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Proton-structure corrections to hyperfine splitting in muonic hydrogen
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We present the derivation of the formulas for the proton structure-dependent terms in the hyperfine splitting
of muonic hydrogen. We use compatible conventions throughout the calculations to derive a consistent set of
formulas that reconcile differences between our results and some specific terms in earlier work. Convention
conversion corrections are explicitly presented, which reduce the calculated hyperfine splitting by about 46 ppm.
We also note that using only modern fits to the proton elastic form factors gives a smaller than historical spread
of Zemach radii and leads to a reduced uncertainty in the hyperfine splitting. Additionally, hyperfine splittings
have an impact on the muonic hydrogen Lamb shift and proton radius measurement, however the correction we
advocate has a small effect there.
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I. INTRODUCTION

The recent conundrum with the proton charge radius [1]
inspires reconsideration of the corrections that enter into
determinations of proton size dependent energy splittings in
hydrogen atoms, particularly muonic hydrogen. This note
is about the determination of the polarizability and elastic
corrections to the hyperfine splitting in muonic hydrogen,
where there is a disagreement implicit in the literature which
should be resolved. The numerical consequences of the
resolution have a small effect upon current measurements,
but could be consequential when accurate measurements of
muonic hydrogen hyperfine splitting become available and if
other sources of uncertainty are reduced.

For the leading order proton structure-dependent part
of the hyperfine splitting (HFS) in muonic hydrogen, the
calculation as commonly implemented requires, we claim,
further correction due to overlapping terms between the
elastic and polarizability parts of the calculation. The situation
occurs because terms can be moved from the inelastic to
the elastic part of the calculation using the Gerasimov-Drell-
Hearn-Hosada-Yamamoto sum rule (which relates the proton
anomalous moment to inelastic cross sections) [2–4], and
details of the move are handled differently in different sources.
For cases known to us, the differences are of no numerical
consequence for ordinary hydrogen, but are noticeable for
muonic hydrogen. Articles on this subject often calculate
just the elastic [5,6] or the just inelastic corrections [7], and
sometimes both in the same article [8,9]. A calculation of
the proton structure corrections that combines elastic and
inelastic (under the heading of “polarizability”) results from
incompatible sources will obtain a deficient total, and such
calculations appear to exist in practice. At a practical level,
given that many full muonic HFS articles (e.g., [10,11]) also
usefully compile higher-order corrections and small terms
from other effects, perhaps the best procedure is not to start
from scratch, but to add to the existing calculations the needed
term that coordinates the elastic plus inelastic total.

Part of the current motivation for discussing the HFS is
the conundrum occasioned by the recent measurement of
the proton charge radius using the Lamb shift in muonic

hydrogen [1]. The HFS has some, albeit small, effect there.
The Lamb shift is the energy difference, mostly due to QED
effects, between the 2S1/2 and 2P1/2 hydrogen levels. More
precisely, given that each of the levels is hyperfine split, it is
the energy difference between the properly weighted average
of the hyperfine levels of the 2S1/2 and 2P1/2 states. The goal is
to use the measured Lamb shift to infer the extra overall shift of
the 2S1/2 energy due to proton size corrections. The experiment
actually measures the energy difference between the 2SF=1

1/2
state (where F is the total lepton + proton angular momentum)
and the 2P F=2

3/2 states, and relies upon calculation of the 2S1/2

HFS and the 2P3/2–2P1/2 splitting to obtain the Lamb shift.
The P -states involve no proton structure corrections to the
accuracy required. The 2SF=1

1/2 state is shifted up by (1/4) of
the full HFS, so a change in the HFS has an effect upon the
Lamb shift extraction. However for the correction discussed in
this paper, the effect translates into less than 1% of the current
discrepancy between the muonic hydrogen value of the charge
radius [1] and the CODATA value [12], which is based mainly
on the ordinary hydrogen Lamb shift and confirmed by electron
scattering data [13].

Our outline for this paper is as follows. Many of the
formulas we use were given in our earlier work [8,9], but
without derivations being shown. Not much detail was given as
well for the muonic polarizability calculation in [7]. Since there
are some differences to be assessed, we show the calculation
in moderate detail in Sec. II. It parallels the well-known
calculation for negligible lepton mass [14–16], but now keeps
the mass general. A reader who does not wish to check the
details on a first reading can proceed directly to Sec. III, where
we isolate the term that should be added to some existing
muonic HFS calculations, evaluate it numerically, and compare
its size to other known terms. The effect of this change to the
HFS upon the current measurement of the proton charge radius
from the Lamb shift is shown in Sec. IV. A short discussion is
offered in Sec. V

II. HYPERFINE SPLITTING

The relevant diagram is shown in Fig. 1.
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FIG. 1. (Color online) Diagram giving proton structure-
dependent corrections to the hyperfine splitting.

