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Analytic confirmation that the factorized formula for harmonic generation involves
the exact photorecombination cross section
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High-order-harmonic generation (HHG) by atoms in a strong laser field is analyzed theoretically, taking
into account atomic potential effects beyond the strong field approximation (SFA). Our analytical derivation
extends the time-dependent effective range (TDER) theory, developed previously for a short-range potential
supporting only a single bound state, to the case of a potential supporting two bound states having different
angular momenta and dynamically interacting with the continuum. In contrast to the SFA and the single-state
TDER model, in both of which the HHG rates in the region of the high-energy plateau cutoff involve only the
plane-wave (first Born) approximation for the photorecombination cross section, our analytic expression for the
HHG rates in the two-state TDER model involves the exact photorecombination cross section for this model.
These results justify the factorization of HHG rates in the high-energy plateau region in terms of the electron
wave packet and the exact (non-Born) photorecombination cross section, which was suggested previously using
only phenomenological arguments.
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I. INTRODUCTION

High-order-harmonic generation (HHG) is nowadays the
main focus of intense laser-atom physics owing to its signifi-
cant potential impact in both technological and scientific appli-
cations. First, it may allow the production of table-top sources
of intense coherent radiation with wavelengths important for
different applications, such as those in the “water window”
[1–4]. Second, HHG is the primary means for producing ultra-
short, attosecond pulses, which play a central role in attosecond
science [5,6]. Finally, it has become increasingly apparent
recently that this process demonstrates a high potential for
extracting structural information on target atoms or molecules.
The idea of using HHG to image atomic and molecular
structures was formulated first in Ref. [7] (see also Ref. [8]),
where the semiclassical three-step scenario for the HHG
process [9,10] was utilized to extract the Fourier transform
of an atomic wave function. A significant advance suggested
by Lin and coworkers [11–13], based upon numerical solutions
of the time-dependent Schrödinger equation (TDSE), was the
following phenomenological parametrization for HHG rates
(RN ) in the high-energy part of the HHG spectrum

RN = W (E)σrec(E), E = h̄� − |E0|. (1)

In Eq. (1) |E0| is the atomic binding energy, � is the frequency
of the N th harmonic, σrec(E) is the exact (atom-specific)
photorecombination cross section of the active electron with
its parent ion (forming the atom from whose valence subshell it
was ionized by the pump laser field), and W (E) is the so-called
“electronic wave packet” (EWP). In Refs. [11–13] the EWP is a
fitted parameter. Both numerical simulations and experimental
data show that its shape is essentially independent of the atom
used to generate the HHG spectrum. An explicit form of the
EWP (in terms of an Airy function) was obtained analytically
in Ref. [14] (cf. also Ref. [15]) within the framework of the

quasistationary quasienergy state (QQES) approach (cf., e.g.,
Ref. [16]) applied to a model system. The analytic expression
for the EWP showed that its dependence on the particular atom
stems only from two parameters of the active electron’s initial
bound state ψ0(r) [i.e., |E0| and the asymptotic coefficient in
ψ0(r) at large r]. The model system for which the derivation
[14] was carried out is that of a single electron bound in
a short-range potential U (r) that interacts with a strong
monochromatic laser field (i.e., the time-dependent effective
range (TDER) model [17,18]). The generalization to neutral
atoms of the analytic formula for HHG rates obtained for the
TDER model system was presented in Ref. [15].

The validity of the parametrization (1) has been confirmed
recently by a number of experiments. First, experiments on
the HHG spectrum of Ar [19,20] observed signatures of
the Cooper minimum in the photoionization cross section of
Ar. (The photoionization cross section is proportional to the
photorecombination cross section according to the principle of
detailed balance.) Second, based on the parametrization (1),
both enhancement and suppression of individual harmonics
observed in experiments on the HHG spectra of laser-produced
plasmas of singly charged ions of the transition metals Cr and
Mn [21,22] were explained in Ref. [23] as originating from
“giant dipole” resonance features in the photoionization cross
sections of Cr+ and Mn+ ions. Third, Ref. [15] predicted
a broad resonance-like feature in the HHG spectrum of the
5p-subshell of Xe (originating from the well-known giant
dipole resonance in the 4d-subshell photoionization cross
section of Xe); this prediction has now been confirmed
experimentally [24]. Despite the fact that both the afore-
mentioned experiments and the numerical solutions of the
TDSE [11–13] show that the parametrization (1) seems to
be quite reliable, at the present time there does not yet exist
any formal theoretical justification of Eq. (1) based on an
accurate quantum-mechanical derivation involving the exact
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photorecombination cross section (as opposed to the plane-
wave approximation to the photorecombination cross section,
as in the derivation of Eq. (1) in Ref. [14]). Given the practical
importance of the parametrization in Eq. (1), such a quantum-
mechanical derivation, even for a simplified model of the atom,
is important not only for justifying this parametrization but also
for providing an accurate understanding of the physics of the
HHG process.

Although the TDER theory has allowed us to obtain an
analytic form of the EWP W (E) [14], this theory, in common
with the strong field approximation (SFA) description of the
HHG process [25], yields the plane-wave (first Born approx-
imation) result for σrec(E) in Eq. (1). Within the SFA, this
shortcoming is due to the neglect of any interaction between
the active atomic electron in the laser-dressed continuum and
the atomic potential, while within the TDER model, in which
the atomic potential has only a single bound state [17], this
shortcoming has a different origin. In the single-state TDER
(SS TDER) theory only the l-wave phase shift δl(E), for an
electron scattering from the potential U (r) is nonzero, where
l corresponds to the angular momentum of the single bound
state in the potential U (r). However, according to electric
dipole selection rules for the photoionization process, it is
the scattering phase shifts δl±1(E) that contribute primarily to
σrec(E). In the SS TDER theory these phases are unaffected by
the potential U (r). That is why our derivations in Ref. [14] for
the SS TDER model result in the parametrization (1) in which
σrec(E) is represented by its plane-wave approximation.

In this paper we generalize the SS TDER theory to the case
of two (s and p) bound states in the potential U (r) and show
that within this more general two-state TDER (TS TDER)
model the HHG rates can indeed be presented in the form (1)
with the exact (non-Born) result for σrec(E). In addition our
derivations show that an analytic form of the EWP W (E) in
the TS TDER theory remains the same as in the SS TDER
model, thereby providing further theoretical support for the
weak sensitivity of the EWP W (E) in Eq. (1) to the details of
the atomic structure.

