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All 18 bound pure vibrational levels of the HD molecule have been calculated within the framework that does
not assume the Born-Oppenheimer (BO) approximation. The nonrelativistic energies of the states have been
corrected for the relativistic effects of the order of o®> (where « is the fine structure constant), calculated using
the perturbation theory with the nonrelativistic non-BO wave functions being the zero-order approximation.
The calculations were performed by expanding the non-BO wave functions in terms of one-center explicitly
correlated Gaussian functions multiplied by even powers of the internuclear distance and by performing extensive
optimization of the Gaussian nonlinear parameters. Up to 10 000 basis functions were used for each state.
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I. INTRODUCTION

The HD molecule is an interesting model system to study,
particularly with an approach that does not assume the Born-
Oppenheimer (BO) approximation. Due to the asymmetry of
nuclear masses, the electrons approach slightly closer the
heavier side of the molecule (the deuteron) than the lighter
side (the proton), which leads to a small dipole moment in this
system. The charge asymmetry of HD can only be described
in quantum-chemical calculations if the BO approximation is
not assumed. In a recent article [1], we used our non-BO
approach to study the HD charge asymmetry in all its 18
bound pure vibrational states, and we determined that the
asymmetry, as measured by the difference between the average
electron-deuteron distance and the electron-proton distance, is
the highest for the middle states and lowest for the lowest
and the highest states. The HD molecule was also studied in
our more recent work [2], which aimed at determination of its
fundamental vibrational transition. In those calculations, we
used our non-BO approach to determine the nonrelativistic
energies of the v =0 and v =1 states and the first-order
perturbation theory with the non-BO wave function as the zero-
order function to determine the leading relativistic corrections
to the nonrelativistic energies. In this work, we have extended
those calculations to all 18 HD pure vibrational states.

The standard method for calculating vibrational spectra of
diatomic molecules is based on the potential energy curve
(PEC) determined in electronic structure BO calculations and
corrected for various effects not included in the BO calcula-
tions. Such an approach was used, for example, in the recent
HD calculations by Pachucki and Komasa (P&K) [3], where
the electronic wave function was obtained variationally as an
expansion in terms of Gaussian geminals. Their PEC included
adiabatic and nonadiabatic corrections, as well as corrections
of the orders of &2, &3, and * (where in atomic units o = 1 /c;
cisthe speed of light in vacuum) that account for the relativistic
and quantum electrodynamics (QED) effects. They estimated
their largest uncertainty per state to be about 0.0036 cm™'.
In their article, they present a complete list of all 18
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vibrational states and for each state the results include the BO
nonrelativistic dissociation energy, the adiabatic correction,
the nonadiabatic correction, and the 2, &, and «* corrections
to this energy. This data enables a direct comparison with the
results generated in the non-BO calculations in the present
work.

Upon examining the ratio between the adiabatic and
nonadiabatic corrections for different pure vibrational states in
the work of Pachucki and Komasa [3], one notices that, while
for the lowest two states the former correction is about 10 times
larger than the latter, for the higher states the two corrections
become comparable in magnitude, and for the highest states the
nonadiabatic corrections become larger than the adiabatic one.
That indicates that the perturbation series used for accounting
for the finite masses of the nuclei does not converge uniformly
for all the states, and one may perhaps expect some decrease of
the accuracy in accounting for the effects of the finite masses
of the nuclei as the level of the vibrational excitation increases.
As in our calculations, these effects are explicitly included to
infinite order in the non-BO energies, these energies can be
used to test the reliability of the perturbation approach used in
Ref. [3]. This is one of the aims of the present work.

Another aim is related to the relativistic corrections to
the vibrational levels considered here. Those corrections are
calculated for each state in this work as expectation values of
the appropriate operators representing the leading relativistic
effects using the non-BO wave function as the zero-order wave
function. As such, the corrections include the so-called recoil
effects, which are related to the contributions due to the finite
nuclear masses to those corrections. As the recoil effects are
not typically included in the standard approach based on the
BO approximation, an example of which are calculations by
Pachucki and Komasa [3], a comparison of their results with
the present results should enable estimation of the magnitude
of those effects.

Finally, as will be demonstrated, the present non-BO
calculations are well converged at the nonrelativistic level for
all 18 pure vibrational states of HD. As such, they provide new
standards for energies that are obtained in rigorous variational
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all-particle calculations. This level of convergence required
several months of continuous calculations on a large parallel
computer system.

