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Gerade-ungerade mixing in the hydrogen molecule
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In homonuclear molecules, such as H2, the rovibrational levels close to the dissociation threshold do not
have definite symmetry with respect to the inversion of electronic variables. This effect—the gerade-ungerade
mixing—results from interactions between magnetic moments of electrons and protons. We calculate this mixing
on the level of adiabatic approximation and numerically solve the system of nuclear differential equations. It
turns out that the corrections to the dissociation energy of rovibrational levels resulting from the mixing are
negligible in comparison with the present accuracy of experiments. As a coproduct, an accurate clamped nuclei
potential for the b 3�+

u state has been obtained.
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I. INTRODUCTION

The hydrogen molecule, due to its simplicity, can be
accurately calculated from first principles using the quantum
electrodynamic (QED) theory. At the current accuracy of
about 0.001 cm−1, apart from nonadiabatic and relativistic
effects, the O(α3) and the dominating part of O(α4) QED
corrections have to be included. The excellent agreement
with recent experimental results for H2 [1,2], D2 [1,3], and
HD [4,5] indicates a good understanding of all physically
significant effects and is a basis for a further improvement
in theoretical description of the hydrogen molecule. At
present, the main uncertainty comes from the higher order
nonadiabatic O(µ−3

n ), relativistic recoil O(α2/µn), and QED
O(α4) corrections. Once these three terms are known, the
accuracy of rovibrational levels could be increased up to about
10−6 cm−1 (∼30 kHz), provided that all other small effects are
determined, in particular those due to the finite proton charge
radius rp and the gerade-ungerade mixing.

The correction due to rp can easily be calculated, but the
accurate value of rp is presently an issue. The result of the
recent determination of rp from the muonic hydrogen Lamb
shift [6] is 5% smaller than previous determinations from the
hydrogen spectrum and from the electron-proton scattering.
This 5% gives uncertainty in H2 dissociation energy of about
5 × 10−6 cm−1, thus the proton charge radius discrepancy has
to be resolved to be able to reach 10−6 cm−1 accuracy.

The correction resulting from gerade-ungerade mixing
appears due to the interactions between the electron and the
proton magnetic moments. An experimental evidence of this
phenomenon has been reported for iodine [7] and cesium
[8] dimers and a detailed theoretical account of hyperfine
interactions in diatomic homonuclear molecules has been
given in [9]. The energy shift caused by such interactions in
H2 can, in principle, be as large as the hyperfine splitting in the
hydrogen atom, which amounts to 1420 MHz ≈ 0.05 cm−1.
Until now however, the magnitude of this effect for the
hydrogen molecule has been unknown and its determination
is the purpose of this work.
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At the accuracy level of 10−6 cm−1 the predicted H2

spectrum is sensitive to uncertainties in fundamental constants.
In particular, the present uncertainty in the proton-to-electron
mass ratio, equal to 0.4 ppb, yields about 14 kHz uncertainty
for the ground state dissociation energy. This means, that
the proton-to-electron mass ratio can be determined from the
H2 spectrum more accurately than it is known presently, if
both theory and experiment pass the threshold of 14 kHz
uncertainty. Experimentalists [10] have already considered
such level of precision, while from a theoretical point of
view we have not yet investigated in detail the feasibility of
such an uncertainty in H2. Certainly the most challenging is
the accurate calculation of O(α4) and estimation of O(α5)
corrections.

II. WAVE FUNCTIONS AND HAMILTONIAN

In the adiabatic approximation, the total spatial wave
function φ is approximated by a product of electronic and
nuclear functions

φ(�r, �R) = φel(�r) χ (R) YLM (�n) (1)

with φel being the solution to the clamped nuclei Schrödinger
equation

Hel φel = E( �R) φel, (2)

YLM (�n) is a spherical harmonic with �n = �R/R. The nuclear
function χ fulfills the Born-Oppenheimer radial Schrödinger
equation

[
− 1

2 µn

1

R

∂2

∂R2
R + L (L + 1)

2 µn R2
+ E(R)

]
χvL(R)

= EvL χvL(R), (3)

where µn is the ratio of the nuclear reduced mass to the electron
mass, and atomic units are used throughout the paper.