We neglect the Fermi momentum of the atomic lepton,
and note that the proton leg plus photons is the same as
off-shell forward Compton scattering on the proton, which
is calculated from the matrix element of a time ordered
product

Tµν(q) = i

2πmp

∫
d4ξ ei �q·�ξ 〈pS|T jµ(ξ )jν(0)|pS〉, (1)

where jµ is the electromagnetic current and the states are
normalized by 〈pS|p′S〉 = 2E(2π )3δ3(p − p′) (for the same
S). We need only the spin dependent part of Tµν , which is
antisymmetric in its indices and is expanded using the scalar
functions H1 and H2,

T A
µν = i

mp

εµναβqα

×
[
Sβ H1(q0,Q

2) + p·q Sβ − S·q pβ

m2
p

H2(q0,Q
2)

]
;

(2)

q0 = q0 is given in the proton rest frame, q0 = p · q/mp, and
Sβ is the proton spin vector.

From the definitions

H1(−q0,Q
2) = H1(q0,Q

2) ,
(3)

H2(−q0,Q
2) = −H2(q0,Q

2) .

The functions H1,2(q0,Q
2) are not known either from ab initio

calculation or measurement. However, the functions can be
constructed from their imaginary parts. The imaginary parts
come from the contribution where the intermediate electron
and hadron states, in Fig. 1, are on-shell physical states,
which in turn are squares of electron-proton elastic or inelastic
scattering amplitudes. Hence we can obtain H1,2(q0,Q

2) using
dispersion relations and data on electron-proton scattering
cross sections.

In terms of standard notation, electron-proton scattering
cross sections are given from the hadronic tensor

Wµν(q) = 1

4π

∫
d4ξ ei �q·�ξ 〈pS|[jµ(ξ ),jν(0)]|pS〉, (4)

and the spin-dependent part of Wµν is

WA
µν = i εµναβqα

×
[
Sβ g1(q0,Q

2) + p·q Sβ − S·q pβ

m2
p

g2(q0,Q
2)

]
.

(5)

Hence (for q0 > 0),

Im H1(q0,Q
2) = 1

q0
g1(q0,Q

2) ,

(6)
Im H2(q0,Q

2) = mp

q2
0

g2(q0,Q
2) .

The spin-dependent structure functions g1 and g2 are mea-
sured (over some kinematic range) in inelastic polarized e-p
scattering at laboratories including CERN, SLAC, HERMES,
ELSA, and JLab. For elastic scattering they are given in terms
of the elastic form factors by

gelastic
1 = 1

2F1GM δ(1 − x) ,
(7)

gelastic
2 = − 1

2τF2GM δ(1 − x) ,

where x = Q2/(2p · q), F1(Q2) and F2(Q2) are the Dirac and
Pauli form factors, respectively, and GM and (for complete-
ness) GE are

GM = F1 + F2 , GE = F1 − Q2

4m2
p

F2. (8)

The functions H1,2(q0,Q
2) have poles in |q0| at the elastic

point and cuts beginning at the inelastic threshold

νth = mπ + (
m2

π + Q2
)/

(2mp) (9)

and going to infinity along the real axis. We use the integration
contour illustrated in the complex q2

0 plane in Fig. 2, assume
zero contribution from the part of the contour at infinite
distance, and obtain the dispersion relations

H1(q0,Q
2) = −2mp

π

q2F1(Q2)GM (Q2)

(q2 + iε)2 − 4m2
pq2

0

+ 2

π

∫ ∞

νth

dν

ν2 − q2
0

g1(ν,Q2) , (10)

H2(q0,Q
2) = −2mp

π

mpνF2(Q2)GM (Q2)

(q2 + iε)2 − 4m2
pq2

0

+ 2mpq0

π

∫ ∞

νth

dν

ν2 − q2
0

1

ν2
g2(ν,Q2) . (11)

FIG. 2. Contour in complex q2
0 plane for Cauchy integral.
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Evaluating the two-photon, structure-dependent, contributions
to the HFS, Fig. 1, one obtains after making a Wick
rotation,

Ebox
2γ

EF

= αm


(1 + κp)π2

∫
d4Q

Q2

1

Q4 + 4m2

Q

2
0

×
{(

2Q2 + Q2
0

)
H1(iQ0,Q

2) − 3Q2Q2
0
H2(iQ0,Q

2)

impQ0

}
,

(12)

where EF is the Fermi energy

E
p

F = 8α3m3
r

3π
µBµp = 16α2

3

µp

µB

R∞
(1 + m
/mp)3

, (13)

and mr is the lepton reduced mass. The Wick rotation entails
the notations

q0 = iQ0, d4q = i dQ0 d3q = i d4Q,
(14)

q2 = q2
0 − �q 2 = −Q2.