The paper is organized as follows. In Sec. II we describe
the TS TDER model. Specifically, in Sec. II A we focus on the
two-state effective range theory model in the absence of the
laser field. In Sec. II B the laser field is introduced and exact
equations for the complex quasienergy and QQES (or Floquet)
wave functions in the TS TDER theory are derived. In Sec. II C
two levels of approximation for the QQES wave functions are
made that are valid in the low-frequency tunneling limit. In
Sec. III we apply these results to the description of HHG,
derive a factorized analytic result for the HHG amplitude (and
the corresponding HHG rates) in the tunneling limit, and show
that these results are in perfect agreement with exact numerical
TS TDER results in the high-energy part of the HHG spectrum.
In Sec. IV we discuss our results and present some conclusions.

II. TDER THEORY FOR A SHORT-RANGE POTENTIAL
HAVING TWO BOUND STATES

A. Field-free two-state model

We consider an electron in a three-dimensional short-range
potential U (r) [where U (r) = 0 for r > rc] having two bound

states, with angular momenta l = 0 and 1, respectively. Our
basic assumption is that in elastic electron scattering from the
potential U (r) only two scattering phases δl(k) are nonzero:
the s-wave and p-wave phases, δ0(k) and δ1(k), where k =√

2mE/h̄. According to effective range theory for low-energy
electron scattering [26], we parametrize these phases in terms
of the scattering length al and the effective range rl , which are
parameters of the problem

k2l+1 cot δl(k) = −1/al + rlk
2/2. (2)

Since the electron is free outside the potential well U (r), its
scattering wave function ψ

(+)
k (r), for r > rc may be written in

terms of the parametrization (2) as follows:

ψ
(+)
k (r) = eik·r + 1

2
(e2iδ0 − 1)h(1)

0 (kr)

+ 3i

2
(e2iδ1 − 1)h(1)

1 (kr) cos θ = eik·r

+ i
k

R0(E)
h

(1)
0 (kr) − 3k3

R1(E)
h

(1)
1 (kr) cos θ, (3)

where cos θ = k̂ · r̂, h
(1)
l (kr) is the spherical Hankel function

of the first kind, and

Rl(E) = −a−1
l + rlk

2/2 − ik2l+1. (4)

The physical meaning of the factor Rl(E) (which enters also
into key equations of the TDER theory) follows from Eq. (3):
it determines the partial wave amplitudes fl(E), for elastic
electron scattering from the potential U (r) in the s-wave and
p-wave channels

fl(E) ≡ (e2iδ� − 1)/2ik = k2l/Rl(E). (5)

Assuming that both scattering lengths a0 and a1 are positive,
the potential U (r) supports two bound states dynamically
interacting with the continuum through the scattering phases
δ0(k) and δ1(k). The wave functions ψ0(r) and ψ1(r) and
energies E0 and E1 of these bound states can be obtained as
the residues of the continuum state (3) at the negative energy
poles E = El (l = 0, 1) given by the equation Rl(El) = 0.
Their expressions are

E0 = −h̄2κ2
0

2m
, ψ0(r) = −κ

3/2
0 Cκ0h

(1)
0 (iκ0r)Y00(r̂), (6)

E1 = −h̄2κ2
1

2m
, ψ1(r) = −iκ

3/2
1 Cκ1h

(1)
1 (iκ1r)Y1m(r̂), (7)

where the parameters κl and Cκl
can be expressed in terms of

al and rl

a−1
l = (−1)lκ2l+1

l − rlκ
2
l /2,

(8)
2C−2

κl
= (−1)l(2l + 1) − rlκ

1−2l
l ,

in agreement with general relations of the effective range
theory [27,28]. For κlr � 1, the wave functions (6) and (7)
have the standard form for a finite-range potential

ψl(r)|κlr�1 = Cκl

√
κlr

−1 exp(−κlr)Ylm(r̂),

where Cκl
is the (dimensionless) asymptotic coefficient.

Using the wave functions (3), (6), and (7), the differential
photorecombination cross section for an electron with wave

043416-2



ANALYTIC CONFIRMATION THAT THE FACTORIZED . . . PHYSICAL REVIEW A 83, 043416 (2011)

vector k (k = √
2mE/h̄) that emits a linearly polarized photon

with frequency � = (E − El)/h̄ (and polarization vector ez

directed along the vector k) when it recombines into the bound
state ψl(r) is

σ (l)
rec(E) ≡ d2σ (l)

rec(E)

d�k̂d�ez

= �3

2πc3

1

aBk

∣∣f (l)
rec(k)

∣∣2
, (9)

where aB is the Bohr radius and

f (l)
rec(k) = 〈ψ (+)

k (r)|z|ψl(r)〉. (10)

Though wave functions (3), (6), and (7) are valid for r > rc

and diverge ∼ r−l−1 as r → 0, the dipole matrix element (10)
with these wave functions is finite, so that the amplitudes
f (l)

rec(k) for recombination to the ground (l = 0) and excited
(l = 1,m = 0) states are

f (0)
rec (k) = iCκ0

4
√

πκ0k

(k2 + κ2
0 )2

[
1 + (κ0 − 2ik)(κ0 + ik)2

2R1(E)

]
, (11)

f (1)
rec (k) = −Cκ1

2
√

3π√
κ1(k2 + κ2

1 )2

×
[
k2 − κ2

1 − (2κ1 − ik)(κ1 + ik)2

3R0(E)

]
. (12)

Owing to electric dipole selection rules, the expressions for
f (0)

rec (k) or f (1)
rec (k) involve only the phase shifts for p-wave or

s-wave scattering, respectively. Therefore, the cross sections
σ (l)

rec(E) for the single-bound-state model coincide with those
using the plane-wave approximation for the scattering state (3),
that is, neglecting terms involving R−1

l (E) in Eqs. (11) and
(12). [Note that, for a negative scattering length a1, the
potential U (r) supports only a single bound s-state ψ0(r), for
which, however, the amplitude f (0)

rec (k) still has the same form
(11).]

Our aim in this paper is to show that by treating the non-
perturbative interactions of an electron with both a potential
U (r) and an intense laser field within the TS TDER model
we are able to derive the factorized result (1) for HHG rates
in which the photorecombination amplitudes are given by the
exact results, Eqs. (11) or (12), within this two-state model.