As the present calculations are performed without the BO
approximation, there is no separation of the vibrational and
electronic degrees of freedom. The motions of the electrons
and the nuclei are coupled. Due to this coupling, the vibrational
quantum number (QN) is, strictly speaking, not a “good” QN
(while still being meaningful for unambiguous classification
of the states of the system). A good QN (i.e., an exact QN)
is the one associated with the total rotation of the system.
This allows one to use in non-BO calculations a basis set
that describes only the states corresponding to a particular
rotational QN (the states with the rotational QN equal to
zero) separately from states with other rotational QNs. The
different states with the zero rotational QN differ from each
other in terms of the number of nodes their wave functions
have along the radial coordinates. As the nuclei are much
heavier than the electrons, the radial nodes first appear in
terms of the coordinate that describes the distance between
the nuclei (the deuteron and the proton in HD). One can call
them vibrational nodes. Wave functions with nodes in terms of
the nucleus-electron and electron-electron coordinates appear
at higher energies. Thus, the basis functions used to expand
the wave functions of the pure vibrational states of HD in the
present calculations need to have a flexible behavior along the
internuclear coordinate.

The other features that the basis functions need to be capable
of describing are the electron-electron (e-¢), electron-nucleus
(e-n), and nucleus-nucleus (n-n) correlations. For that the basis
functions have to explicitly depend on the e-e, e-n, and n-n
distances. We should note that the n-n correlation is stronger
than the e-e correlation because the nuclei are much heavier
and the probability of finding them near each other is much
smaller than for electrons.

As we have shown in previous works [4-6], good basis
functions for non-BO calculations of rotationless states of a
diatomic molecule with only o electrons that possess all the
above-mentioned desirable features are explicitly correlated
Gaussian (ECG) functions multiplied by powers of the
internuclear distance. These functions have been used in our
previous calculations of the HD molecule [1,2]. The explicitly
correlated Gaussians (also called exponentially correlated
Gaussians) have been introduced to quantum mechanical
calculations of atomic and molecular electronic structures
in the pioneering works of Boys [7] and Singer [8]. Later
these functions were applied by several groups, including
Adamowicz and Sadlej [9] and Rychlewski and coworkers
[10,11], in calculations of the electronic correlation energy
in small atomic and molecular systems. A feature that makes
the correlated Gaussians suitable for atomic and molecular
quantum mechanical calculations is the relative simplicity of
the algorithms for calculating the overlap and Hamiltonian
matrix elements with those functions.

The nonrelativistic Hamiltonian, called the internal
Hamiltonian, used in the non-BO calculations is obtained
by separating the motion of the center of mass from the
laboratory-frame Hamiltonian. The internal Hamiltonian is
isotropic (i.e., rotationally invariant or atom-like) with respect
to rotations about the center of the internal coordinate system.
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Thus, its eigenfunctions have to transform according to the
irreducible representations of the fully symmetric group of
rotations. In particular, the ground state or any rotationless
state is described with a spherically symmetric wave function.
Therefore, the ECGs used in non-BO calculations have to be
spherically symmetric functions. Multiplying them by powers
of the internuclear distance does not change this symmetry.

We recently developed a procedure for calculating o?
relativistic corrections for diatomic systems using non-BO
wave functions expanded in terms of ECGs and the first-order
perturbation theory [12—15]. These procedures are used in the
present work.

We start this article with a brief description of the method
we used (a more complete description of the method can be
found in our recent reviews [4,5]). We also briefly describe
the procedure used to calculate the relativistic corrections.
The results obtained in the calculations and their comparison
with the experimental results and calculations of others are
presented in the last section.

II. THE METHOD USED IN THE CALCULATIONS

The internal nonrelativistic Hamiltonian, Flnome], for HD
used in the present calculations has the following form:

Hnnnrel - — 3 Z V + ZZ _Vr/ Vr/

i=1 j#i

CIO% _"_Z%QJ (1)

i=1 i<j

In (1) go = g1 = 1 are the charges of the nuclei (the proton
and the deuteron) and g, = g3 = —1 are the electron charges;
r;, i =1,2,3, are the position vectors of the proton and
the two electrons with respect to the deuteron (placed in
the center of the internal coordinate system and called the
“reference particle”); r; are their lengths; r;; = |r; —r;],
mo = 3670.4829654m,, and m; = 1836.15267261m, are the
masses of the deuteron and the proton, respectively [16]; m, =
ms = m, = 1 are the electron masses; and u; = mom; /(mo +
m;) is the reduced mass of particle i. As one notices, the
Hamiltonian (1) is, as mentioned, isotropic and describes three
“pseudoparticles” with charges equal to the charges of the orig-
inal particles, g, = 1 and g, = g3 = —1, moving in the central
potential of the charge of the reference particle (go = 1).
This motion is coupled through the Coulomb interactions and
. 3 3

télrr/o'ugh the mass-polarization term, —1 "7 D mLOVri .