After substituting for H1,2 using the dispersion relations,
one has a five dimensional integral. The structure functions
g1,2(ν,Q2) depend only on two variables, and three integrals
can be done analytically. The results are∫

d4Q

Q4

2Q2 + Q2
0

τQ2 + Q2
0

· · · = π2
∫ ∞

0

dQ2

Q2

1

τ
β1(τ ) · · ·

(15)∫
d4Q

Q4

Q2
0

τQ2 + Q2
0

· · · = π2
∫ ∞

0

dQ2

Q2
β2(τ ) · · · ,

where the ellipses stand for functions that may depend on Q2

and other variables but not on the individual components of

Q. The auxiliary functions [15,16] are

β1(τ ) = −3τ + 2τ 2 + 2(2 − τ )
√

τ (τ + 1) ,
(16)

β2(τ ) = 1 + 2τ − 2
√

τ (τ + 1) ,

and have limits

β1(τ ) =
{

4
√

τ + O(τ ) , τ → 0,

9
4 + O(1/τ ) , τ → ∞,

(17)

β2(τ ) =
{

1 + O(
√

τ ) , τ → 0,

0 + O(1/τ ) , τ → ∞.

When the lepton mass can be neglected inside the integrals,
the results (15) are directly applicable with τ = ν2/Q2. When
the lepton mass cannot be neglected, one has denominators
that split into partial fractions,

1(
Q4 + 4m2


Q
2
0

)(
Q4 + 4m2

pQ2
0

)
= 1

4Q4
(
m2

p − m2



) (
1

τpQ2 + Q2
0

− 1

τ
Q2 + Q2
0

)
,

1(
Q4 + 4m2


Q
2
0

)(
ν2 + Q2

0

)
= 1

Q2
(
Q2 − 4m2


τ
) (

1

τQ2 + Q2
0

− 1

τ
Q2 + Q2
0

)
. (18)

Hence the results including lepton mass are given in terms of
the same auxiliary functions and the notations

τp ≡ Q2

4m2
p

, τ
 ≡ Q2

4m2



, (19)

are useful.
The contribution of the two-photon diagram to the HFS

becomes

Ebox
2γ

EF

= αm
mp

2(1 + κp)π
(
m2

p − m2



)
{∫ ∞

0

dQ2

Q2

[
β1(τp)

τp

− β1(τ
)

τ


]
F1(Q2)GM (Q2) + 3

∫
dQ2

Q2
[β2(τp) − β2(τ
)]F2(Q2)GM (Q2)

}

+ 2αm


(1 + κp)π

{ ∫
dQ2

Q2

∫ ∞

νth

dν

Q2 − 4m2

τ

[
β1(τ )

τ
− β1(τ
)

τ


]
g1(ν,Q2)

− 3
∫

dQ2

Q2

∫ ∞

νth

dν

Q2 − 4m2

τ

Q2

ν2
[β2(τ ) − β2(τ
)] g2(ν,Q2)

}
. (20)

Conventionally, the proton structure-dependent corrections
are split into three terms,

�S = �Z + �R + �pol = Ebox
2γ

EF

− 8αmr

π

∫ ∞

0

dQ

Q2
, (21)

called Zemach, recoil, and polarizability terms.
We have subtracted from the box diagram the iteration of the

lowest order one-photon exchange diagram, since in a bound
state calculation that contribution is already included [11].
This cancels the infrared divergence in the box diagram. The
visible effect of the subtraction is to give the “−1” in the

Zemach term displayed below. Including this subtraction gives
the final result, up to a reorganization of terms.

The Zemach term is

�Z = 8αmr

π

∫ ∞

0

dQ

Q2

(
GE(Q2)GM (Q2)

1 + κp

− 1

)
≡ −2αmrrZ, (22)

where rZ is the Zemach radius. The first part of the Zemach
term is obtained from the first line of Eq. (20) with β1(τi)
replaced by the first term in its low argument limit and F1

replaced by GE . The Zemach term is finite in the nonrelativistic
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limit, meaning the proton mass going to infinity with electron
mass and proton size held fixed.