B. Exact equations for the complex quasienergy and QQES
wave functions in the TS TDER model

Under the action of a linearly polarized, monochromatic
field with electric vector F(t) = F cos ωt , the wave function
for an electron bound initially either in the ψ0(r) or ψ1(r)
state evolves to the field-dressed QQES wave function 
ε(r,t)
[
ε(t) = 
ε(t + T ),T = 2π/ω] having complex quasienergy
ε (with ε → E0 or E1 as F → 0). The advantage of the TDER
approach is that it avoids the solution of the four-dimensional
(in r and t) Schrödinger eigenvalue equation for 
ε(r,t) and
ε (cf. Ref. [16]) by reducing the problem to the solution of an
infinite system of linear homogeneous equations [17]. The key
idea of this approach [formulated first in Ref. [29] for a weakly
bound electron subjected to a long-range static perturbation
V (r)] is that the interactions of the electron with the field F(t)
(in the electric dipole approximation)

V (r,t) = −er · F(t), (13)

and with the short-range potential U (r) (with small radius rc)
are significant in essentially nonoverlapping spatial domains:
V (r,t) is most significant for r > rc, while U (r) is significant
only for r � rc. Moreover, the action of the potential U (r)
can be replaced by the appropriate boundary condition for the
QQES wave function 
ε(r,t) formulated at rc � r � κ−1

l ,
while outside the potential well U (r) the function 
ε(r,t) can
be constructed from the solutions of the Schrödinger equation
for a free electron in the field F(t). For a bound electron in
a potential U (r) supporting two bound states, the effective
range theory for description of its interaction with a static
electric field F has been utilized in Ref. [28]. Here we treat the
case of a time-dependent electric field in a way similar to our
development of the SS TDER theory [17].

The wave function 
ε(r,t) for r > rc [where U (r) = 0]
in the case of a potential U (r) having two bound states with
angular momenta l = 0 and 1 can be presented as the sum of
two terms involving the retarded Green function, G(r,t ; r′,t ′),
for a free electron in the field F(t) and its spatial derivatives


ε(r,t) = N
1∑

l=0

Dl,m(r′)χ (l,m)
ε (r,r′,t)|r ′=0, (14)

χ (l,m)
ε (r,r′,t) =

∫ t

−∞
dt ′eiε(t−t ′)/h̄f (l,m)(t ′)G(r,t ; r′,t ′), (15)

where N is a normalization factor. (Details on the normaliza-
tion of QQES wave functions can be found in Ref. [30].) The
differential operator Dl,m(r) has the following form:

D0,m(r) = δm,0, D1,0(r) =
√

3κ−1
1 ∂/∂z,

(16)
D1,±1(r) =

√
3/2κ−1

1 (∂/∂x ± i∂/∂y).

[Note that Eq. (14) corresponds to the QQES 
ε(r,t) with a
given angular momentum projection m, which is a conserved
quantum number for the case of a linearly polarized field F(t);
its value is given by that of the initial bound state, ψ0(r) or
ψ1(r).] The functions f (0,0)(t) and f (1,m)(t) in Eq. (15) are
periodic functions of time that satisfy equations obtained using
the prescribed boundary conditions for 
ε(r,t) at small r (rc �
r � κ−1

l ) for the case of a short-range potential U (r). These
conditions are similar to those for the SS TDER theory [17]∫


ε(r,t)Y ∗
lm(r̂)d�r

∼
∑

s

[r−l−1 + · · · + Bl(ε + sh̄ω) (rl + · · ·)]f (l,m)
s e−isωt ,

(17)

where f (l,m)
s are the Fourier coefficients of f (l,m)(t), while the

term Bl(E) is proportional to k2l+1 cot δl(k), so that it can be
parameterized similarly to Eq. (2)

(2l + 1)!!(2l − 1)!!Bl(E) = −1/al + rlk
2/2. (18)

Calculating the s-wave and p-wave components of the
QQES wave function (14) [using the Feynman form of
G(r,t ; r′,t ′) in terms of the classical action], and then matching
their small-r expansions to the boundary condition (17) for
l = 0 and 1, we obtain a coupled system of two homogeneous
integrodifferential equations, which together represent the
eigenvalue problem for the functions f (0,0)(t) and f (1,m)(t)
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and the quasienergy ε. As in the SS TDER model [17], instead
of solving these latter equations it is more convenient to solve
the equivalent system of linear homogeneous equations for the
Fourier coefficients f (l,m)

s of f (l,m)(t). The final results differ
for the cases |m| = 1 [corresponding to initially populated p

states ψ1(r) with m = ±1] and m = 0. In the latter case, the
results depend on the initial bound state [ψ0(r) or ψ1(r) with
m = 0].

For the QQESs with m = ±1, the term with l = 0 does not
contribute to the right-hand side on Eq. (14) (since the states
ψ0 and ψ1,m=±1 are not mixed by a linearly polarized field due
to electric dipole selection rules). Thus the matrix equation for
ε and the Fourier coefficients of f (1,m=±1)(t) coincides with
that for the single (ψ1,m=±1)-state TDER model [17]∑

s ′

[
M̄

(pp)
s,s ′ (ε) − R1(ε)δss ′

]
f

(1,±1)
s ′ = 0, (19)

whereR1(ε) is given by Eq. (4). Since only “even” coefficients
f

(1,±1)
s=2k enter Eq. (19) [17], we define M̄

(pp)
k,k′ ≡ M̄

(pp)
s=2k,s ′=2k′ ,

where the explicit form of M̄
(pp)
k,k′ in terms of integrals of Bessel

functions Jn(x) is given by Eq. (A1).
A close inspection of the coupled integrodifferential equa-

tions for f (0,0)(t) ≡ f (0)(t) and f (1,m=0)(t) ≡ f (1)(t) shows
that, for the case of an initial s-state ψ0(r), the function
f (0)(t) involves only even Fourier coefficients f

(0)
s=2k ≡ f

(0)
k

(which are normalized by the condition f
(0)
0 = 1), while the

Fourier coefficients of f (1)(t) are odd, f
(1)
s=2k+1 ≡ f

(1)
k . Using

these notations, the system of coupled linear homogeneous
equations for f

(0)
k , f

(1)
k , and ε is

R0(ε + 2kh̄ω)f (0)
k

=
∑
k′

M
(ss)
k,k′ (ε)f (0)

k′ + κ−1
1

∑
k′

M
(sp)
k,k′ (ε)f (1)

k′ ,

(20)
R1[ε + (2k + 1)h̄ω]f (1)

k

=
∑
k′

M
(pp)
k,k′ (ε + h̄ω)f (1)

k′ + κ1

∑
k′

M
(sp)
k′,k (ε)f (0)

k′ ,

where

M
(pp)
k,k′ (ε) = M̄

(pp)
k,k′ (ε) + M̂

(pp)
k,k′ (ε),

and the explicit forms of the matrix elements M
(ss)
k,k′ , M

(sp)
k,k′ , and

M̂
(pp)
k,k′ are given in the Appendix.
In contrast to the case of an initial s-state ψ0(r), for the case

of an initial p-state ψ1(r) with m = 0, the coefficients f (1)
s are

even, f
(1)
s=2k ≡ f

(1)
k [and can be normalized by the condition

f
(1)
0 = 1], while the coefficients f (0)

s are odd: f
(0)
s=2k−1 ≡ f

(0)
k .