In the nonrelativistic approximation the symmetry of the
inversion of electronic coordinates (�r1,�r2) with respect to
the geometrical center of the H2 molecule is conserved, and
the splitting δE of the clamped nuclei energies between the
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lowest gerade and ungerade states vanishes exponentially for
large internuclear distances R [11,12] (in atomic units),

δE(R) = Eu(R) − Eg(R) = R5/2 e−2 R [1 + O(1/
√

R)]. (4)

Since these states become asymptotically degenerate, a small
perturbation may significantly mix them, and gerade and
ungerade symmetry will not be preserved. To describe this
mixing, let us define the following two electronic spatial
functions:

φg(�r1,�r2; �R) = φg(−�r1, − �r2, �R) = φg(�r2,�r1, �R) (5)

for the gerade (X 1�+
g ) state and

φu(�r1,�r2; �R) = −φu(−�r1, − �r2, �R) = −φu(�r2,�r1, �R) (6)

for ungerade (b 3�+
u ) state. Both functions are assumed to be

solutions to the clamped nuclei Schrödinger equation (2) with
corresponding energies Eg and Eu. In the asymptotic region
they take the Heitler-London form [13]

φg(�r1,�r2, �R) = [φH (r1A) φH (r2B) + φH (r1B) φH (r2A)]√
2

, (7)

φu(�r1,�r2, �R) = [φH (r1A) φH (r2B) − φH (r1B) φH (r2A)]√
2

, (8)

where φH is the ground state atomic hydrogen function.
The leading relativistic corrections, as given by the Breit-

Pauli Hamiltonian, violate the inversion symmetry of electron
coordinates with respect to the geometrical center. As a
result, electronic states do not have a definite symmetry and
rovibrational energies are slightly shifted. One expects this
shift to be the most significant for states laying close to the
dissociation threshold, where nuclei are far apart from each
other. Among all the relativistic corrections, the dominating
one at large internuclear distances results from the magnetic
interactions between all the four particles, electrons, and
protons, represented by a and b, (e2 = 4 π α)

δH = m2 α
∑
a>b

ea eb

4 π

[
− 2 π

3

ga gb

ma mb

�sa · �sb δ(3)(rab)

+ ga gb

4 ma mb

si
a s

j

b

r3
ab

(
δij − 3

ri
ab r

j

ab

r3
ab

)]
. (9)

δH causes the gerade-ungerade mixing and also contributes to
the gerade-ungerade splitting of the clamped nuclei energies.
In fact, the relativistic correction to this splitting goes like R−3

(for J �= 0) and, at large R, dominates over the nonrelativistic
splitting [Eq. (4)]. To account for the splitting and the mixing,
we will include in the nuclear equation both the diagonal and
off-diagonal matrix elements between gerade and ungerade
states.

III. MATRIX ELEMENTS FOR THE GERADE-UNGERADE
MIXING AND SPLITTING

Among all the spin interactions in Eq. (9), the proton-proton
and the local (Dirac δ) electron-electron interactions can be
neglected. The first one is very small and the second one
vanishes exponentially for large distances. We neglect also the
tensor electron-nucleus interaction because it is much smaller
than the scalar interaction, which is proportional to the Dirac

δ. As a result of these approximations, δH is a sum of the
tensor electron-electron spin and the local electron-nucleus
interactions. In atomic units they take the form

δH = α2 si
1 s

j

2

r3
12

(
δij − 3

ri
12 r

j

12

r2
12

)

+
∑
a,X

4 π α2

3

gp m

mp

�sa · �IX δ(3)(raX) (10)

= δH1 + δH2 , (11)

where a = 1, 2 labels electrons and X = A, B (nuclei). Let
us introduce the notation �L for rotational angular momentum,
�S = �s1 + �s2 for the total electron spin, �I = �sA + �sB for the
total nuclear spin, �J = �L + �S, and �F = �J + �I . We will use
the basis |L,S,J,I,F,mF 〉 in the evaluation of matrix elements.
Not all the values of angular momenta are allowed, due to
the Pauli exclusion principle. For the gerade state of the H2

molecule (S = 0), I = 0 for even L and I = 1 for odd L, for
the ungerade state (S = 1), I = 1 for even and I = 0 for odd
L. Let us consider now the first component δH1 in Eq. (10)
and rewrite it in terms of the total electron spin