To calculate the relativistic corrections of the order of &2, we
use the Breit-Pauli Hamiltonian and the first-order perturbation
theory. We start with the respective operators representing the
mass—velocity (MV), Darwin (D), spin—spin (SS), and orbit—
orbit (OO) interactions in the laboratory coordinate frame and
we transform them to the internal coordinate system of the nine
coordinates, r;, i = 1,2,3. More details of this transformation
for the MV, D, and OO corrections can be found in [12,13].
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For HD the transformed MV, D, SS, and OO operators have
the following form:

L
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The spin-orbit interaction for HD in the ground electronic
state is zero due to the singlet multiplicity of the electronic
wave function and the total angular momentum of the states
considered in this work being zero. The total relativistic
Hamiltonian, Hrel, is the sum of four contributions: Hrel =
2(HMV + HD + HSS + HOO) and the relativistic correction
is calculated for each state as the expectation value of A, with
the non-BO wave function representing the state.
The spatial part of the wave function for each of the eighteen
pure vibrational states of HD considered here is expanded in
terms of the following ECGs [6]:

¢ =" exp[—r'(Ar ® L)rl], (6)

where the internal coordinate vector is r = {r},r},r;} and ’
denotes the vector (matrix) transposition. The functions (6)
are symmetrized with respect to the electron labels as required
by the singlet multiplicity of the electrons. The symmetrization
transforms r; to r3 and vice versa. Even, non-negative numbers
in the 0-250 range are used for the m; powers. This range
was found sufficient in our previous works [4,5] to effectively
describe the nucleus—nucleus correlation and the vibrational
oscillations of the wave functions representing pure vibrational
states of small diatomic molecules.

In the optimization of the linear and nonlinear parameters
of the ECGs, {ct}, {Ax}, and {m,}, for each state in the present
work we use the Rayleigh quotient, E = min ggg, which,
subjected to the orthogonality condition for excited states,
yields the generalized eigenvalue problem,

Hc = ESc. (7

Here H and S are K x K symmetric matrices of the Hamil-
tonian and the overlap in the given basis set, and C is the
vector of linear coefficients of the basis functions. K is the
size of the basis set. There are K-independent solutions of
Eq. (7). The ith eigenvalue, E;, always remains an upper
bound to the exact energy of the ith state regardless of
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the choice of the nonlinear parameters. However, in order
to approximate the wave functions and the corresponding
energies with high accuracy it is necessary to perform an
extensive optimization of the nonlinear parameters of the
basis functions. This optimization has been the most time
consuming part of the present calculations despite the use
of the analytic (i.e., not finite-difference) energy gradient
determined with respect to these parameters. It should be
noted that basis functions (6) have to be square integrable,
and this happens if A; matrices are positive definite. Instead
of imposing restrictions on the A; matrix elements during
the optimization, we use the Cholesky-factored form of Ay,
Ap = LiL}, where L is a lower triangular matrix. Ay is
automatically positive definite for any real values of the L
matrix elements. Thus it is convenient to replace A; with Ly
and minimize the energy with respect to the latter, because no
restrictions need to be imposed on the parameters, which are
optimized.

The calculations have been performed independently for
each state; i.e., the nonlinear parameters of basis functions
were obtained independently for each state. The maximum
number of basis functions used for each state was 10 000. To
generate this number of functions, the basis set was grown from
a small randomly selected set of a few dozen functions using
a multistep procedure that involves both a stochastic selection
(similar to the one used in Refs. [17,18]) and an optimization
employing the analytic energy gradient. The procedure was
described in our previous work [2]. When the basis set
reached the level of 10 000 functions for a particular state,
the optimization continued and several one-function-at-a-time
optimization cycles were performed to achieve additional
lowering of the energy. Due to all this effort, the results shown
in the next section are well converged. They represent the
lowest values ever obtained in all-particle non-BO variational
calculations of the HD molecule.

III. THE RESULTS

In Table I, we show how the total nonrelativistic energies
and total energies that include the relativistic corrections
for some selected states converge with the number of basis
functions. As the convergence for the lowest two states was
shown in our previous work [2], in the present work we only
focus of the states from v = 2 to v = 17. The selected states,
for which we show the energy convergence in Table I, include
the lowest two states in the set (i.e., v =2 and v = 3), the
two middle states (i.e., v = 8 and v = 9), and the two highest
states (i.e., v = 16 and v = 17). For each state, the energy
values obtained with basis sets ranging in size from 7 000 to
10 000 in increments of 1 000 are shown. As one notices,
for all states the convergence of both energies is somewhat
better for the lower states than for the higher states. While
for the v =2 and v = 3 states nine significant digits are
essentially converged, for the highest energy states the number
of the converged significant digits is reduced to eight. Also,
as expected, additional optimization cycles performed for the
basis set of 10 000 ECGs lowers the energies of the higher
states somewhat more than of the lower states.