It may be shown that the matrix equations for these coefficients
are given by the system of Eqs. (20) upon substituting there
ε → (ε − h̄ω).

The solution of Eq. (20) for the complex quasienergy
ε and the coefficients f

(l)
k completely specifies the QQES


ε(r,t) in Eq. (14) for the TS TDER model. This QQES

ε(r,t) may be used in different applications, such as above-
threshold ionization or HHG. Equations (14) and (15) show
that complete information on the effects of the potential U (r)
[which are described in our model by the scattering phases
δ0(k) and δ1(k)] enters the QQES 
ε(r,t) only through the

Fourier coefficients f (0)
s and f (1)

s , which therefore are the
basic ingredients of the TDER theory. The specific difference
between the SS and the TS TDER models is that the former
involves only the single set of coefficients f (0)

s or f (1,m)
s

(for a bound s or p state, respectively), with even index s,
while for the latter both the even and odd Fourier-coefficients
are nonzero. According to Eq. (17), these coefficients deter-
mine the population of Fourier harmonics 
sω(r) of the QQES
wave function 
ε(r,t)


sω(r) = 1

T

∫ T

0
eisωt
ε(r,t) dt, (21)

at small r , rc � r � κ−1
l , where the effects of the potential

U (r) are most important. Therefore, for the TS TDER model,
both the even (s = 2n) and odd (s = 2n + 1) QQES harmonics

sω(r) at small r are populated. This fact implies that the
contribution of the small-r region, r � κ−1

l , to the amplitudes
for electric dipole transitions involving an odd number of
photons [between QQES harmonics 
sω(r) with different s]
should be suppressed in the SS TDER model [for which the
Fourier coefficients f (l)

s are only even], whereas in the TS
TDER model they are not. In particular, for the HHG process
(in which the spontaneous emission of a harmonic photon
can be considered as an electric dipole transition between
QQES harmonics with s = 2n + 1 and s = 0), this qualitative
consideration implies that the amplitude of the N th harmonic
(N = 2n + 1) within the TS TDER theory can involve a
recombination amplitude that differs from the plane-wave
result that enters the HHG amplitude in the SS TDER model.
Moreover, one may expect that the coefficient f

(1)
s=N [or f

(0)
s=N ]

can give a significant contribution to the amplitude for the
N th harmonic for the case of an initial bound s-state ψ0(r) [or
p-state ψ1(r)].

C. Approximate results for the coefficients f (l)
s

A rigorous solution of the QQES problem even for our
simplified atomic model requires the solution of the eigenvalue
problem represented by the infinite system of linear Eqs. (20).
While an exact solution of this problem can be performed
only numerically, simple analytical approximations can be
obtained in two limiting cases: the weak field case and
the low-frequency field case. In the first case, perturbative
(in F ) expansions for the complex quasienergy ε and the
Fourier coefficients f (l)

s can be obtained for a sufficiently
weak field F(t) [i.e., such that ξ = up/(h̄ω) � 1, where
up = e2F 2/(4mω2) is the mean quiver energy of a free
electron in the field F(t)]. For both Brillouin-Wigner and
Rayleigh-Schrödinger formulations of perturbation theory, in
the TS TDER theory these expansions can be constructed
similarly to those for the SS TDER theory [18,30]. In the
second case, the field is assumed to have a sufficiently low
frequency [i.e., such that ξ � 1 and h̄ω � |E0|]. Moreover, in
the low-frequency limit, two levels of approximation for taking
into account the effects of the potential U (r) are possible, as
described below.
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1. Keldysh approximation

In this approximation the potential U (r) is taken into ac-
count only in the lowest nonvanishing order. More specifically,
it consists in (i) approximating the quasienergy ε by the energy
El of the initial bound state ψl(r), ε � El , and (ii) neglecting
all Fourier-coefficients f (0)

s and f (1)
s except f

(l)
s=0, that is,

ε = El, f
(l)
s=0 = 1. (22)

In this Keldysh approximation (KA) (22), the TS TDER results
for the QQESs therefore reduce to the KA results for the SS
TDER model involving only a single bound state ψl(r), either
ψ0(r) or ψ1(r). In particular, as was the case in the SS TDER
model [31], in the low-frequency tunneling limit the ionization
rate for the state ψl(r) calculated within the KA (22) coincides
with the Keldysh result for tunnel ionization [32], while the
HHG rates coincide with those obtained in the SFA.

2. Rescattering approximation

The lowest-order results for the Fourier coefficients f (0)
s

and f (1)
s , which are omitted in the KA (22), originate from

high-order effects of the potential U (r). For an initial bound
s-state, ψ0(r), approximate results for these coefficients can
be obtained by an iterative solution of Eq. (20), approximating
ε = E0 and considering the KA (22) as the zero iteration [i.e.,
substituting f

(0)
s=2k′ ≡ f

(0)
k′ = δ0,k′ and f

(1)
s=2k′+1 ≡ f

(1)
k′ = 0 on

the right-hand side in Eq. (20)]. As a result, the coefficients
f

(0)
k and f

(1)
k are approximated as follows:

f
(0)
0 = 1, f

(0)
k 
=0 = M

(ss)
k,0 (E0)

R0(E0 + 2kh̄ω)
,

(23)

f
(1)
k = κ1M

(sp)
0,k (E0)

R1[E0 + (2k + 1)h̄ω]
.

For an initial bound p-state ψ1(r), the coefficients f
(1)
s=2k ≡ f

(1)
k

and f
(0)
s=2k−1 ≡ f

(0)
k are given by

f
(1)
0 = 1, f

(1)
k 
=0 = M

(pp)
k,0 (E1)

R1(E1 + 2kh̄ω)
,

(24)

f
(0)
k = κ−1

1 M
(sp)
k,0 (E1 − h̄ω)

R0[E1 + (2k − 1)h̄ω]
.

