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Photoassociation of a cold-atom-molecule pair. II. Second-order perturbation approach
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The electrostatic interaction between an excited atom and a diatomic ground-state molecule in an arbitrary
rovibrational level at large mutual separations is investigated with a general second-order perturbation theory, in
the perspective of modeling the photoassociation between cold atoms and molecules. We find that the combination
of quadrupole-quadrupole and van der Waals interactions competes with the rotational energy of the dimer,
limiting the range of validity of the perturbative approach to distances larger than 100 Bohr radii. Numerical
results are given for the long-range interaction between Cs and Cs2, showing that the photoassociation is probably
efficient for any Cs2 rotational energy.
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I. INTRODUCTION

In a recent paper (hereafter referred to as paper I) [1]
we investigated the electrostatic interaction between an atom
and a diatomic molecule at large mutual separations. This
kind of study is particularly relevant in the context of the
amazing development of research on ultracold quantum gases,
i.e., when the kinetic energy of the relative motion of the
particles inside the gas is equivalent to a temperature far below
1 K. Many enlightening review papers are available in the
scientific literature, such as the most recent ones [2–4] devoted
to ultracold molecular gases, which is our main purpose.
Motivations and applications of such researches are thoroughly
discussed in these reviews, and extensive bibliography can be
found there, that we will not repeat in the present paper. Briefly,
dilute atomic and molecular gases at ultracold temperatures
exhibit pure quantum effects, as their dynamics is sensitive to
quantum resonances and quantum statistics leading to Bose
or Fermi degeneracy. Ultracold gases exhibit unique physical
conditions for high-precision measurements related to the limit
of validity of fundamental theories like the Standard Model or
for quantum simulation of condensed matter phases such as
superfluidity or superconductivity.

At such a low-energy regime, the relative motion of the
particles inside the gas is controlled by their weak mutual
interactions at large distance R, primarily induced by electro-
static forces described by a multipolar expansion in R−n terms.
For instance, it is well known that spin-free or rotationless
particles in their ground state interact mainly through van der
Waals potentials varying as C6/R

6 resulting from a second-
order perturbation treatment of the dipole-dipole interaction.
Calculations of the long-range dispersion coefficients C6 for
alkali-metal or alkaline-earth-metal atoms—which represent
the species of choice for ultracold gases—have nowadays
reached an unprecedented accuracy [5,6] and represent an
invaluable input for interpreting experiments. First-order terms
may become dominant when one atom or both atoms are
excited, resulting into interactions varying as R−3 [7] or R−5

[8] for dipole-dipole and quadrupole-quadrupole interactions,
respectively.

*maxence.lepers@u-psud.fr

In principle, such calculations can be easily extended to
the interaction between atoms and molecules with internal
rotation. However, most previously published studies have
been restricted to the situation where molecules are fixed in
space [9,10]. A recent study actually treated the van der Waals
interaction between two identical ground-state molecules in a
given rotational level [11] using the second-order perturbation
theory. In paper I, we were interested in the interaction
between an excited atom and a ground-state molecule in
a rotational level, governed by a first-order quadrupole-
quadrupole term varying as R−5, that we evaluated through
first-order degenerate perturbation theory. We demonstrated
that this term competes with the rotational energy of the
dimer, so that avoided crossings, and possibly long-range
wells, could be expected in the long-range potential curves
of the atom-dimer complex. Such patterns are relevant in the
perspective of future studies aiming at associating an ultracold
atom-molecule pair using laser light (photoassociation [PA])
to create stable ultracold triatomic molecules, according, for
instance, to the reaction

Cs(62P ) + Cs2(X1�+
g ) → Cs∗

3 → Cs3 + photon. (1)

In the present work, we extend our treatment to the second
order of the perturbation expansion, to determine the next
term varying as R−6, which is expected to compete with
the R−5 term when R decreases. As in paper I, we illustrate
our development for the case of an alkali-metal ground-state
X1�+

g molecule in an arbitrary rotational level j with an
alkali-metal atom excited to the n2P electronic level, but it can
be easily generalized to arbitrary species. In Sec. II we first
recall the general expression for the long-range multipolar
expansion and the expression of the C6 coefficients in the
case of the van der Waals interaction between an atom and
a molecule, and we relate these quantities to the dipole
polarizabilities in imaginary frequencies, which are evaluated
in Sec. III. Potential curves for the long-range interaction
between an excited cesium atom and a ground-state Cs2

molecule are displayed in Sec. IV before concluding remarks
and perspectives (Sec. V). Atomic units (a.u.) for distances
(1 a.u. = 0.0529177 nm) and for energies (1 a.u. =
219474.63137 cm−1) will be used throughout the paper, except
otherwise stated.
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II. EXPRESSION OF THE VAN DER WAALS
INTERACTION

We first recall briefly the notation used in paper I. The
electrostatic potential energy between two charge distributions
A (the dimer) and B (the atom) at large distance R (i.e., beyond
the LeRoy radius [12]) is expressed as the usual multipolar
expansion

V̂AB(R) =
+∞∑

LA,LB=0

L<∑
M=−L<

1

R1+LA+LB

× fLALBMQ̂M
LA

(r̂A)Q̂−M
LB

(r̂B), (2)

where Q̂M
LX

(r̂X) is the operator associated with the 2LX pole
of charge distribution X (X = A or B), expressed in the
coordinate system with the origin at the center of mass
of X

Q̂M
LX

(r̂X) =
√

4π

2LX + 1

∑
i∈X

qi r̂
LX

i YM
LX

(θ̂i ,φ̂i), (3)

where

fLALBM = (−1)LB (LA + LB)!√
(LA + M)!(LA − M)!