δH1 = α2

2

Si Sj

r3
12

(
δij − 3

ri
12 r

j

12

r2
12

)
. (12)

Its expectation value in the ungerade state is

δH1uu ≡ 〈φu|δH1|φu〉 = β(R) Si Sj (δij − 3 ni nj ), (13)

where ni = Ri/R and

β(R) = α2

4
b(R), (14)

b(R) =
〈
φu

∣∣∣∣3(�r12 · �n)2 − r2
12

r5
12

∣∣∣∣φu

〉
. (15)

For asymptotic internuclear distances the electron-electron
distance r12 can be replaced by R, thus b(R) ≈ 2/R3, and
δH1uu becomes much larger than the nonrelativistic splitting
δE .

Matrix elements of δH1uu in the basis |L,S,J,mJ 〉 are
diagonal in S and J , and do not vanish only for S = 1 and
	L = 0, ± 2. Hence we are left with only four types of matrix
elements:

〈〈L,1,L + 1|δH1uu|L,1,L + 1〉〉 = β
2 L (L − 2)

(2L + 3)(2L − 1)
,

(16)

〈〈L,1,L|δH1uu|L,1,L〉〉 = −β
2[2L(L + 1) − 3]

(2L + 3)(2L − 1)
, (17)

〈〈L,1,L − 1|δH1uu|L,1,L − 1〉〉 = β
2 (L + 1)(L + 3)

(2L + 3)(2L − 1)
,

(18)

〈〈L − 1,1,L|δH1uu|L + 1,1,L〉〉 = −3 β

√
L (L + 1)

2 L + 1
,

(19)

where we have introduced the double-braket notation

〈J,M|Q|J,M ′〉 = δM M ′ 〈〈J |Q|J 〉〉 (20)

for a scalar operator Q.
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The second term in Eq. (10) (δH2) is at first rewritten as

δH2 = πα2

3

gp m

mp

{ �S · �I [δ(3)(r1A) + δ(3)(r1B)

+ δ(3)(r2A) + δ(3)(r2B)] + (�s1 − �s2) · ( �IA − �IB)

× [δ(3)(r1A) − δ(3)(r1B) − δ(3)(r2A) + δ(3)(r2B)]},
(21)

where A and B refer to the two nuclei. Although other
terms containing (�s1 ± �s2) · ( �IA ∓ �IB) might also be present
in the above, they were omitted because their matrix elements
between φg and φu states vanish. The diagonal matrix element
of δH2 is

δH2uu ≡ 〈φu|δH2|φu〉 = γ (R) �S · �I , (22)

γ (R) = π α2

3

gp m

mp

c(R), (23)

c(R) = 〈φu|δ(3)(r1A) + δ(3)(r1B) + δ(3)(r2A) + δ(3)(r2B)|φu〉
(24)

and the off-diagonal is

δH2gu ≡ 〈φg|δH2|φu〉 = γ ′(R) (�s1 − �s2) · ( �IA − �IB), (25)

γ ′(R) = π α2

3

gp m

mp

c′(R), (26)

c′(R) = 〈φg|δ(3)(r1A) − δ(3)(r1B) − δ(3)(r2A) + δ(3)(r2B)|φu〉.
(27)

In the asymptotic region the matrix elements of the electron-
nucleus Dirac δ function approach the atomic hydrogen value,
thus

c(∞) = c′(∞) = 2

π
. (28)

Nonvanishing matrix elements in the angular momentum basis
|L,S,J,I,F,MF 〉 are

〈〈L,1,L + 1,1,L|δH2uu|L,1,L + 1,1,L〉〉 = −γ
L + 2

L + 1
,

(29)

〈〈L,1,L,1,L|δH2uu|L,1,L,1,L〉〉 = −γ
1

L(L + 1)
, (30)

〈〈L,1,L − 1,1,L|δH2uu|L,1,L − 1,1,L〉〉 = −γ
L − 1

L
,

(31)

〈〈L,1,L + 1,1,L|δH2uu|L,1,L,1,L〉〉 = −γ
L

L + 1

√
2L+3

2L+1
,

(32)

〈〈L,1,L,1,L|δH2uu|L,1,L − 1,1,L〉〉 = −γ
L+1

L

√
2L−1

2L+1
,

(33)

〈〈L,1,J,1,L|δH2gu|L,0,L,0,L〉〉 = −γ ′
√

2J + 1

2L + 1
, (34)

〈〈L,1,J,0,J |δH2gu|L,0,L,1,J 〉〉 = γ ′. (35)

All these matrix elements depend implicitly on R and are
included in the clamped nuclei potential in the nuclear
Schrödinger equation.