Figure 1 demonstrates the high accuracy of the rescattering
approximation (RA). For the case of an initial s-state ψ0(r),
the values of the coefficients f (0)

s and f (1)
s with increasing

|s| as calculated in the RA (23) are compared in Fig. 1 with
the exact solutions of Eq. (20). The plateau-like structures in
the dependence of f (0)

s and f (1)
s on s for s > 0 are similar to

those for the SS TDER model [17,30]. In general, for both the
f (0)

s and the f (1)
s coefficients, the plateau onset and the plateau

cutoff values of s, so, and scut depend only on the energy El of
the initial bound state ψl(r)

s0 =
[ |El|

h̄ω

]
, scut =

[ |El| + 3.17up

h̄ω

]
, (25)

where [x] is the integer part of x. For values of s in the vicinity
of the plateau cutoff, Fig. 1 shows the excellent agreement of
the exact results for f (0)

s and f (1)
s with those obtained using

the RA (23).

s

|f(0
) s=

2k
|

0 25 50 75 100 125

10-8

10-6

10-4

10-2

100

(a)

s

|f(1
) s=

2k
+

1|
0 25 50 75 100 125

10-8

10-6

10-4

10-2

100

(b)

FIG. 1. (Color online) Comparison of rescattering approximation
(RA) and exact results for the absolute values of the Fourier
coefficients (a) f (0)

s and (b) f (1)
s of the TS TDER model QQES

corresponding to an initially occupied s-state ψ0(r) for the model
parameters |E0| = 12 eV, Cκ0 = 2, |E1| = 3 eV, and Cκ1 = 0.35 and
the laser parameters λ = 1600 nm and I = 1014 W/cm2. Circles
(joined by red lines): exact TS TDER results [according to Eq. (20)];
diamonds (joined by black lines): the RA results [Eq. (23)]. Vertical
dashed lines mark the positions of the plateau onset and cutoff so and
scut [Eq. (25)]. The red and black solid lines have been added to guide
the eye.

III. HHG AMPLITUDES AND RATES WITHIN
THE TS TDER THEORY

A. Exact TS TDER results

Using the rigorous formulation of Ref. [33] for the ampli-
tude of the N th harmonic χN (F,ω) in terms of the complex
quasienergy of a quantum system in two laser fields (i.e., an
intense driving laser field of frequency ω and a weak probe
laser field of frequency Nω), analytic results for χN (F,ω)
within the TS TDER theory can be obtained by generalizing
the similar derivation for χN (F,ω) within the SS TDER model
[34]. We find that the same results are obtained upon using the
definition for χN (F,ω) in terms of the Fourier component

χN (F,ω) = 1

T

∫ T

0
eiNωtez · d̃(t) dt, ez = F/F, (26)

of the dual dipole moment

d̃(t) = 〈
̃ε(r,t)|er|
ε(r,t)〉, (27)
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where 
ε(r,t) is the exact QQES wave function (14), and

̃ε(r,t) is its dual wave function [30], defined by


̃ε(r,t) ≡ 
∗
ε (r, − t)|m→−m. (28)

Since 
ε(r,t) [cf. Eq. (14)] contains two terms (with
l = 0 and 1) related to the ground (ψ0) and excited (ψ1)
states, the amplitude χN (F,ω) comprises four components
corresponding to contributions from ψ0 (χss

N ), ψ1 (χpp

N ),
and their associated cross terms (χsp

N and χ
ps

N ). For arbitrary
parameters F , ω, and |E0|, the exact analytic expressions
of these components are cumbersome since they involve
double summations over the Fourier coefficients f (0)

s and
f (1)

s (cf. similar, though simpler, results for the SS TDER
model in Ref. [34]). However, for a low-frequency field
(h̄ω � |El|) in the tunneling limit [γ = h̄ω/(|e|Fκ−1

l ) � 1,
where γ is the Keldysh parameter [32]], we find numerically
that the dominant contributions to χN (F,ω) stem from
fewer terms. Thus, for an initial bound s-state ψ0(r), the
dominant contributions originate from χss

N and the cross term
χ

sp

N

χN (F,ω) � χKA
N (F,ω) + χ̄N (F,ω), (29)

where χKA
N is the KA result [i.e., that obtained from the

QQES wave function (14) upon substituting there f (0)(t) = 1,
f (1)(t) = 0, and ε = E0]. This KA result originates from
the component χss

N and coincides with that in the SS TDER
theory for a single s state [34]

χKA
N (F,ω) = C0

∫ ∞

0

dτ

τ 3/2
e2iE0τ/(h̄ω)−iλ(τ )

×{j−(τ )J(N−1)/2[z(τ )]−ij+(τ )J(N+1)/2[z(τ )]},
(30)

where

j±(τ ) = sin τ sin(Nτ )

τ
− N sin[(N ± 1)τ ]

N ± 1
,

(31)

C0 = −iN/2 eC2
κ0

κ0N2

|E0|
h̄ω

√
up

πh̄ω
,

and z(τ ) and λ(τ ) are given by Eqs. (A5) and (A6).
The amplitude χ̄N (F,ω) originates from the cross term

χ
sp

N upon substituting therein f (0)
s = δs,0 and f (1)

s = f
(1)
N . This

amplitude describes the contribution of the excited p-state and
the p-wave continuum channel to the emission of the N th
harmonic by the active electron that is bound initially in the
ground s state. Its analytic form (approximating ε = E0) is

χ̄N (F,ω) = f
(1)
s=NDN (F,ω), (32)

where

DN (F,ω) = C1

∫ ∞

0

dτ

τ 3/2
e2i[E0/(h̄ω)+N/2]τ−iλ(τ )

×
[

up

Nh̄ω
{[j−(τ )ζ−(τ ) + j+(τ )ζ+(τ )]J0[z(τ )]

− i[j+(τ )ζ−(τ ) + j−(τ )ζ+(τ )]J1[z(τ )]}
− i

2
ζN (τ )J0[z(τ )]

]
, (33)

N (harmonic number)

R
at

e
(s

-1
)

25 50 75 100 125
10-5

10-4

10-3

10-2
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FIG. 2. (Color online) Comparison of exact TS TDER results
for HHG rates (circles joined by red lines) with those given by the
approximation (29) for χN (diamonds joined by black lines). The
atomic model and laser parameters are the same as in Fig. 1.

in which

ζN (τ ) = e−iNτ − sin Nτ

Nτ
,

C1 = −i1/2 eC2
κ0

κ1N

√
3|E0|
2πh̄ω

,

and the functions ζ±(τ ) are given by Eq. (A7).
In the high-energy region of the HHG plateau, the high

accuracy of the HHG rates RN

RN = �3

2πh̄c3
|χN (F,ω)|2, (34)

calculated using the approximation (29) for χN (F,ω), is shown
in Fig. 2 by comparison with exact numerical TS TDER results
for χN (F,ω) for an initial state ψ0(r).