× 1√
(LB + M)!(LB − M)!

(4)

and L< is the minimum of LA and LB . The Z quantization
axis for the projections ±M in the above equations is oriented
from A to B, yielding the (−1)LB factor in Eq. (4). We define
two body-fixed coordinate systems (CS) displayed in Fig. 1:
the dimer CS (or D-CS) with axes XA,YA,ZA, and the trimer
CS (or T-CS) with axes X,Y,Z. The T-CS is deduced from the
D-CS by a rotation with an angle δ around the Y axis. The
T-CS is related to the space-fixed coordinate system (x̃ỹz̃) by
the usual Euler angles (α,β,γ ).

Cs

Cs

Cs

Z

X

Z
A

X
A

δ

)

FIG. 1. (Color online) The dimer [XAYAZA] (D-CS), and trimer
[XYZ] (T-CS) coordinate systems. The ZA axis is along the dimer
axis, while Z is oriented from the center of mass of the dimer toward
the atom B. The Y and YA axes coincide and point into the plane of
the figure. The T-CS is deduced from the D-CS by a rotation with an
angle δ about the Y axis. The Euler angles (α,β,γ ) are not represented
here.

The dimer is assumed in an arbitrary vibrational |vd〉 and
rotational state |j 〉 of its electronic ground state |X1�+

g 〉.
The atom B is chosen with a single outer electron being
excited to the p state |n,	 = 1〉. The projections mj and
λ of j and 	 are defined with respect to the Z axis. The
energy origin corresponds to an infinite separation between
the atom and the dimer. The first-order perturbation theory
yields the quadrupole-quadrupole energies with zeroth-order
wave functions that can be written as a linear combination of
the various |mj,λ〉 substates of the complex∣∣�0

0

〉 =
∑
mj λ

cmj λ|mj,λ〉, (5)

where cmj λ are real. The quantity mJ = mj + λ is the
projection of the total angular momentum J on the trimer
axis, which is the only strictly good quantum number of the
problem. In the following, we will not refer to the values of J ,
as the rotation of the trimer is not introduced. Therefore mJ is
also conserved.

The C6 or van der Waals coefficient comes from dipole-
dipole interaction whose expression V̂ dd

AB(R) is obtained by
setting LA = LB = 1 in Eq. (2):

V̂ dd
AB(R) = − 2

R3

1∑
M=−1

Q̂M
1 (r̂A)Q̂−M

1 (r̂B)

(1 + M)!(1 − M)!
. (6)

As the permanent dipole of both the atom and the dimer
are zero for any states of the atom and the molecule, the
(nondegenerate) second-order perturbation theory is used to
obtain the related correction written as C6/R

6 with

C6 = −4
∑
a,b �=0

1(
E0

a − E0
A0

) + (
E0

b − E0
B0

)

×
1∑

M=−1

〈
�0

A0

∣∣Q̂M
1

∣∣�0
a

〉 〈
�0

B0

∣∣Q̂−M
1

∣∣�0
b

〉
(1 + M)!(1 − M)!

×
1∑

M ′=−1

〈
�0

a

∣∣Q̂−M ′
1

∣∣�0
A0

〉 〈
�0

b

∣∣Q̂M ′
1

∣∣�0
B0

〉
(1 + M ′)!(1 − M ′)!

. (7)

For a given |�0
0〉, the corresponding C6 coefficient can be

expanded as a linear combination of crossed terms

C6 =
∑
mj1 λ1

∑
mj2 λ2

cmj1 λ1
cmj2 λ2C

cr
6 , (8)

where the crossed coefficients Ccr
6 are

Ccr
6 = −4

∑
a,b

∑
M,M ′

1(
E0

a − E0
Xvdj

) + (
E0

b − E0
n	

)
×

〈
Xvdjmj1

∣∣Q̂M
1

∣∣�0
a

〉 〈
n	λ1

∣∣Q̂−M
1

∣∣�0
b

〉
(1 + M)!(1 − M)!

×
〈
�0

a

∣∣Q̂−M ′
1

∣∣Xvdjmj2

〉 〈
�0

b

∣∣Q̂M ′
1

∣∣n	λ2
〉

(1 + M ′)!(1 − M ′)!
. (9)

The summation is performed over all possible states �0
a and

�0
b of the A and B systems.
With the approach of imaginary frequencies dipole polar-

izabilities (see, e.g., Ref. [13]), the sum in Eq. (9) can be
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factorized into separated contributions from A and B. For this
purpose, we use the identity

1

|x| + |y| = 2

π

∫ +∞

0
dω

|x||y|
(x2 + ω2) (y2 + ω2)

