where σ 2
k is the expectation value of |bk|2, so that A({bk})

averages to zero. This term encodes the Wigner correction for
getting the (normally ordered) noncondensate particle number
out of the semiclassical Wigner functions, at the level of the
corresponding number variances.

The second-order correction φ2(z) to the condensate mode
φ0(z) is due to thermal depletion. It contributes in the NCB
expansion at the same order as the noncondensate modes to
typical observables like the average density and the one-body
density matrix. It must be orthogonal to φ0(z) (see [80]) and
can hence be expanded over the Bogoliubov modes

φ2(z) =
∑

k

[ckuk(z) + c∗
kv

∗
k (z)]. (A8)

The coefficients ck are found by solving an inhomogeneous
linear equation for the Bogoliubov–de Gennes operator. For
the convenience of the reader, we reproduce here Eqs. (71)–
(75) provided in Ref. [46]. The Wigner field ψ⊥ represents
a noncondensate field operator denoted �̂ in Ref. [46]. The
second-order correction φ2 solves the stationary equation

Q(HGP[2N |φ0|2] − µ)φ2 + gNQφ2
0φ

∗
2 = −QR (A9)

with a “source term”

R(x) = −gN |φ0(x)|2φ0(x)(1 + 〈N̂th〉)
+ 2gN〈�̂†(x)�̂(x)〉φ0(x) + gNφ∗

0 (x)〈�̂(x)�̂(x)〉
− gN

∫
dy |φ0(y)|2〈[�̂†(y)φ0(y) + φ∗

0 (y)�̂(y)]�̂(x)〉,
(A10)

where N̂th = ∫
dx �̂†(x)�̂(x) is the operator for the non-

condensate atom number. The expectation values of �̂ are
translated into Wigner averages of ψ⊥ according to the
symmetrization rule

〈�̂†(x)�̂(x ′)〉 = 〈ψ∗
⊥(x)ψ⊥(x ′)〉W − 1

2Q(x,x ′), (A11)

where the projector Q(x,x ′) appears because the fields live in
the subspace orthogonal to the zeroth-order condensate mode
φ0(z). Equation (A9) is solved by constructing an imaginary
time evolution that leads to φ2(z) as a stationary solution. This
is then plugged into Eq. (A1) to complete the construction of
the normalized condensate mode φc(z).

With this normalization, the stochastic matter wave field
ψ(z) gives access to the total particle density n(z) as [cf.
Eq. (3)]

n(z) = 〈|ψ(z)|2〉W − nq, (A12)

where nq is the quantum density (4). It is hence normalized
such that 〈‖ψ‖2〉W = N + M/2. The statistics of the conden-
sate atom number Nc is determined by the noncondensate field
ψ⊥, via Eq. (9).

The propagation in time of the matter field ψ(z,t) is found
by solving the GPE (2). This turns out to be more accurate, in
particular at long times, than to propagate separately the con-
densate mode and ψ⊥, using the time-dependent versions of the
equations they solve in the respective orders of the expansion
in (δN/N )1/2 (see e.g., [37]). All numerical simulations in this
paper (for both methods) are based on the Crank-Nicholson
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method for time stepping with the results averaged over at least
1000 realizations of the initial conditions.

APPENDIX B: CANONICAL COUNTING STATISTICS
OF A BOSE GAS

Scully and co-workers have developed theoretical models to
calculate the counting statistics P (Nc) of a Bose condensate,
building on the canonical ensemble where the operators N̂c

and N̂th must sum up to the (fixed) total number N . Therefore,
the counting statistics is the “mirror image” of the probability
distribution P (Nth). The latter can be calculated when the
noncondensate number N̂th splits into a sum of statistically
independent terms. In an ideal Bose gas, this would be the
occupation numbers n̂k of single-particle modes (quantum
number k). For a weakly interacting, homogeneous Bose
gas, the noncondensate atoms are clearly those in nonzero
momentum modes, and hence

N̂th =
∑
p>0

{(
u2

p + v2
p

)
(b̂†pb̂p + b̂

†
−pb̂−p)

+ 2upvp(b̂†pb̂
†
−p + b̂pb̂−p) + 2v2

p

}
, (B1)

where up and vp are real-valued Bogoliubov coefficients
(Eq. (258) of Ref. [70]), normalized to u2

p − v2
p = 1, and

where the b̂p are the bosonic operators for Bogoliubov
quasiparticles. This Bogoliubov spectrum depends on the
condensate occupation number Nc. Scully and co-workers
make the approximation that the dependence is weak enough
so that Nc can be replaced by its average value 〈Nc〉 [i.e.,
by the first moment of P (Nc)]. This is consistent if P (Nc)
is narrow enough. The operator identity (B1) is also based
on the assumption of a negligibly small probability P (Nc =
0) of finding the condensate mode empty [Eq. (210) of
Ref. [70]].

The quasiparticle operators are constructed such that the
sum (B1) contains mutually commuting operators (only
momenta p and −p are correlated), and the probability

distribution P (Nth) can be found with standard techniques.
The following moments are found, for example:

〈Nth〉 =
∑
p �=0

{
N̄pu2

p + (N̄p + 1)v2
p

}
, (B2)

σ 2(Nth) =
∑
p �=0

{
N̄p(N̄p + 1)

[
1 + 8u2

pv2
p

] + 2u2
pv2

p

}
, (B3)

µ3 = −
∑
p �=0

(
u2

p + v2
p

){
N̄p

(
2N̄2

p + 3N̄p + 1
)

× [
1 + 16u2

pv2
p

] + (2N̄p + 1)4u2
pv2

p

}
, (B4)

where N̄p = N̄ (εp) is the Bose-Einstein statistics and where
µ3 = 〈(N̂th − 〈N̂th〉)3〉 is the third central moment. Its nonzero
value is a clear indication of non-Gaussian statistics. These
results are obtained within the Bogoliubov approximation
with a weak thermal fraction, 〈Nth〉  N , hence at low
temperatures.

Svidzinsky and Scully [71] have generalized this approach
to any temperature, using a rate equation ansatz similar to
quantum laser theory [74]. The growth and loss rates for the
condensate depend on Nc and are described by a rational
(Padé) approximation. This leads to a closed formula for
the stationary P (Nc). The Padé parameters are matched to
the low-temperature limit and can be expressed in terms
of the moments (B2)–(B4). The equation 〈Nc〉 = N − 〈Nth〉
must be solved iteratively since the Bogoliubov modes in
Eq. (B2) depend themselves on 〈Nc〉. It has been pointed out
in Ref. [72] that the dependence of the Bogoliubov spectrum
on the condensate number, εp(Nc) �= εp(〈Nc〉), actually leads
to an observable difference in the counting statistics, although
it makes the calculations much more involved.

We calculate the counting statistics in Figs. 13 and 14 using
the theory of Ref. [71] and making the identification u2

p �→
‖uk‖2 to the Bogoliubov modes in a trap. The moments of
P (Nc) in Fig. 14 are calculated from Eqs. (B2)–(B4).
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