B. Factorization of HHG amplitudes and rates
in the high-energy plateau region

Although the approximation (29) for the HHG amplitude
is accurate in the low-frequency limit, the exact expressions
for its two components (30) and (32) (which are valid for any
frequency) involve complicated integrals of Bessel functions.
Moreover, in general, the coefficient f

(1)
s=N in Eq. (32) can

be calculated only numerically. Approximate analytic results
for low frequencies (h̄ω � |E0|) can be obtained using the
quasiclassical approximation for HHG amplitudes in the
TDER theory that was developed in Ref. [34]. An analytic
result (in terms of the Airy function) for the KA amplitude
χKA

N (30) in this approximation was obtained in Ref. [14]. It
thus remains for us to analyze χ̄N (F,ω) in Eq. (32) [i.e., we
must estimate f

(1)
s=N and DN ].

The coefficients f (1)
s are highly sensitive to the field

amplitude F in the strong field regime and decrease ∼ F s

as F → 0 (cf. Ref. [30]). In contrast, DN is not: We find
numerically that for small ω the integral in Eq. (33) depends
only weakly on F and, as shown numerically in Fig. 3, this
integral may be approximated by its value at F = 0, which is
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Laser Intensity (1014W/cm2)

|D
N
|(

un
its

of
|e

|κ
0-1
)
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λ=1600nm

λ=800nm

x1.5

FIG. 3. (Color online) Comparison of the exact result (33) for the
absolute value of DN (F,ω) (solid lines) with the approximation (35)
(dashed lines), in units of |e|κ−1

0 = 1.065|e|aB . Black lines: results
for the 21st harmonic of a laser field with λ = 800 nm; red lines:
results for the 113th harmonic of a laser field with λ = 1600 nm
(with these latter results multiplied by a factor 1.5). The parameters
of the atomic model are the same as in Fig. 1.

easily calculated analytically

DN (F = 0,ω) = eκ0C
2
κ0√

3κ1

κ0 − 2ik

(κ0 − ik)2
, (35)

where k = √
2mE/h̄, E = Nh̄ω − |E0|. The origin of this

surprisingly weak dependence of DN (F,ω) on F becomes
clear upon evaluating the exact expression for χ̄N (F,ω) in
Eq. (32), which has the following form:

χ̄N (F,ω) = 〈

̃

(l=0)
0 (r)|ez|
(l=1)

Nω (r)
〉
, (36)

where 
̃
(l=0)
0 (r) [= 


(l=0)∗
0 (r)] and 


(l=1)
Nω (r) are Fourier

harmonics [cf. Eq. (21)] of constituents of the QQES 
ε(r,t)
in Eq. (14) corresponding to s (ψ0) and p (ψ1) states.
Additionally, in the expression for 


(l=1)
Nω (r) we take into

account only the term involving f
(1)
s=N , as in Eq. (32). To

estimate χ̄N (F,ω), we take into account only the s-wave and
p-wave components of 


(l=0)
0 (r) and 


(l=1)
Nω (r), which give

the dominant contributions to the dipole matrix element (36).
Moreover, we approximate these components neglecting laser-
induced corrections, which are small for F < F0, where F0 =√

8m|E0|3/(|e|h̄) = |e|aBκ3
0 . In this approximation, 


(l=0)
0 (r)

reduces to the ground state ψ0(r) in Eq. (6), while 

(l=1)
Nω (r)

takes the form



(l=1)
Nω (r) ≈ if

(1)
N Cκ0

√
κ0κ

−1
1 k2h

(1)
1 (kr)Y10(r̂). (37)

The analytic calculation of the matrix element in Eq. (36)
using ψ0(r) instead of 
̃

(l=0)
0 (r) and the approximation (37)

for 

(l=1)
Nω (r) reproduces the result (32) for χ̄N (F,ω) with

DN (F,ω) given by Eq. (35) once again.
To estimate analytically the odd Fourier coefficient f

(1)
s=2k+1

in Eq. (32) in the limit h̄ω � |E0|, we use the RA (23) and
the quasiclassical estimate for the matrix element M

(sp)
0,k (E0),

which can be derived by generalizing the techniques used to

estimate the even Fourier coefficients fs=2k in the SS TDER
theory (cf. Eq. (21) in Ref. [35])

M
(sp)
0,k (E0) = i

√
3mω4

2π2eh̄F

∑
n

√
2πih̄

S ′′(pn,t0)

×
∫ T

0
dt

ei(2k+1)ωt−i[S(pn,t)−S(pn,t0)]/h̄

|cos ωt − cos ωt0| (pn − pt ) ,

(38)

where pn = √
2m(E0 − up + nh̄ω)

pt = eF

ω
sin ωt, S ′′(pn,t0) = ∂2

∂t02
S(pn,t0),

and S(pn,t) is the classical action of an electron with
momentum pn = ezpn in the field F(t) = ezF cos ωt

S(pn,t) =
∫ t

[
(pn − ezpτ )2

2m
− E0

]
dτ.

The time t0 in Eq. (38) is that root of the saddle-point equation,
∂S(pn,t0)/∂t0 = 0, which has both a positive imaginary part
and the smallest value of Re t0 [35]. An approximate evaluation
of the sum and integral in Eq. (38), valid in the tunneling
limit (γ � 1), can be performed similarly to that for the KA
amplitude χKA

N in Ref. [14].
The result of these various estimations is the following

closed-form analytic expression for f
(1)
s=N in the RA:

f
(1)RA
s=N = −

√
3C2

κ0
ei
0

h̄ω

|E0|

√
F0

F̃
e−F0/(3F̃ )

× Ai(ξ )

ζ 1/3(vat�t)3/2

kκ1
√

aB

R1(E)
, (39)

where vat = e2/h̄, the phase 
0 is given by the classical
action of an electron moving in the field F(t) from the
moment of (tunnel) ionization ti = −0.45T up to the time
of recombination tr = 0.2T (for the explicit form of 
0 see
Ref. [14]); F̃ = F | cos ωti | � 0.951F is an effective static
electric field given by the instantaneous value of F(t) at the
moment of ionization; �t = tr − ti = 4.086ω−1 = 0.65T is
the return time of the electron for the shortest closed classical
trajectory in the field F(t) along which an electron with zero
initial momentum gains the maximum classical energy E (cl)

max
from the field F(t). The argument of the Airy function Ai(ξ )
in Eq. (39) is

ξ = E − Emax

ζ 1/3Eat
, ζ = δ

I

Iat
, (40)

where I = cF 2/(8π ), Iat = 3.51 × 1016 W/cm2, Eat =
27.21 eV, and Emax = E (cl)

max + �|E0|, where �|E0| is the
lowest-order quantum correction to E (cl)

max [14,36]. The energy
E (cl)

max and the dimensionless parameters � and δ can all
be expressed explicitly in terms of a single parameter, the
dimensionless return time, τ̃ = ω�t = 4.086 [37]