IV. NUCLEAR EQUATIONS FOR THE
GERADE-UNGERADE MIXING

To take into account the states mixing, we employ the matrix
form of Eq. (3),[

− 1

2 µn

1

R

∂2

∂R2
R + L (L + 1)

2 µn R2

+ Eg(R) + δEspin(R) − ẼvL

]
χ̃vL(R) = 0, (36)

where δEspin(R) is a matrix formed from matrix elements of
δH [Eq. (10)] in a pertinent basis. The dimension of the matrix
δEspin(R) is determined by the number of close lying levels and
it depends on the rotational quantum number L. The principal
question we ask is what is the value of the difference

δEgu = EvL − ẼvL, (37)

which we shall call the gerade-ungerade mixing correction to
the dissociation energy of a rovibrational level (v,L).

In what follows we consider three separate cases depending
on the quantum number L. We note in passing that the L mixing
in Eq. (19) can potentially play a role only for L = 0 because
in this case the diagonal spin-spin interaction represented by
β is absent in δEspin(R).

A. Case: L even and �= 0

We span the nuclear wave function in the following basis:

|L,0,L,0,L,M〉
|L,1,L + 1,1,L,M〉
|L,1,L,1,L,M〉
|L,1,L − 1,1,L,M〉. (38)

The δEspin(R) matrix is now obtained using Eqs. (16)–(18) and
(29)–(35) and assumes the form

δEspin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −γ ′
√

2L+3
2L+1 −γ ′ −γ ′

√
2L−1
2L+1

−γ ′
√

2L+3
2L+1 δE + β 2 L (L−2)

(2L+3)(2L−1) − γ L+2
L+1 −γ L

L+1

√
2L+3
2L+1 0

−γ ′ −γ L
L+1

√
2L+3
2L+1 δE − β 2[2L(L+1)−3]

(2L+3)(2L−1) − γ 1
L(L+1) −γ L+1

L

√
2L−1
2L+1

−γ ′
√

2L−1
2L+1 0 −γ L+1

L

√
2L−1
2L+1 δE + β 2 (L+1)(L+3)

(2L+3)(2L−1) − γ L−1
L

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (39)
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B. Case: L odd

The basis is

|L,0,L,1,J,M〉
|L,1,J,0,J,M〉. (40)

δEspin(R) matrices for three different values of
J = L+ 1,L,L − 1 read

δEL+1
spin =

( 0 γ ′

γ ′ δE + β 2 L (L−2)
(2L+3)(2L−1)

)
, (41)

δEL
spin =

( 0 γ ′

γ ′ δE − β 2[2L(L+1)−3]
(2L+3)(2L−1)

)
, (42)

δEL−1
spin =

( 0 γ ′

γ ′ δE + β 2 (L+1)(L+3)
(2L+3)(2L−1)

)
. (43)

C. Case: L = 0

This is the only case where we include the L mixing and
thus the basis is

|0,0,0,0,0,0〉
|0,1,1,1,0,0〉
|2,1,1,1,0,0〉 (44)

and the δEspin(R) becomes

δEspin =

⎛
⎜⎜⎝

0 −√
3γ ′ 0

−√
3γ ′ δE − 2 γ −√

2 β

0 −√
2 β δE + 3/(µn R2)

⎞
⎟⎟⎠ . (45)

The nuclear equation (36) with the matrices δEspin(R) pre-
sented above has been solved numerically as described in the
following section.

TABLE I. The clamped nuclei energy Eu(R) of the b 3�+
u state of H2 in atomic units.