The energies for all the states, including the v = 0 and
v = 1 states computed in our previous work [2], obtained with
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TABLE I. The convergence of the total nonrelativistic non-BO energies (E,one) and the total energies that include the a? relativistic
corrections (E.) with the number of the ECG basis functions. Results for v = 2, 3, 8,9, 16, and 17 are shown. All values are in hartrees.

Enonrel

No. of ECGs v=2 3 8 9 16 17

7000 —1.133 1817277 —1.1182334962 —1.055173 1655 —1.0449395852 —1.000663 3124  —0.999 608 2584
8000 —1.133 1817296  —1.1182334992  —1.055173 1841 —1.0449396035 —1.000663 3663 —0.999 608 2788
9000 —1.133 1817312  —1.1182335016  —1.055173 1957 —1.0449396157 —1.000 663 3953  —0.999 608 2898
10000 —1.133 1817325 —1.1182335032 —1.0551732027 —1.0449396247 —1.000 6634130 —0.999 608 2965
10000* —1.133 1817331 —1.1182335038 —1.0551732051 —1.0449396277 —1.000663 4237  —0.999 608 3005
Erel

No. of ECGs v=2 3 8 9 16 17

7000 —1.133 1924396 —1.118244 1535 —1.0551838526 —1.0449503613 —1.0006759718  —0.999 621 4937
8000 —1.133 1924416 —1.118244 1565 —1.0551838723 —1.0449503801 —1.000676 0252  —0.999 621 5149
9000 —1.133 1924433  —1.118244 1595 —1.055183 8841 —1.0449503926 —1.000676 0538  —0.999 621 5257
10000 —1.133 1924448 —1.118244 1614 —1.0551838922 —1.0449504018 —1.000676 0720  —0.999 621 5321
10000* —1.133 1924454 —1.118244 1620 —1.0551838943 —1.0449504041 —1.000676 0827  —0.999 621 5363

“Results obtained by performing several additional optimization cycles.

the basis sets of 10 000 ECGs are presented in Table II.
For each state, the nonrelativistic non-BO energy and the
energy that includes the relativistic corrections are shown.
We also included in the table the corresponding energies
for the H4+D atom pair at dissociation. These energies
enable calculation of the dissociation energy (DE) of HD
and to compare this result with the DE of Pachucki and
Komasa (P&K) [3]. This can be done at the nonrelativistic
and relativistic levels of theory. At the nonrelativistic level
(which in the calculations of P&K includes the adiabatic
and nonadiabatic corrections), our DE of 36406.5104 cm™!

TABLE II. Total nonrelativistic non-BO energies (Eyone) and
total energies that include the o relativistic corrections for bound
pure vibrational states of HD in hartrees. The energies have been
obtained with 10 000 ECG basis functions. Estimates of the remaining
uncertainties of the calculated values are shown in parenthesis. The
last line shows the dissociation threshold.

v Enonrel Erel

0 —1.165 471 9220(20) —1.165 482 8151(20)
1 —1.148 922 5895(30) —1.148 933 3843(30)
2 —1.133 181 7331(50) —1.133 192 4454(50)
3 —1.118 233 5038(50) —1.118 244 1620(50)
4 —1.104 066 6452(50) —1.104 077 2665(50)
5 —1.090 674 8634(80) —1.090 6854 664(80)
6 —1.078 057 3245(100) —1.078 067 9317(100)
7 —1.066 219 3300(200) —1.066 229 9694(200)
8 —1.055 173 2051(200) —1.055 183 8943(200)
9 —1.044 939 6277(300) —1.044 950 4041(300)
10 —1.035 549 1788(300) —1.035 560 0629(300)
11 —1.027 044 7026(300) —1.027 055 7441(300)
12 —1.019 484 2295(300) —1.019 495 4655(300)
13 —1.012 945 2625(300) —1.012 956 7471(300)
14 —1.007 530 5468(500) —1.007 542 3419(500)
15 —1.003 376 3150(500) —1.003 388 5006(500)
16 —1.000 663 4237(500) —1.000 676 0827(500)
17 —0.999 608 3005(500) —0.999 621 5364(500)
H+D —0.999 591 6550 —0.999 604 9678

agrees to 0.0004 cm~! with their result of 36406.5108 cm™!.
At the relativistic level, which in both approaches includes
the «? correction, our DE of 36405.9794 cm~! differs
from their result of 36405.9809 cm~' by —0.0015 cm™'.
Part of this difference is the difference of —0.0004 cm™!
mentioned above, which can be attributed to higher-order
nonadiabatic effects. The remaining —0.0011 cm™! should
provide a rough estimate of the recoil effects.