E (cl)
max = 4up sin2(τ̃ /2) ≈ 3.17up,

� = cot(τ̃ /2 − π/4) ≈ 0.324, (41)

δ = 1
4 (�2 + � − τ̃ ) cos τ̃ ≈ 0.536.
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Multiplying the result (39) for f
(1)RA
s=N by the expression

(35) for DN and adding the KA amplitude χKA
N (F,ω) in the

tunneling limit [the explicit form of which is given in Ref. [14];
it is very similar to the expression (39)], the final RA result for
the HHG amplitude (29) is

χRA
N (F,ω)

= −eC2
κ0

ei
0κ0
√

aB

h̄ω

|E0|

√
F0

F̃
e−F0/(3F̃ ) Ai(ξ )

ζ 1/3(vat�t)3/2

×
[

2k(
k2 + κ2

0

)2 + k

R1(E)

κ0 − 2ik

(κ0 − ik)2

]
. (42)

Equation (42) is the key result of this paper. It shows that
the term in square brackets is (up to a numerical factor) the
exact amplitude for photorecombination to the state ψ0(r)
given by Eq. (11). Our derivations show clearly the origin
of this amplitude in our quantum treatment of HHG: the first
plane-wave term in square brackets in Eq. (42) originates from
the KA part of the HHG amplitude (29) [i.e., it corresponds
to treating the potential U (r) in lowest nonvanishing order,
as in the SFA or SS TDER model], while the second
term [proportional to R−1

1 (E)] originates from higher-order
contributions of the potential U (r) [such as the distortion of
the p-wave continuum channel by the potential U (r) and the
existence of an excited p state] that are omitted in the KA (22)
and are described by the next-order (RA) corrections (23) to
the KA.

Substituting χRA
N (F,ω) from (42) into Eq. (34), we repro-

duce the factorization formula (1), in which σrec(E) is given
by Eqs. (9) and (11), while the explicit form of the EWP W (E)
is given by the product of ionization (I) and propagation (W)
factors, which are the same as in the SS TDER model [15]

W (E) = I(F̃ ,ω)W(E), (43)

I(F̃ ,ω) = κ0aBC2
κ0

γ̃ 2 F̃

πF0
e−2F0/(3F̃ ), (44)

W(E) = p

m

Ai2(ξ )

ζ 2/3(vat�t)3
, (45)

where γ̃ = h̄ω/(|e|F̃ κ−1
0 ) and p = √

2mE.
In Fig. 4 we present a comparison of the exact TS

TDER results for HHG rates with approximate RA and KA
results for the two-state model system (with |E0| = 12 eV,
Cκ0 = 2 and |E1| = 3 eV, Cκ1 = 0.35) for two sets of laser
parameters. In both cases one observes excellent agreement
between the exact and the RA results in the region of the
high-energy plateau cutoff and beyond. On the other hand,
the KA results, which neglect the p-wave scattering phase
δl=1(k) (or, equivalently, use the plane-wave results for the
photorecombination cross section), overestimate considerably
the exact results for the HHG rates. Since our factorized result
for HHG rates was derived in the tunneling limit, γ � 1, the
interval of its applicability for harmonic energies below the
plateau cutoff increases with decreasing Keldysh parameter
γ or, equivalently, with increasing ratio up/|E0| [= (2γ 2)−1].
This is confirmed by the results in Fig. 4, where γ = 0.5 and
0.25 for Figs. 4(a) and 4(b), respectively.
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FIG. 4. (Color online) Comparison of exact TS TDER theory
results for HHG rates with approximate RA and KA results in the
energy region of the HHG plateau cutoff for the same atomic model
and laser wavelength as in Fig. 1 for two different laser intensities: (a)
I = 1 × 1014 W/cm2 (up = 23.6 eV) and (b) I = 4 × 1014 W/cm2

(up = 94.4 eV). Circles (joined by red lines): exact TS TDER results;
diamonds (joined by black lines): RA results [Eq. (42)]; dashed
lines: KA results [which neglect the term proportional to R−1

1 (E)
in Eq. (42)]. Vertical dashed lines mark the classical cutoff position
at |E0| + 3.17up .

Finally, we note that the general results of the TS TDER
theory in Sec. II are equally applicable to the case of an initial
s or p state, while our derivations for the HHG amplitude and
rates in this Sec. III have been performed only for an initial
s state. These results are valid also for a negative scattering
length a1, in which case the bound p state does not exist. For
an initially populated bound p state with angular momentum
projection m = 0, all derivations are very similar and yield
the factorized result (1) for the HHG rates, in which the
photorecombination cross section σrec(E) to the bound p state
is given by the exact results (9) and (12) for the TS TDER
model.

IV. DISCUSSION AND CONCLUSION

In common analytic theories of HHG, such as the
Lewenstein et al. model [36] or the SFA within the S-matrix
theory [25], the structure of a particular atomic target is taken
into account only on the level of the ground-state wave function
of the active atomic electron. Following its ionization by
tunneling, the influence of the atomic potential U (r) on the
active electron’s subsequent motion (in accordance with the
well-known three-step HHG scenario [9,10]) is neglected (i.e.,
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the active electron in the laser-dressed continuum is treated
as free). This approximation is completely similar to that in
the Keldysh theory for tunnel ionization [32], in which case
the absence of a high-energy plateau in the energy spectra of
tunneling electrons results from neglecting atomic potential
effects in the continuum.

The SS TDER model [17] provides a more precise account
of the potential U (r). This model is oversimplified because
on the field-free level it assumes that the potential U (r)
supports only a single bound state with angular momentum
l, which is a realistic assumption only for a negative ion.
This bound state, however, dynamically interacts with the
continuum through a nonzero scattering phase in the l-wave
channel δl(k). As a result, this single-state model presents a rare
case (probably unique) of a self-consistent, three-dimensional,
exactly-solvable quantum model in strong laser-atom physics.
Moreover, this model predicts a number of qualitative features
of HHG and other strong field processes that are observable
not only for negative ions but also for neutral atoms. In
particular, the solution of the QQES problem for the SS
TDER model [which is nonperturbative in both U (r) and
the electron-laser interaction (13)] predicts the high-energy
plateau in above-threshold ionization (ATI). (The description
of this ATI plateau within the SFA requires an additional
(perturbative) account of the potential U (r) [25].) Use of the SS
TDER theory also allowed us to derive analytically a factorized
result [similar to Eq. (1)] for ATI rates in the high-energy part
of the ATI plateau; one of the factors is the exact differential
cross section for elastic electron scattering from the potential
U (r) in the l-wave channel [35].