R(a.u.) Eu(R) R(a.u.) Eu(R)

0.1 7.888 200 480 23(54) 3.6 −0.988 000 298 079 213(12)
0.2 2.936 760 506 575(82) 3.7 −0.989 633 582 435 914(12)
0.3 1.330 347 123 362(18) 3.8 −0.991 058 561 176 051 6(9)
0.4 0.560 681 722 812 9(49) 3.9 −0.992 300 031 116 625(14)
0.5 0.123 480 488 020 3(22) 4.0 −0.993 380 066 851 054 1(6)
0.6 −0.150 099 824 524 6(19) 4.2 −0.995 132 117 890 052(4)
0.7 −0.332 558 167 254 7(26) 4.4 −0.996 446 550 339 835(4)
0.8 −0.460 092 123 159 5(33) 4.6 −0.997 426 637 512 202(3)
0.9 −0.552 703 600 189 6(36) 4.8 −0.998 152 794 502 693(1)
1.0 −0.622 264 427 116 5(35) 5.0 −0.998 687 257 154 895 1(7)
1.1 −0.676 183 005 341 9(32) 5.2 −0.999 077 894 411 954 0(7)
1.2 −0.719 236 477 996 0(12) 5.4 −0.999 361 294 472 878 9(2)
1.3 −0.754 563 452 043 48(33) 5.6 −0.999 565 246 549 560 0(3)
1.4 −0.784 244 677 619 29(72) 5.8 −0.999 710 722 820 312 1(2)
1.5 −0.809 666 653 435 89(18) 6.0 −0.999 813 449 850 999(3)
1.6 −0.831 760 208 300 362(68) 6.5 −0.999 952 835 631 005 7(3)
1.7 −0.851 159 923 317 480(27) 7.0 −1.000 004 005 774 949(3)
1.8 −0.868 310 062 295 094 4(85) 7.5 −1.000 018 923 410 887(1)
1.9 −0.883 533 627 911 107 1(53) 8.0 −1.000 020 221 124 853(3)
2.0 −0.897 076 330 763 106 1(23) 8.5 −1.000 017 233 424 615(2)
2.1 −0.909 133 962 635 680 2(92) 9.0 −1.000 013 517 806 560
2.2 −0.919 869 128 398 169 5(17) 9.5 −1.000 010 246 361 593(1)
2.3 −0.929 421 350 735 748(16) 10.0 −1.000 007 673 917 731(3)
2.4 −0.937 913 152 520 715 1(30) 10.5 −1.000 005 743 973 625(3)
2.5 −0.945 453 752 062 622 5(47) 11.0 −1.000 004 322 969 006(11)
2.6 −0.952 141 369 351 322 0(25) 11.5 −1.000 003 281 400 72(49)
2.7 −0.958 064 737 708 345 3(7) 12.0 −1.000 002 515 543 228(2)
2.8 −0.963 304 166 798 342 2(98) 13.0 −1.000 001 524 303 681(3)
2.9 −0.967 932 353 700 267 9(23) 14.0 −1.000 000 959 875 243(1)
3.0 −0.972 015 051 026 530 3(30) 15.0 −1.000 000 625 324 878
3.1 −0.975 611 650 653 440 7(28) 16.0 −1.000 000 419 565 938
3.2 −0.978 775 713 339 384 8(4) 17.0 −1.000 000 288 823 044
3.3 −0.981 555 459 117 719 8(4) 18.0 −1.000 000 203 340 009
3.4 −0.983 994 225 321 188 2(20) 19.0 −1.000 000 146 028 160
3.5 −0.986 130 895 163 431 6(23) 20.0 −1.000 000 106 740 117
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V. NUMERICAL PROCEDURES AND RESULTS

Very accurate clamped nuclei potential for the X 1�+
g state

has been reported recently in [12]. For the whole energy curve,
an accuracy of the order of 10−15 has been reached. It is the
most accurate result to date for H2 itself but also for any
molecular system with two or more electrons. Increasing the
accuracy to this level has been possible thanks to the discovery
of analytic formulas for two-center two-electron integrals with
exponential functions [14]. In this work we report on an
analogous calculation for the b 3�+

u state. In order to achieve
the highest numerical accuracy, different basis sets are used,
depending on the internuclear distance R. For R < 12 bohrs,
the James-Coolidge basis functions [15,16] of the form