(10)

to transform the first term of Eq. (9), with |x| = E0
a −

E0
Xvdj and |y| = E0

b − E0
n	. This approach is applicable

if E0
a − E0

Xvdj > 0 and E0
b − E0

n	 > 0. This is always the
case for the dimer if it is in its ground rovibronic state.
Moreover, if the dimer is homonuclear, radiative transitions
between rovibrational levels belonging to the same elec-
tronic state are forbidden, so that the identity still holds
for any rovibrational level of the X1�+

g state. In contrast,
atom B is in its first electronically excited state. Therefore,
taking cesium as an example, Eq. (10) is correct for all
transitions, except 62P → 62S, for which E0

b − E0
n	 < 0. In

the latter case, a similar factorization can be performed,
by setting |y| = −E0

b + E0
n	, and by using the following

identity:

1

|x| − |y| = − 1

|x| + |y| + 2|x|
x2 − y2

= 2

π

∫ +∞

0
dω

xy

(x2 + ω2) (y2 + ω2)
+ 2x

x2 − y2
.

(11)

Inserting Eqs. (10) and (11) into Eq. (9), and following
Ref. [14], we obtain

Ccr
6 = −

1∑
M=−1

1∑
M ′=−1

4

(1 + M)!(1 − M)!(1 + M ′)!(1 − M ′)!

×
[

1

2π

∫ +∞

0
dωα

mj1 mj2
MM ′ (iω)αλ1λ2

−M−M ′ (iω)

+
∑

b



( − �E0

b

)
α

mj1 mj2
MM ′

(
ω = �E0

b

)

×〈n	λ1|Q̂−M
1

∣∣�0
b

〉 〈
�0

b

∣∣Q̂M ′
1 |n	λ2〉

]
, (12)

where �E0
b = E0

b − E0
n	, and 
(x) is the Heaviside function,

equal to 1 for each downward transition and 0 otherwise. The
expression of dipole polarizabilities is generalized to arbitrary
frequencies (real or imaginary) according to

α
mj1 mj2
MM ′ (z) = 2(−1)M

∑
a

(
E0

a − E0
Xvdj

)
(
E0

a − E0
Xvdj

)2 − z2

× 〈
Xvdjmj1

∣∣Q̂M
1

∣∣�0
a

〉
,
〈
�0

a

∣∣Q̂−M ′
1

∣∣Xvdjmj2

〉
(13)

α
λ1λ2
−M−M ′ (z) = 2(−1)M

∑
b

(
E0

b − E0
n	

)
(
E0

b − E0
n	

)2 − z2

×〈n	λ1|Q̂−M
1

∣∣�0
b

〉 〈
�0

b

∣∣Q̂M ′
1 |n	λ2〉, (14)

where z can be real or imaginary. In Eq. (12) the first
term inside the brackets is the well-known product of the
polarizabilities at imaginary frequencies of the molecular
|Xvdj 〉 and atomic |n	〉 states (the corresponding labels are
omitted for clarity sake). In the second term appears the

polarizability of the dimer at the real frequency of each
downward transition of the atom. We note that if the dimer
polarizability is negative and significantly large, the second
term in the square brackets can become larger in magnitude
than the first term and, therefore, can turn the C6 sign to
positive.

III. CALCULATION OF POLARIZABILITIES

A. The polarizability of the dimer

Molecular polarizabilities are most often calculated ig-
noring rotation, so that it is wise to separate it in the
equations of Sec. II. We start by expressing the dipole
matrix element 〈X�vdjmj |Q̂M

1 |�0
a〉 of Eq. (13) between the

states defined with respect to the T-CS, in terms of matrix
elements between states defined in the D-CS. For clarity, we
explicitly write the dimer quantum number �, which is the
projection of the electronic angular momentum on the ZA axis.
Specifying as well all the relevant quantum numbers according
to |�0

a〉 = |X′�′v′
dj

′m′
j 〉, we have

〈X�vdjmj |Q̂M
1

∣∣�0
a

〉
=

∑
µ

〈X�vdjmj |d1
Mµ(δ)q̂µ

1 |X′�′v′
dj

′m′
j 〉

=
∑

µ

〈jmj |d1
Mµ|j ′m′

j 〉〈X�vd |q̂µ

1 |X′�′v′
d

〉
, (15)

where the quantities q̂
µ

1 are the components of the electric
dipole moment defined with respect to the D-CS. The index
µ is either 0 for � → � transitions (� = �′ = 0), or ±1 for
� → � transitions. In the T-CS the rotational wave function
of the dimer is proportional to d

j

mj 0 and to d
j

mj ±1, for � and

� states, respectively. Using the properties of the d
j
µν rotation

matrices [15], we find

〈jmj |d1
Mµ|j ′m′

j 〉 =
√

2j ′ + 1

2j + 1
C

jmj

1Mj ′m′
j
C

j0
1µj ′−µ, (16)

where the C
jmj

1Mj ′m′
j

and C
j0
1µj ′−µ are Clebsch-Gordan coeffi-

cients. If in Eq. (13) we neglect the rotational part of the 0th

order energy (only low rotational levels are relevant for the
cold temperature domain), i.e.,

E0
Xvdj = E0

Xvd
+ Bvd

j (j + 1) ≈ E0
Xvd

, (17)

we identify the exact expressions of the parallel polarizability
α‖ and of the perpendicular polarizability α⊥ with respect to the
ZA axis, for µ = 0 and ±1, respectively. Therefore, Eq. (13)
becomes