Next continuing to the g1 term, notice that aside from the
overall m
 factor, the integral diverges in the m
 → 0 limit. To
demonstrate this, note that the dν integral for Q2 = 0 in this
limit is just a numerical factor times the left hand side of the
Gerasimov-Drell-Hearn-Hosada-Yamamoto sum rule [2–4],

4mp

∫ ∞

νth

dν

ν2
g1(ν,0) = −κ2

p . (23)

The dQ2 integral then diverges at its lower end.
Conventionally, this near divergence is removed by adding

an extra term to the g1 integral. The g1 and g2 terms together go
into the polarizability correction, and with standard notation

�pol = αm


2(1 + κp)πmp

(�1 + �2) , (24)

with

�1 =
∫ ∞

0

dQ2

Q2

{
β1(τ
)F 2

2 (Q2)

+ 4mp

∫ ∞

νth

dν

ν2

Q4β1(τ ) − 4m2

ν

2β1(τ
)

Q4 − 4m2

ν

2
g1(ν,Q2)

}
,

�2 = −12m2
p

∫ ∞

0

dQ2

Q2

∫ ∞

νth

dν

ν2

Q4[β2(τ ) − β2(τ
)]

Q4 − 4m2

ν

2
g2(ν,Q2) .

(25)

With the F 2
2 term, �1 is finite in any limit. The reason

for multiplying F 2
2 by β1(τ
) is to make it compatible with

[5,6]. Other choices could be made, including just using the
numerical factor (9/4) as in the purely electron case [15,16],
but every choice has consequences elsewhere.

What remains is the recoil term,

�
p

R = 2αmr

πm2
p

∫ ∞

0
dQF2(Q2)

GM (Q2)

1 + κp

+ αm
mp

2(1 + κp)π
(
m2

p − m2



)
{ ∫ ∞

0

dQ2

Q2

[
β1(τp) − 4

√
τp

τp

− β1(τ
) − 4
√

τ


τ


]

×F1(Q2)GM (Q2) + 3
∫ ∞

0

dQ2

Q2
[β2(τp) − β2(τ
)]F2(Q2)GM (Q2)

}
− αm


2(1 + κp)πmp

∫ ∞

0

dQ2

Q2
β1(τ
)F 2

2 (Q2) . (26)

The first term comes because the Zemach correction was
written in terms of GE instead of F1. The middle terms can be
recognized in Eq. (20). The last term compensates the extra
term in the polarizability correction.

Let us now recall a well-known albeit old-fashioned way to
calculate the elastic contributions alone. That is to calculate the
box and crossed box diagrams, Fig. 3, using a photon-proton
vertex given by

ν(q) = γνF1(Q2) + i

2mp

σνρq
ρF2(Q2) (27)

for incoming photon momentum q. We do not advocate
doing the calculation this way because the above vertex
cannot be complete or correct when the intermediate proton
is off-shell. One can correctly obtain the imaginary part of
the elastic part of the Compton amplitude this way, since only
on-shell configurations give the imaginary part. However, this
calculation has been done for the full box, and the results are
well-known [5,6] and widely used (e.g. [10,11]) for the elastic
terms.

The dispersive calculation, barring questions of subtrac-
tions, is complete and correct, and using the F 2

2 term described
above ensures that the elastic terms—defined as the Zemach

FIG. 3. Elastic box and crossed box.

plus recoil terms—are the same as the result of calculating the
box diagrams directly with the vertex of Eq. (27). To state the
same thing in other words, if one uses the elastic contributions
to the HFS found in [5,6] one must use the polarizability terms
given here in order to obtain the correct total proton structure
contributions to the HFS.

III. CONVENTION CONVERSION CORRECTIONS

As noted, the m
 	= 0 result for the polarizability correction
in [7] differs from ours. The difference is entirely in the F 2

2
terms. They have

�1 =
∫ ∞

0

dQ2

Q2

[
9

4
β0(τ
)F 2

2 (Q2) + (other terms same)

]
,

(28)
with

β0(τ ) = 2
√

τ (τ + 1) − 2τ. (29)

This result is correct if used to complement the elastic terms
calculated in the conventions of, for example, [17].

We can, however, find two examples in the literature where
the Ref. [7] polarizability corrections are combined with the
elastic terms of Refs. [5,6] (the �Z + �

p

R as displayed here)
[10,11]. In this case one should add a further correction for
muonic hydrogen HFS given by

�pol(corr.) = αmr

2(1 + κp)πmp

×
∫ ∞

0

dQ2

Q2

[
β1(τ
) − 9

4
β0(τ
)

]
F 2

2 (Q2) , (30)
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TABLE I. Hyperfine splitting for the 2S state of muonic hydrogen,
using different modern analytic fits in the terms that involve elastic
form factors.