ψ{n}(�r1,�r2) = (1 ± P̂12)(1 ± î) e−α (r1A+r1B )−β (r2A+r2B )

× r
n1
12 (r1A − r1B)n2 (r2A − r2B)n3

× (r1A + r1B)n4 (r2A + r2B)n5 (46)

have been employed. The antisymmetry projector (1 ± P̂12)
ensures singlet (+) or triplet (−) state, while the spatial
projector (1 ± î)—the gerade (+) or ungerade (−) symmetry.
Since in the actual numerical calculations one can use only a
finite number of basis functions, one has to somehow select
the most appropriate finite subset of functions in Eq. (46). We
assume therefore, that the finite basis consists of all functions
with nonnegative integers ni such that

5∑
i=1

ni � � (47)

with � = 3, . . . ,18, and the final result is obtained by a
numerical extrapolation to � → ∞. For R < 1.2 bohrs we
used the James-Coolidge basis with two different nonlinear
parameters α �= β, whereas for 1.2 � R � 12 bohrs—with
α = β. The nonlinear parameters were optimized separately
for each internuclear distance R, and then the exponential
convergence to a complete basis set as � → ∞ has been
observed.

To describe the molecule at 12 � R � 20 bohrs, the
generalized Heitler-London functions [13]

ψk(�r1,�r2) = (1 ± P̂12)(1 ± î)

× e−(r1A+r2B ) r
n1k

12 r
n2k

1A r
n3k

1B r
n4k

2A r
n5k

2B (48)

with � up to 16 have been applied. These functions are the
most appropriate for large internuclear distances, and we have
checked that at R = 12 bohrs the accuracy achieved with
generalized Heitler-London functions is close to that with the
symmetric James-Coolidge basis.

The region of R > 20 bohrs is found to be numerically
insignificant, as δE vanishes exponentially at large R [see
Eq. (4)]. All the numerical results for R � 20 bohrs, after
extrapolation to a complete basis set, are listed along with the
estimated error in Table I. This is the most accurate clamped
nuclei energy curve for the b 3�+

u state among all obtained so
far. Numerical calculations were performed in the quadrupole
precision, which nevertheless was not always sufficient. For
some values of R we observed numerical instabilities for
highest values of �, these results had to be dropped, and thus
numerical extrapolation includes much larger uncertainties.

For small values of R we observed much slower numerical
convergence. It is related to the fact that riA is then close to riB

and the one parameter selection of the finite basis set Eq. (47)
is not the most effective.

To evaluate the matrix elements in the functions β, γ , and
γ ′ [see Eqs. (14), (24), and (27)] we employed exponentially
correlated Gaussian (ECG) functions [17,18] of the form

ψk(�r1,�r2) = (1 ± P̂12)(1 ± î)

× exp

[
−

2∑
i,j=1

Ak,ij (�ri − �sk,i)(�rj − �sk,j )

]
,

(49)

where the matrices Ak and vectors �sk contain nonlinear param-
eters, five per basis function, to be variationally optimized.
For both X 1�+

g and b 3�+
u states 600-term bases were

optimized with respect to Eg or Eu for R spread over the range
0–12 bohrs. For each R, the gerade {ψg,k}600

k=1 and ungerade
{ψu,k}600

k=1 basis sets were merged together to form 1200-term
expansions

∑600
k=1(ck ψg,k + ck+600 ψu,k) for φg (φu) yielding

the Eg (Eu) accurate to a fraction of microhartree. Next, using
these φg and φu we evaluated the electronic matrix elements
of δH [Eqs. (15), (24), and (27)]. Their numerical values are
presented in Table II.

TABLE II. The matrix elements for δEspin in atomic units. For c

and c′ the relative uncertainty is better than 10−3, whereas for b all
displayed digits are significant.