α
mj1 mj2
MM ′ (z) ≈

∑
j ′,m′

j

2j + 1

2j ′ + 1

[(
C

j ′0
10j0

)2
α‖(z)

+ 2
(
C

j ′1
11j0

)2
α⊥(z)

]
C

j ′m′
j

1−Mjmj1
C

j ′m′
j

1−M ′jmj2
, (18)

where we used the identity [15]

C
cγ

aαbβ = (−1)a−α

√
2c + 1

2b + 1
C

bβ
cγ a−α (19)
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in order to put all the primes in the upper indices. The
dependence on the rotational state of the dimer is restricted
to the coefficients of the vibronic polarizabilities of the dimer.
We note that Eq. (18) is valid for real, imaginary, and zero
frequencies (i.e., for static polarizabilities).

B. The valence contribution to the atomic polarizability

We perform a similar development for the atom, in order to
separate the radial and angular parts of the matrix elements of
the dipole moment. By writing explicitly |�0

b〉 = |n′	′λ′〉 and
by using Eq. (19), we rewrite the dipole matrix elements as

〈n	λ|Q̂−M
1 |n′	′λ′〉 = (−1)M

√
2	 + 1

2	′ + 1
C	′0

10	0C
	′λ′
1M	λrn	n′	′ ,

(20)

where rn	n′	′ = 〈
n	 |r| n′	′〉 is the matrix element of the valence

electron radial coordinate. Equation (14) becomes

α
λ1λ2
−M−M ′ (z) = 2

∑
n′,	′

(
E0

n′	′ − E0
n	

)
(
E0

n′	′ − E0
n	

)2 − z2

× r2
n	n′	′

2	 + 1

2	′ + 1

(
C	′0

10	0

)2

×
∑
λ′

C	′λ′
1M	λ1

C	′λ′
1M ′	λ2

. (21)

The index 	′ above takes values corresponding to dipole-
allowed transitions, i.e., 	′ = 0,2 in the present case of
a Cs(62P ) atom, and n′ for all the relevant atomic
levels.

The similarity between Eqs. (18) and (21) confirms the
equivalence in the formalism between the rotational angular
momentum of the dimer and the electronic orbital momen-
tum of the atom, which makes the generalization to more
complicated cases such as molecule-molecule long-range
interactions quite straightforward. However, it is not possible
to express Eq. (21) as a function of the sole polarizability
of the atomic n	 level. For instance, if 	 = 1, M ′ = M , and
λ2 = λ1, the dipole polarizability α

λ1λ1
MM (z) of the sublevel

nPλ1 contains angular factors that are different for P → S

and P → D transitions [14]. In the usual definition of the
polarizability, an average is made over all the sublevels λ1

leading to the disappearance of the angular factors, which
is not the case here. Therefore, we introduce state-to-state
polarizabilities αn	n′	′ associated to the different n	 → n′	′
transitions

αn	n′	′(z) = 2

3

(
E0

n′	′ − E0
n	

)
(
E0

n′	′ − E0
n	

)2 − z2
r2
n	n′	′

(
C	′0

10	0

)2
, (22)

so that Eq. (21) becomes

α
λ1λ2
−M−M ′ (z) = 3

∑
	′={	−1,	+1}

2	 + 1

2	′ + 1

∑
n′

αn	n′	′(z)

×
∑
λ′

C	′λ′
1M	λ1

C	′λ′
1M ′	λ2

. (23)

The state-to-state polarizabilities obey the property∑
n′	′ αn	n′	′ ≈ αn	, with αn	 being the actual (isotropic) atomic

polarizability of the level n	. This identity is only approximate
as the effect of core electrons have been neglected so far.

C. The core contribution to the atomic polarizability

Following Ref. [6] we assume that the contribution of the
core electrons can be treated as an additional correction αc

to the total polarizability ᾱn	, independent of the atomic state
|n	〉:

ᾱn	 =
∑
n′	′

αn	n′	′ + αc. (24)

In our numerical calculations, αc is obtained in the following
way. First, the contribution of the valence electron is evaluated
using tabulated values of dipole moments for transitions from
the 62S state of cesium. The result is then compared to the
polarizability of Ref. [6], which accounts for the ionic core
contribution, and the difference between our result and that of
Ref. [6] is then attributed to αc.

It is not straightforward to see that the core polarizability
brings a simple additive contribution to the C6 coefficients. As
inner shells have different angular quantum numbers, we first
consider only the electrons of a given closed inner shell, e.g.,
4d for cesium. A sum over all the closed shells will be taken at
the end. We note nc, 	c, ki , σi the principal, orbital, azimuthal,
and spin quantum numbers of the ith electron of the shell. The
indexes nc and 	c are identical for the 2 (2	c + 1) electrons,
whereas ki varies from −	c to +	c, and σi = ± 1

2 . Since the
dipole operator is monoelectronic, the ionic core brings to the
C6 coefficient an additional term Cc

6 which is the sum of all
contributions C

nclc
6 of every shell nc,lc

C
nclc
6 =

∑
i∈shell

C
nclc
6 (i), (25)

where the general expression for C
nclc
6 (i) is

C
nclc
6 (i) = −4

∑
a,b �=0

∑
M,M ′

1(
E0

a − E0
A0

) + (
E0

b − E0
B0

)
×

〈
�0

A0

∣∣Q̂M
1

∣∣�0
a

〉 〈
�0

B0

∣∣Q̂−M
1 (i)

∣∣�0
bi

〉
(1 + M)!(1 − M)!