The energies, which include the a? relativistic corrections
presented in Table II, are used to calculate the dissociation
energies corresponding to the different vibrational levels. The
results are shown in Table III. The dissociation energies also
include o® and o* QED corrections. As we have not developed

TABLEIII. Dissociation energies of HD calculated using the non-
BO nonrelativistic energies and the & relativistic corrections, both
obtained in this work, augmented with the o> and a* corrections taken
from the work of Pachucki and Komasa (P&K) [3]. Our results are

compared with the P&K results. All values are in cm™".

v This work P&K Diff.

0 36405.7814 36405.7828 —0.0014
1 32773.6199 32773.6224 —0.0025
2 29318.9008 29318.9058 —0.0050
3 26038.1484 26038.1525 —0.0041
4 22928.8898 22928.8940 —0.0042
5 19989.7441 19989.7501 —0.0060
6 17220.5290 17220.5367 —0.0077
7 14622.4095 14622.4158 —0.0063
8 12198.0883 12198.0988 —0.0105
9 9952.1081 9952.1180 —0.0099
10 7891.1769 7891.1923 —0.0154
11 6024.7045 6024.7189 —0.0144
12 4365.4243 4365.4408 —0.0165
13 2930.3498 2930.3661 —0.0163
14 1742.0329 1742.0495 —0.0166
15 830.3773 830.4030 —0.0257
16 235.0766 235.0929 —0.0163
17 3.6360 3.6424 —0.0064
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TABLE 1V. Comparison the o relativistic corrections to the
dissociation energies obtained in the present work with the corrections

reported by Pachucki and Komasa (P&K) [3]. All values are incm™!.

v This work P&K Diff.

0 —0.5311 —0.5300 0.0011
1 —0.5527 —0.5509 0.0018
2 —-0.5707 —0.5677 0.0030
3 —0.5826 —0.5804 0.0022
4 —0.5907 —0.5887 0.0020
5 —0.5947 —0.5925 0.0022
6 —0.5938 —0.5915 0.0023
7 —0.5868 —0.5853 0.0015
8 —0.5758 —0.5734 0.0024
9 —0.5567 —0.5551 0.0016
10 —0.5330 —0.5297 0.0033
11 —0.4985 —0.4962 0.0023
12 —0.4561 —0.4532 0.0029
13 —0.4012 —0.3991 0.0021
14 —0.3332 —0.3314 0.0018
15 —0.2477 —0.2471 0.0006
16 —0.1435 —0.1420 0.0015
17 —0.0169 —0.0164 0.0005

the capabilities to calculate those QED corrections using our
non-BO wave functions yet, the values included in our results
in Table III were taken from the P&K work cited in Ref. [3].
In the table, our dissociation energies are compared with
the energies obtained by P&K. Upon examining the values
in the table, one notices that the two sets of results agree
to about 0.01-0.02 cm™! with our values being consistently
lower. Also, even though the difference oscillates somewhat,
it is noticeably smaller for lower v values than for higher
values.
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Finally, in Table IV we compare our o relativistic cor-
rections to the dissociation energies with those obtained by
P&K [3] to see if any conclusion can be drawn regarding the
magnitude of the recoil effects. As one can see, the results
in both columns in Table IV are close but not identical. Our
values are consistently more negative than the P&K values.
Even though the differences between the results are close to
the uncertainties in either of the two sets of calculations, they
should provide a rough estimation of the recoil effects.

IV. SUMMARY

In this work, we performed calculations of all pure
vibrational states of the HD molecule using the non-BO
framework and explicitly correlated Gaussian functions. The
non-BO wave functions are used to evaluate the o relativistic
corrections. The results of the calculations are compared with
the same kind of results obtained by Pachucki and Komasa [3]
with an approach based on solving the vibrational problem
with the H, nonrelativistic potential energy curve corrected
for adiabatic, nonadiabatic, relativistic, and QED corrections.
While the two methods are fundamentally different, the
results concerning the dissociation energies corresponding
to different vibrational states are consistent. The only more
significant difference, which the comparison reveals, is that
our dissociation energies for all states are lower than the P&K
energies by about 0.01-0.02 cm™.
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