R(a.u.) b(R) c(R) c′(R)

0.00 0.036 04 5.035 0.0
0.01 0.036 04 4.929 0.004 396
0.10 0.036 32 4.000 0.040 20
0.50 0.042 75 1.708 0.1626
1.00 0.062 32 0.8818 0.3242
1.30 0.073 67 0.7345 0.4188
1.40 0.075 88 0.7128 0.4450
1.50 0.077 11 0.6989 0.4675
1.60 0.077 39 0.6910 0.4867
1.70 0.076 84 0.6866 0.5027
1.80 0.075 57 0.6846 0.5157
2.00 0.071 50 0.6833 0.5352
2.30 0.063 36 0.6818 0.5539
2.50 0.057 56 0.6795 0.5631
3.00 0.044 12 0.6696 0.5824
3.50 0.033 35 0.6585 0.6004
4.00 0.025 21 0.6500 0.6156
4.50 0.019 16 0.6439 0.6253
5.00 0.014 70 0.6404 0.6309
5.50 0.011 41 0.6383 0.6336
6.00 0.008 969 0.6373 0.6351
7.00 0.005 760 0.6365 0.6360
8.00 0.003 887 0.6364 0.6363
9.00 0.002 737 0.6363 0.6363
10.00 0.001 998 0.6364 0.6364
11.00 0.001 502 0.6364 0.6364
12.00 0.001 157 0.6364 0.6364
∞ 0.0 2/π 2/π
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TABLE III. The gerade-ungerade mixing corrections δEgu to the dissociation energy of all the bound rovibrational levels of H2. The entries
are given in units of 10−8 cm−1.

v\L 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1
1 1 0 1 0 1 0 1 0 1 0 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 5
2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 2 5
3 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 2 5 2 6 2
4 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 4 1 4 1 5 2 6 2 7 3
5 3 1 3 1 3 1 3 1 3 1 3 1 4 1 4 1 5 2 5 2 6 2 8 3
6 3 1 3 1 3 1 4 1 4 1 4 1 5 2 5 2 6 2 7 3 10 4 14
7 4 1 4 1 4 1 5 2 5 2 5 2 6 2 7 3 9 3 12 5 17
8 5 2 5 2 6 2 6 2 7 2 7 3 9 3 11 4 14 6 21
9 7 2 7 2 8 3 8 3 9 3 11 4 14 5 18 7 28
10 10 3 11 4 11 4 13 4 15 5 18 7 25 10 40
11 16 5 17 6 18 6 21 8 26 10 37 16 65
12 30 10 31 11 36 13 45 18 66 30 138
13 74 25 81 30 104 42 170 90
14 438 159 583 280

The regular radial Schrödinger equation (3) as well as
the coupled set of radial differential equations (36) have
been solved using the discrete variable representation (DVR)
method [19]. The discrete spectrum consists of 301 eigenval-
ues, each corresponding to a bound rovibrational level (v,L)
accommodated by theEg potential of H2. The gerade-ungerade
mixing corrections δEgu to the dissociation energy of all the
levels are listed in Table III. For a vast part of the levels the
corrections are of the order of 10−8 cm−1 or even smaller. Only
for the highest vibrational quantum numbers v � 12, values
two orders of magnitude larger can be found. The largest
correction of approximately 6 × 10−6 cm−1 appears for the
v = 14, L = 2 level. In all cases the corrections increase the
dissociation energy, that is, lower the energy level.

Among the components of the Breit-Pauli Hamiltonian,
which are due to the magnetic interaction between all the par-
ticles [Eq. (9)] the proton-proton interaction and the electron-
electron contact interaction have been a priori discarded, as
expected to be very small. It turns out that the relativistic
corrections to gerade-ungerade splitting do not play any role
either. The main contribution to the overall mixing effect
comes from the off-diagonal matrix elements δH2gu expressed
through the γ ′(R) [Eq. (27)].

VI. CONCLUSION

We have shown that gerade-ungerade mixing gives correc-
tions to most of the rovibrational levels of hydrogen molecules
smaller than 10−6 cm−1. Since the present accuracy of
theoretical predictions for the dissociation energy in the ground
electronic state of the hydrogen molecule is 10−3–10−4 cm−1

[1,4], these corrections appear to be negligible. The mixing
corrections become more significant only for highly excited
rovibrational states, where they approach 10−5 cm−1. It means
that further improvement in the precision of the dissociation
energies can be obtained by the calculation of the higher
order nonadiabatic and QED effects, assuming that the gerade-
ungerade symmetry is conserved.
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