×
〈
�0

a

∣∣Q̂−M ′
1

∣∣�0
A0

〉 〈
�0

bi

∣∣Q̂M ′
1 (i)

∣∣�0
B0

〉
(1 + M ′)!(1 − M ′)!

. (26)

In Eq. (26), the atomic states are characterized by independent
electrons

∣∣�0
B0

〉 = ∣∣nc	c, − 	c, − 1
2

〉 × · · · |nc	c,ki,σi〉
× · · · × ∣∣nc	c,	c,

1
2

〉|n	λ〉, (27)

and similarly |�0
bi〉 = |nc	c, − 	c, − 1

2 〉 . . . |n′
c	

′
c,k

′
i ,σi〉 . . .

|n′
c	

′
c,	

′
c,

1
2 〉|n	λ〉, and the molecular states, |�0

A0〉 and |�0
a〉,

have the same quantum numbers as previously. The states
|�0

B0〉 and |�0
bi〉 are antisymmetric with respect to the
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permutation of two electrons. However, for simplicity, they
are written here as simple products of the individual electronic
states, which does not modify the value of C

nclc
6 . In Eq. (26),

the energy E0
b is independent on the index i, since i makes

a distinction only between different projection of orbital and
spin angular momenta.

Unlike the valence electron, as the core is not affected by
the C5 coefficient, there is no crossed term in the calculation
of C

nclc
6 (i). As a consequence, the Wigner-Eckart theorem

imposes m′
j + M = mj and m′

j + M ′ = mj , as well as k′
i −

M = ki and k′
i + M ′ = ki , hence the condition M ′ = M . So

the double summation of Eq. (26) reduces to a single one
over M . Similarly to Eq. (12), we can factorize Eq. (26)
with polarizability-like quantities. Because there is no allowed
transitions from the last inner shell of the atom to lower-energy
states, that factorization does not contain any additional term
due to the excited state. It yields

C
nclc
6 = − 2

π

1∑
M=−1

1

[(1 + M)!(1 − M)!]2

×
∫ +∞

0
dωα

mj mj

MM (iω)αnclc
−M−M (iω), (28)

where α
mj mj

MM is given by Eq. (18) and α
nclc
−M−M is similar to

Eq. (21):

α
nclc
−M−M (iω) = 2

∑
n′

c	
′
c

E0
n′

c	
′
c
− E0

nc	c(
E0

n′
c	

′
c
− E0

nc	c

)2 + ω2

× 2	c + 1

2	′
c + 1

(
C

	′
c0

10	c0

)2(
rnc	cn′

c	
′
c

)2

×
∑

kk′σσ ′

(
C

	′
ck

′

1M	ck

)2
δσσ ′ . (29)

In Eq. (29), the sum over k and σ runs over all the core
electrons i. The sum over the two different spin projections
for each orbital gives factor of 2. The sum of the Clebsch-
Gordan coefficients yields 2	′

c+1
3 . Therefore, the angular

part of the dipole moment disappears, and αc
−M−M finally

reads

α
nclc
−M−M (iω) = 4

∑
n′

c	
′
c

E0
n′

c	
′
c
− E0

nc	c(
E0

n′
c	

′
c
− E0

nc	c

)2 + ω2

× 2	c + 1

3

(
C

	′
c0

10	c0

)2(
rnc	cn′

c	
′
c

)2
. (30)

As one can see from the above expression, it is not necessary to
separate different series of transitions 	c → 	′

c, and we obtain
a meaningful polarizability. Finally, we can extend this results
to all inner shells that gives the core polarizability:

αc(iω) = 4
∑

nc	cn′
c	

′
c

E0
n′

c	
′
c
− E0

nc	c(
E0

n′
c	

′
c
− E0

nc	c

)2 + ω2

× 2	c + 1

3

(
C

	′
c0

10	c0

)2(
rnc	cn′

c	
′
c

)2
, (31)

and the core contribution Cc
6 to the C6 coefficient:

Cc
6 = − 2

π

∑
M

1

[(1 + M)!(1 − M)!]2

×
∑
j ′mj ′

2j + 1

2j ′ + 1

(
C

j ′m′
j

1Mjmj

)2
∫

dωαc(iω)

×[(
C

j ′0
10j0

)2
α‖(iω) + 2

(
C

j ′1
11j0

)2
α⊥(iω)

]
. (32)

With the approximations above, we obtain an additional term
that depends on the physical polarizabilities of the atomic
core and the molecule, and in which the rotation of the dimer
appears explicitly. As all the factors in Eq. (32) are positive,
Cc

6 is negative, and, thus, it makes the interaction between the
atom and the dimer more attractive (or less repulsive).