Form factor fit E2S
HFS (meV) rZ (fm)

AMT [18] 22.8123 1.080
Kelly [19] 22.8141 1.069
AS [20] 22.8105 1.091
Mainz 2010 [21–23] 22.8187 1.045

which evaluates to −46 ppm, or about −1.0 µeV. To two fig-
ures (in the ppm number), the result is the same using the form
factors from Arrington, Melnichouk, and Tjon [18], Kelly [19],
Arrington and Sick [20], or the new Mainz form factors
[21–23].

IV. EFFECT UPON THE LAMB SHIFT AND
PROTON RADIUS

In the context of the Lamb shift, the proton structure
correction to the HFS that we discuss in this paper is small
compared to the larger proton structure correction of the 2S

energy level and has only a slight effect on the extracted proton
radius.

The muon Lamb shift experiment measures the transition
between the 2SF=1

1/2 and 2P F=2
3/2 states, and following the

discussion in the introduction one may write an equation from
Ref. [1] as

E
(
2P F=2

3/2

) − E
(
2SF=1

1/2

)
= (rp independent terms) − 5.2262 meV

r2
p

fm2

+ 0.0347 meV
r3
p

fm3 − 1

4
E2S

HFS (31)

where rp is the proton charge radius and the “rp independent
terms” are well calculated.

A simple 46 ppm reduction in the 2S-state HFS results in
an increase in rp, but one that is smaller than the uncertainty
limit of the experiment [1]. Stated differently, if one wants to
make the above equality work with the CODATA value for the
radius, one needs to find a 310 µeV or so extra contribution to
the energy, which we do not have from this source.

V. CLOSING REMARKS

We have reconsidered the hyperfine splitting for muonic
hydrogen, advocating a unified calculation in order to clearly
track how each term is defined. We reported numerical results
earlier, and have here detailed the derivation and shown an
additional term that should be included if the O(α5) elastic
and polarizability terms are taken from specific different
publications.

The result of this term is to reduce the quoted hyperfine
splitting by about 1.0 µeV.

As a remark regarding the totality of the proton structure
dependent corrections, many modern form factor fits give
a Zemach radius toward the larger end of its former range
[11,24–26], and with a smaller spread [27]. Since the spread
of values for the Zemach radius contributed the largest
uncertainty to the calculated HFS, there could be a notable
reduction in the quoted error limit. The first three form factors
listed in Table I show this possibility. Table I was prepared
using our own results for the O(α5) (lowest non-trivial
order) proton structure corrections and using the extensive
compilation of [11] for the QED, higher-order, and additional
small corrections, leaving these other terms in [11] untouched
and quoting results for the 2S-state for definiteness. We have
also indicated the Zemach radius that follows from each form
factor parametrization.

However, the latest electron scattering Mainz results [21]
create an exception. They agree well with the CODATA value
[12] for the charge radius but give a magnetic radius that is
noticeably smaller than previous, but still modern, fits. Along
with this, they give a smaller Zemach radius [22,23] than the
other form factor fits in Table I, and increase the spread of
calculated values for E2S

HFS.
Nearly all the uncertainty in the HFS calculation comes

from the proton structure terms. Quoting from [9], the
uncertainty in the polarizability contribution is ± 114 ppm
or ± 2.6 µeV. Determining the uncertainty in the elastic
contributions from the spread of results from the selection of
form factor parametrizations gives ± 4.1 µeV (± 180 ppm).
This would have been ± 1.8 µeV (±80 ppm) before the latest
result. Adding in uncertainties in quadrature gives ±4.9 µeV,
meaning that one should be allowed already to quote a smaller
uncertainty as in

E2S
HFS = 22.8146(49) meV , (32)

compared with E2S
HFS = 22.8148(78) meV obtained in [11]

and used in [1]. One may expect that newer comprehensive
analyses of the magnetic form factor data could reduce the
uncertainty limit farther. The central value quoted is the
midpoint of the values in Table I and is little moved.

This note has focused on one correction where we believed
there were some definite statements to be made, and in the
light of the PSI experiment on the Lamb shift, all discrepancies
need to be sorted out. We have not reassessed the whole set of
corrections to the HFS [11,28], as has been done recently for
the spin-independent case [29,30].
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