However, none of the existing analytic theories of HHG
allows one to derive a factorized result for HHG rates
involving the exact (non-Born) result for the recombination
cross section σrec, thereby providing a theoretical justification
for the phenomenological factorization formula (1). Compared
to ATI, for HHG an additional difficulty in treating atomic
potential effects beyond the lowest nonvanishing order is that,
owing to dipole selection rules, σrec involves the phases δl±1(k)
of electron scattering from the potential U (r), where l is the
angular momentum of the active atomic electron in the initial
bound state. Therefore, the exact result for σrec, in principle,
cannot enter HHG rates either by treating U (r) perturbatively,
as in the improved SFA, or in the SS TDER theory, in which
the action of the potential U (r) on the continuum electron
is treated nonperturbatively only in a single l-wave channel
[i.e., the scattering phase δl(k) is nonzero, but δl±1(k) = 0]. To
overcome this deficiency of the SS TDER model and to account
more precisely for the effects of the potential U (r) in strong
field processes, in this paper we have formulated TDER theory
for the case of a potential U (r) supporting two bound states
with opposite parities (s and p) to ensure the laser-induced
electric-dipole coupling between the s- and p-wave continuum
channels in the presence of a laser field. This TS TDER theory
shows that the inclusion of an excited state (thus approximating
better the states of an electron in a neutral atom) and the
distortion of more than one partial-wave continuum channel
by the potential U (r) significantly modify the structure of the
Fourier harmonics 
sω(r) of the exact QQES wave function
as compared to the case of a single-level model. The most
significant difference is a nonzero population of two branches

of QQES harmonics 
sω(r) at small distances r (i.e., those
with even and odd s having, respectively, opposite spatial
parities). [In the SS TDER model, only QQES harmonics
with even s are populated at the origin [17], while for any
realistic atomic potential, of course, both even and odd QQES-
harmonics 
sω(r) are populated at small r .] Consequently, the
TS TDER HHG amplitude χN (F,ω) in the tunneling limit
can be approximated by a sum of two components having
very different origin: one originates from the QQES harmonic

Nω(r) taking into account the potential U (r) in the lowest
nonvanishing order (i.e., on the level of the ground-state wave
function) as in the SFA; the other originates from contributions
of the excited p-state and p-wave continuum channel to the
harmonic 
Nω(r) at small r . As we have shown, the proper
analytic evaluation of these two components in the tunneling
limit yields the result for their sum χN (F,ω) that involves, as
a factor, the exact TS TDER result for the photorecombination
amplitude. It is important to emphasize that our two-channel
modification of the SS TDER theory results only in the
modification of the photorecombination cross section, while
the EWP W (E) in Eq. (43) remains the same as in the SS TDER
theory [15] (i.e., it involves only the parameters |E0| and Cκ0 of
the initial bound state). Thus, our results in this paper explain
the weak sensitivity of the EWP W (E) in Eq. (1) to the details
of the atomic structure, as has been found experimentally and
in numerical simulations [11–13].

To conclude, we have shown theoretically that, in the
tunneling limit, HHG rates within the TS TDER model indeed
have the form (1) with the exact photorecombination cross
section σrec. Our results are valid for harmonics with energies
in the region of the HHG plateau cutoff and beyond, which
are precisely the ones used to produce attosecond pulses.
Our model considerations show that, with a proper account
of excited and continuum states of the electron in the potential
U (r), the parametrization (1) can be derived analytically, by
estimating the exact quantum results for the HHG amplitude.
Therefore, it is reasonable to expect that, in general (in
the tunneling limit), atomic structure effects on HHG with
harmonic energies around and at the plateau cutoff are also
incorporated within a single field-free atomic parameter σrec.
Thus the results in this paper confirm our analytic expression
[15] of the three-step scenario for HHG [9,10] involving the
exact, atom-specific photorecombination cross section and
explain why the phenomenological parametrization (1) is in
excellent agreement with both experimental and numerical
data. Finally, we note that the laser frequency ω in this
paper was assumed to be nonresonant to the transition
between the ground and excited states. Another advantage
of the TS TDER theory, not discussed in this paper, is the
possibility of an analytic description of a number of qualitative
features in resonant HHG processes, which will be published
elsewhere.
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APPENDIX: EXPLICIT FORM OF THE MATRIX
ELEMENTS IN Eqs. (19) AND (20)

The matrix elements that appear in Eqs. (19) and (20) have
the following explicit forms:

M̄
(pp)
k,k′ (ε)

= − i

2
C

∫ ∞

0
dτ

e2iε̃kk′ τ

τ 5/2
{e−iλ(τ )Jk−k′[z(τ )] − δk,k′ }, (A1)

M
(ss)
k,k′ (ε)

= κ
2C
3

∫ ∞

0
dτ

e2iε̃kk′ τ

τ 3/2
{e−iλ(τ )Jk−k′[z(τ )] − δk,k′ }, (A2)

M
(sp)
k,k′ (ε)=κ

√
up

3h̄ω
C

∫ ∞

0
dτ

ei[2ε̃kk′ +1]τ−iλ(τ )

τ 3/2

×{ζ−(τ )Jk−k′[z(τ )] + iζ+(τ )Jk−k′−1[z(τ )]} ,

(A3)

M̂
(pp)
k,k′ (ε) = 2

up

h̄ω
C

∫ ∞

0
dτ

e2iε̃kk′ τ−iλ(τ )

τ 3/2

×{v−(τ )Jk−k′[z(τ )] + iv+(τ )J ′
k−k′[z(τ )]}, (A4)

where the following notations are used:

z(τ ) = 2up

h̄ω
sin τ

(
cos τ − sin τ

τ

)
, (A5)

λ(τ ) = 2up

h̄ω

(
τ − sin2 τ

τ

)
, (A6)

ζ±(τ ) = e±iτ − sin τ

τ
, (A7)

v±(τ ) =
(

cos τ − sin τ

τ

)2

± sin2 τ , (A8)

ε̃kk′ = ε

h̄ω
+ k + k′, C = 3 ik−k′

κ
3
√

4πi
, κ =

√
h̄

mω
. (A9)
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