D. General expression for C6

We summarize all the results of the previous paragraphs.
We recall that the C6 coefficients are calculated for each
eigenvector of the quadrupole-quadrupole operator. Each
eigenvector |�0

0〉 is a linear combination of states |mj,λ〉 [see
Eq. (5)] with mj + λ being constant. For a given |�0

0〉, the
general expression for C6 is

C6 = −3
∑
mj1 λ1

∑
mj2 λ2

∑
MM ′

∑
j ′m′

j

∑
	′λ′

cmj1 λ1cmj2 λ2

(1 + M)!(1 − M)!(1 + M ′)!(1 − M ′)!
2j + 1

2j ′ + 1
C

j ′m′
j

1−Mjmj1
C

j ′m′
j

1−M ′jmj2

2	 + 1

2	′ + 1
C	′λ′

1M	λ1
C	′λ′

1M ′	λ2

×
{

2

π

∫ +∞

0
dω

[(
C

j ′0
10j0

)2
α‖(iω) + 2

(
C

j ′1
11j0

)2
α⊥(iω)

]
α		′(iω) + 4

∑
n′


(−�E0
n′	′,n	)

[(
C

j ′0
10j0

)2
α‖

(
�E0

n′	′,n	

)

+ 2
(
C

j ′1
11j0

)2
α⊥

(
�E0

n′	′,n	

)]
(µn′	′,n	)2

}
− 2

π

∑
mj1 λ1

∑
M

∑
j ′m′

j

c2
mj1 λ1

[(1 + M)!(1 − M)!]2

2j + 1

2j ′ + 1

(
C

j ′m′
j

1Mjmj1

)2

×
∫ +∞

0
dω

[(
C

j ′0
10j0

)2
α‖(iω) + 2

(
C

j ′1
11j0

)2
α⊥(iω)

]
αc(iω), (33)
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where

µn′	′,n	 = 1√
3
rn′	′,n	C

	′0
10	0 (34)

is the atomic transition dipole moment, 
(x) is Heaviside’s
function, and �E0

n′	′,n	 = E0
n′	′ − E0

n	.

IV. LONG-RANGE POTENTIAL CURVES
FOR THE CS-CS2 COMPLEX

The atomic polarizability of Cs(62P ) comes from the
accurate calculations of transition dipole moments in Ref. [16],
averaged over the 6P1/2 and 6P3/2 levels. The atomic transition
energies are extracted from Ref. [17], and averaged over
fine-structure levels. In Eq. (22), the summation is restricted
to n′ = 7 to 10 for 	′ = 0 and n′ = 5 to 10 for 	′ = 2.
We use a mixture of experimental and theoretical molecular
data to compute the molecular polarizabilities at imaginary
frequencies, which involve summation over all vibrational
levels of all electronic states of Cs2. The Cs2 ground-state
potential curve is taken from Ref. [18], and the one of the
B1�u(6s + 6p) state from Ref. [19]. The A1�+

u (6s + 6p) and
b3�u(6s + 6p) and their spin-orbit coupling are those fitted
to reproduce the data of Ref. [20]. All the other electronic
states come from quantum chemistry calculations performed
in our group according to the method described in Ref. [21] as
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FIG. 2. (Color online) Calculated dipole polarizabilities in imag-
inary frequencies (a) for Cs2(X1�+

g ,vd = 0) (with the parallel and
perpendicular components, full lines) and (b) for Cs(62P ) (lower
panel, full line). (a) Contribution of the sole B1�u(6s + 6p) state to
α⊥ and of the pair of 0+

u A1�+
u (6s + 6p) and b3�u(6s + 6p) states

to α‖ (dot-dashed lines), and polarizability components including the
core polarizability (dashed lines). (b) Magnitude of the second term
of Eq. (12) (dashed line) and of the core polarizability (dot-dashed
line).

well as transition dipole moments, which will be presented
in a separate publication. The dissociation energies of the
atom-dimer complex are given by Cs2 rotational energies,
B0j (j + 1), where the rotational constant for the vd = 0 level
of Cs2 is B0 = 1.17314 × 10−2 cm−1 [18].

The variation of the dipole polarizability at imaginary
frequencies is displayed in Fig. 2. The B1�u(6s + 6p)
electronic state contributes to the valence part for about 99%
to α⊥, as well as the pair of states A1�+

u (6s + 6p) and
b3�u(6s + 6p) coupled by spin-orbit interaction to yield a
pair of 0+

u states. The core polarizability represents only a
few percentages of the total one, for the represented frequency
domain. We numerically verified that the dissociation continua
can be neglected.

The C6 coefficients are first calculated for cesium in
its ground-state 62S interacting with Cs2 X1�+

g (vd = 0,j )
molecule, for which the quadrupole-quadrupole interaction
is zero. The α		′ quantities now represent the actual dipole
polarizability. Moreover there is no crossed term in the C6

coefficients, and Eq. (33) reduces to

C6 = − 2

π

∑
M

∑
j ′m′

j

1

[(1 + M)!(1 − M)!]2

× 2j + 1

2j ′ + 1

(
C

j ′m′
j

1Mjmj

)2
∫ +∞

0
dωα(iω)

× [(
C

j ′0
10j0

)2
α‖(iω) + 2

(
C

j ′1
11j0

)2
α⊥(iω)

]
, (35)

where α(iω) is the atomic polarizability in the 62S state,
including core contributions. It is worth noting that in the
particular case j = 0, Eq. (35) can be written in a similar form
as for two S atoms

C6 = − 3

π

∫ +∞

0
dωα(iω)ᾱ(iω), (36)

with ᾱ = (α‖ + 2α⊥)/3 the so-called isotropic polarizability
of the dimer.

The results of our calculations are given in Table I and in
Fig. 3. They are sorted by values of the projection mJ of the
total orbital momentum on the Z axis, and for mJ = 0, the
parity ± through the reflection symmetry with respect to any

TABLE I. The C6 coefficients of the Cs2(X1�+
g ,vd = 0,j )+

Cs(62S) long-range interaction calculated for j = 0 to 4. In analogy
to a diatomic molecule, the C6 are sorted by projections of the total
orbital quantum number mJ = mj on the Z axis (note that λ = 0) and
the parity ± through the reflection symmetry with respect to a plane
containing the axis. This yields the �±, �, �, �, � symmetries for
mJ = 0, ±1, ±2, ±3, ±4, respectively.

Symmetry j C6 (a.u.) Symmetry j C6 (a.u.)

�+ 0 −12101 � 4 −12587
1 −12981 � 2 −11473
2 −12729 3 −12101
3 −12688 4 −12330
4 −12672 � 3 −11369

� 1 −11662 4 −11902
2 −12415 � 4 −11302
3 −12541
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FIG. 3. Long-range potential energy curves B0j (j + 1) + C6/R
6

of �+ symmetry (mJ = 0), as functions of the atom-dimer distance R

(in logarithmic scale), representing the interaction between Cs(62S)
and Cs2(X1�+

g ,vd = 0,j ) for j = 0 to 4. The related C6 coefficients
are given in Table I.

plane containing this axis. In analogy to diatomic molecules,
these symmetries are labeled �±,�,�,�,�, H for mJ = 0,
±1, ±2, ±3, ±4, ±5, respectively. All the C6 coefficients
are negative, reflecting an attraction between the atom and
the dimer, which is slightly less than twice the one for two
interacting Cs(62S) atoms (6840 a.u. [6,22,23]). This can be
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FIG. 4. Long-range potential energy curves B0j (j + 1) +
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5 + C6/R
6 (full lines) and B0j (j + 1) + C5/R

5 (dashed lines)
as functions of the atom-dimer distance R (in logarithmic scale), for
the �+ and �− symmetries (mJ = 0), representing the interaction
between Cs(62P ) and Cs2(X1�+

g ,vd = 0,j ) for j = 0 to 4. The
related C5 and C6 coefficients are given in Table II.
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FIG. 5. Same as Fig. 4 for curves of � (mJ = 1) and � (mJ = 2)
symmetries.

understood from the simple form of Eq. (36), considering
that the static dipole polarizabilities of a ground-state Cs
atom and of a ground-state Cs2 molecule are, respectively,
≈402 a.u. [22] and ≈707 a.u. [24,25]. In addition, no curve
crossing are visible on Fig. 3 as all C6 coefficients have close
values. Therefore, the validity of the long-range expansion
is limited at short distances by the overlap of the electronic
clouds. With 〈r2

6S〉 = 42 a.u. [26], we estimate the value of the
LeRoy radius to RLR ∼ 40–45 a.u.

The potential energy curves for the long-range interaction
between Cs(62P ) and Cs2(X1�+

g ,vd = 0,j ) are displayed in
Figs. 4, 5, and 6. For the � symmetries (see Fig. 4), the curves
calculated in paper I (containing only the C5 term) are also
shown. The related C5 (from paper I) and C6 coefficients are
listed in Table II.

The number of states appearing in a given symmetry
depends on the number of allowed values of the mj and λ

quantum numbers. For example, in the �±, j = 1 symmetry,
three couples (mj,λ) are allowed: (−1, 1), (0, 0), and
(1, −1). Two eigenvectors are symmetric combinations of
(−1, 1) and (1, −1) and/or contain a (0, 0) contribution: They
are labeled �+. One eigenvector is an antisymmetric combi-
nation of (−1, 1) and (1, −1): It is labeled �− (see Table I of
paper I).

Most potential curves are attractive, even if they are
characterized by either a positive C5 coefficient or a positive
C6 coefficient. A positive C5 coefficient and a negative C6

coefficient would, in principle, give birth to a long-range
potential barrier. But in general, the absolute value of the C5

coefficient is so small that the barrier is not visible on the scale
of the graph, which happens, for example, for all �− states.
However, a few tiny potential barriers are visible. For instance,
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FIG. 6. Same as Fig. 5 for curves of � (mJ = 3) symmetry (upper
panel), and of � (mJ = 4) (solid line) and H (mJ = 5) (dashed line)
symmetries (lower panel).

the highest one is found for � symmetry with a height of
about 0.01 cm−1 in the curve correlated to the j = 1 rotational
state.

When combined with a negative C5 coefficient, a posi-
tive C6 coefficient would in principle induce a long-range
well. However, in most cases, the imbalance between both
contributions is such that the minimum of the well is
located deeply inside the region of electronic exchange.
A remarkable exception is the �+ state with j = 1, for
which C5 = −1674 a.u. and C6 = 51249 a.u. (see Fig. 4).
This well is 0.9 cm−1 deep, and its minimum is located at
R = 37 a.u., slightly below the LeRoy radius (∼45 a.u.).We
can expect that this long-range well will indeed exist, but
it will certainly be modified by rotational and nonadiabatic
couplings discussed above and by the electronic exchange.
Such a well will carry bound levels of Cs3, whose life-
time could be affected by predissociation effects related to
neighboring potential curves. Therefore, the precise char-
acterization of this well and of its bound levels requires
quantum-chemical calculations.

In paper I, we found that the low-R limit of our perturbation
analysis Rm = 102 a.u. was imposed by the crossings between
curves with different values of j . We see in Fig. 4 that the
typical position of these crossings is only slightly modified
by the C6 contribution. However, it is worth noting that the
crossing range coincides with the one in which the second-
order contribution competes with the first-order contribution.
As a consequence, the nonadiabatic couplings emerging in the
crossing region, mentioned in paper I, should include both
first-order and second-order terms. The resulting couplings
will mix states characterized by a given symmetry (�±,�, . . .)
and a given j , with states characterized by the same symmetry
and by j ′ = j ± 2.

TABLE II. The C5 and C6 coefficients of the Cs2(X1�+
g ,vd = 0,j )+Cs(62P ) long-range interaction calculated for j = 0 to 4. In analogy

to a diatomic molecule, the states are sorted by projections of the total orbital quantum number mJ = mj + λ on the Z axis and by the parity ±
after the reflection symmetry through any plane containing this axis. The values for C5 are taken from paper I.

Symmetry j C5 (a.u.) C6 (a.u.) Symmetry j C5 (a.u.) C6 (a.u.)

�+ 0 0 −42704 � 4 −739 671
1 −1674 51249 4 108 −15884
1 0 −21562 4 522 −47279
2 −913 12128 � 1 −279 −18694
2 116 −16885 2 −140 −21244
3 −796 4923 2 1136 −95614
3 145 −15420 3 −835 −1624
4 −755 2251 3 −87 −19563
4 157 −14835 3 736 −65454

�− 1 0 −43920 4 −721 −2643
2 399 −45131 4 −11 −17153
3 465 −45333 4 623 −56200
4 489 −45407 � 2 −399 −16589

� 0 0 −23605 3 −245 −18030
1 0 −29303 3 1175 −103161
1 1116 −79756 4 −783 −5057
2 −964 7305 4 −161 −17444
2 −19 −22961 4 835 −76003
2 584 −50736 � 3 −465 −15420
3 −783 2496 4 −320 −16392
3 64 −17295 4 1208 −107555
3 532 −48103 H 4 −507 −14676
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V. CONCLUSIONS

Using a second-order perturbation approach, we have
shown that the long-range interaction between an excited
Cs(62P ) atom and a Cs2(X1�+

g ,vd = 0,j ) molecule is sig-
nificantly modified compared to the first-order quadrupole-
quadrupole interaction. Most potential curves exhibit an
attractive behavior, except in a few cases where either a low
potential barrier or a long-range well is visible. The barriers
could prevent the collision from occurring in the ultracold
domain. The long-range well could accommodate bound levels
of the excited cesium trimer, just like in the well-known
long-range wells in alkali-metal dimers [27]. However, the
inclusion of the rotation of the trimer and of other interactions
such as spin-orbit will most probably limit the lifetime of
such levels, which could be much shorter than the natural
lifetime. Furthermore one can speculate that the richness of
these potential curves may well induce double-well structures
such as the one observed in Cs2 [28] and Rb2 [29], which
would favor the formation of ultracold stable cesium trimers
by spontaneous emission.

The validity of the present approach is limited to a
range of distances well beyond the radius defined by the
conventional LeRoy criterion, due to the low-energy spacings
between molecular rotational levels. This is actually the main
difference compared to atom-atom long-range interaction,
which completely changes the physical conditions for PA
of an atom with a molecule. The next step in the theory is
to include nonadiabatic couplings between curves related to
different rotational levels, which is currently in progress in our
group. They will induce avoided crossings that may generate
a complex collisional dynamics.

While the present theory is general, it is difficult to predict
if this situation is similar for all alkali-metal systems, either
homonuclear or heteronuclear, as it strongly depends on the
balance between the influence of the various parameters,
namely, the quadrupole moment of the atom and the dimer
and their dipole polarizability. As already stressed in paper I,
other effects should be taken in account, such as atomic
spin-orbit interaction. The fine-structure splitting in cesium
(554.1 cm−1) is much larger than the rotational energy of Cs2,
so that this effect will not dramatically change our description.
However, it is important to stress that the above treatment was
developed on the basis of the Russel-Sanders (or LS) coupling
case.

The inclusion of the hyperfine structure (a few hundreds of
MHz for the Cs(6P1/2,3/2) atom, and a few tens of kHz for the
Cs2 ground-state molecule [30]) will add to the complexity of
the potential curves of Figs. 4, 5, and 6, while probably having
a limited influence on the overall dynamics. It will not modify
the main conclusion of the present study: The photoassociation
of a ground-state X1�+

g alkali-metal dimer molecule with a
ground-state n 2S1/2 alkali-metal atom is generally possible by
exciting the dimer-atom system with a laser field red-detuned
from the n 2S1/2 → n 2P1/2,3/2 atomic transition.
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